FOUNDATION

PAPER - 4

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Multiple Choice Questions Bank

THE INSTITUTE OF STUDIES COST ACCOUNTANTS OF INDIA

Statutory Body under an Act of Parliament

FOUNDATION

PAPER - 4

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Multiple Choice Questions Bank

THE INSTITUTE OF COST ACCOUNTANTS OF INDIA

Statutory Body under an Act of Parliament

Paper 4 - Fundamentals of Business Mathematics & Statistics

1.	If A:B=2:3, B:C=4: (a) 6:7	5, then A :0 (b) 7: 6	C =	(c) 8:15	(d) 15:8	
2.	The inverse ratio of $1\frac{3}{5}$	$: 2\frac{1}{4}$ is				
	(a) 32 : 45	(b) 45: 32		(c) 18:5	(d) 5: 18	
3.	The ratio of 10 meters to (a)The ratio Cannot be Determined	o ₹15 (b) 2:3		(c) 3:2	(d)5 :10	
4.	If twice of money of A = (a) 2:5	= 5 times o (b) 15: 25		B, then the ratio of m (c) 12:30	oney of A to that of B (d) 5: 2	
5.	The ratio $\frac{5}{3}$: $2\frac{1}{4}$ is					
	(a) Ratio of lesser in eq	uality	(b) Ratio	of greater inequality	(c) 20 : 9	(d) 5 :27
6.	The ratio of present ag		to that of M	Nadhu is 4 : 5. If the p	oresent age of Madhu	is 30 years,
	then the present age o (a) 20 years	f Jadu is : (b) 25 y	ears	(c) 24 years	(d) 35 years	
7.	The ratio of 5 kg 55 gm (a) 5:7	to 35 kg 56 (b) 1,011:		(c) 111 :710	(d) None of	these
8.	The ratio 1 year 6 mont (a) 3 : 4 : 5	t h : 2 years (b) 2: 3 :5		months (c) 2 :4 : 5	(d) None of	these
9.	If $\frac{1}{2}$ of money of A = $\frac{1}{3}$	rd money	of B = $\frac{1}{4}$ of	money of C, then the	e continued ratio of mo	oney of A, B
	and C (a) 2:3:4	(b) 6: 4	:3	(c) 4:3:2	(d) 3:2:1	
10.	Some money is distributed (a) ₹ 90	ted betwe (b) ₹144		in the ratio 2:3. If A (c) $\stackrel{?}{\stackrel{?}{\sim}}$ 108	receives Rs 72 , then B (d) None of	
11.	₹ 2530 is distributed be	tween Ran	n and Hari s	such that Ram gets $\frac{11}{12}$	part that Hari gets. The	n Hari gets:
	(a) ₹1320	(b) ₹121	10	(c) ₹1230	(d) ₹1310	
12.	Some amount of mone that Rama gets = thrice	the amou	ınt of mone	y that Mita gets = fou	=	-
	Shipra gets. Then the co	(b) 4: 3		(c) 6:4:3	(d) 3:	2:1
13.	In a map 2 cm denotes (a) 1 : 1,50,000	s a distanc (b) 1 : 1		then the seale in the (c) 1:1,500	map is : (d) 2 : 3	3
14.	The ratio of two numbe subtracted from the first (a) 2					
15.	The sub- duplicate ratio	o of 49:81	l is:			
	(a) 81 : 49	(b) 7:9		(c) 9:7	(d) √7	: 3
16.	$\left(\frac{1}{2} + \frac{1}{3}\right) : \left(\frac{1}{2} \times \frac{1}{3}\right)$					
	(a) 2:3	(b) 3:2		(c) 5:1	(d) 1:	5

17.	The compound ratio of 1 (a) 21:25	. 2 : 2.5, 2.1 : 3.2 and 5 : 3 i (b) 27 : 40	(c) 21 : 40	(d) None of these
18.	If A: B = 3: 4, B: C = 2: 5 (a) 3:4:5	5, then A : B : C : (b) 3: 4:10	(c) 4:3:10	(d) 3:4:8
19.			btracted from each of them t	hen the remainders
	are in the ratio 1 : 2, then (a) 15, 12	the numbers are : (b) 12, 18	(c) 15, 24	(d) None of these
20.	If the price of a pair of	pens is ₹ 95, the price o	f 3 books of Mathematics is	₹ 197.50, then the
	continued ratio of the pri (a) 19:25:2	ce per piece of each iten (b) 21: 25 : 2	n is : (c) 19 : 30 : 3	(d) None of these
21.	If 3x+ 4y: 5x - 3y = 5: 3, t (a) 16: 27	hen x:y: (b) 27:16	(c) 8:9	(d) None of these
22.	The ratio of two numbers	is 12 : 5. If the anteceden	t is 45, then the consequent is	:
	(a) 108	(b) 15	(c) 18.75	(d) 20
23.	If the ratio of two positive (a) 28, 35	numbers is 4 : 5 and their (b) 28, 40	L. C. M. is 140, then the numb (c) 35, 45	pers are : (d) none of these
24.	If the ratio of positive nur (a) 90	mbers is 5 : 9 and their H. C (b) 180	C. F. is 4, then the L. C. M. of th (c) 45	e number is (d) None of these
25.	If the ratio of two positive	e numbers is 7 : 8 and their (b) 8	L. C. M. is 224, then their H. C (c) 4	. F. is : (d) None of these
26.	The compound ratio of se (a) 81:8	ub-duplicate ratio and sub (b) 81 : 16	o-triplicate ratio of 729: 64 is (c) 729: 16	(d) 243 : 32
27.	The ratio of two numbers	is 11:15. The sum of 3 time	es the first number and twice	the second number
	is 630. The H. C. F. of the			
	(a) 10	(b) 12	(c) 15	(d) None of these
28.	The mean proportional o	f 4X and 16X³ is: (b) 12X²	(c) 8X ²	(d) 64X ⁴
29.	The third proportional of (a) 1 hrs 50 minutes	1 hour 20 minutes, 1 hour 4 (b) 2 hrs		d) 2hrs 25 minutes
30.	The fourth proportional of (a) 100 gm	f ₹5, ₹3.50, 150 gm is: (b) 105 gm	(c) 125 gm	(d) None of these
31.	If A: B = B: C = C: D = 5: (a) 125: 150: 180: 216	6, then A:B:C:D (b) 25:30:36:48	(c) 75:84:96:108	(d) None of these
32.		•	umbers in continued propo	rtion be 3 and 12
	respectively then fourth (a) 27	number is (b) 36	(c) 48	(d) None of these
33.			25 paisa coin. The ratio of	their numbers are
	x : y : z . The ratio of the (a) 4x: 2y: z	eir values: (b) 2x : 3y : z	(c) 4x: 3y : z	(d)x:2y:4z
34.	Of the four numbers in r	proportion, if the product	of two middle numbers is 48,	the other numbers
	are: (a) 32,16	(b) 18, 30	(c) 3, 16	(d) 6, 24

35. If 0.5 of A = 0.6 of B = 0.75 of C and A+B+C = 60, then the number which is to be add the result of this addition and B, C will be in continued proportion, is:			added to A so that	
	(a) 1	(b) 2	(c) 3	(d) 4
36.	The mean proportion of (a) 12, 8	three numbers in continue (b) 64, 2	d proportion is 16, then the ot (c) 80, 5	her numbers are : (d) $\sqrt{.01}$, 2560
37.	If A: B = 5:8, A: C = 6:1 (a) 30:36:55	1, then A:B:C: (b) 24:30:55	(c) 30:48:55	(d) None of these
38.	If X:Y=2:3, X:Z=5:7 (a) 60:49	, then (3X + 2Y) : (5Y - 2 Z) (b) 60 : 47	(c) 47:60	(d) None of these
39.	The distance between to between the two places		25,00,000 scale is 8 cm. Then	the actual distance
	(a) 200 km	(b) 300 km	(c) 100 km	(d) None of these
40.	5 years ago, the ages of years. The present age of		e ratio 5 : 3. If the sum of thei	r present ages is 90
	(a) 50 years	(b) 60 years	(c) 55 years	(d) None of these
41.	If A:B = 5:7 and B:C = 6:1 (a) 55:77:66	1, then A:B:C is: (b) 30:42:77	(c) 35:49:42	(d) None of these
42.	If p:q = 3:4 and q:r = 8:9, (a)1:3	then p:r is: (b)3:2	(c) 2:3	(d) 1:2
43.	If A:B = 8:15, B:C = 5:8 and (a) 2:7	d C:D = 4:5, then A:D is ed (b) 4:15	qual to: (c) 8:15	(d)15:4
44.			that they would not wait more	than 10 minutes for
	(a) 10/36	lity that they actually mee (b)11/36	(c) 25/36	(d)26/36
45 .	If 15% of x is the same as (a) 3: 4	3 20% of y, then x:y is : (b) 4:3	(c)17:16	(d)16:17
46.	If 7:x = 17.5 : 22.5, then the (a) 9	ne value of x is: (b) 7.5	(c) 6	(d) 5.5
47.	If $\frac{1}{5}: \frac{1}{x} = \frac{1}{x}: \frac{1}{1.25}$, the value of	f x is :		
	(a) 1.5	(b) 2	(c) 2.5	(d) 3.5
48.	If 0.4 : 1.4 :: 1.4 : x , the vo	alue of x is: (b) 4.9	(c) 0.49	(d) 0.4
49.	The compounded ratio of (a) 1:2	of (2:3), 6:11) and (11:2) is: (b) 2:1	(c) 11:24	(d) 36:121
50.	If 2A = 3B = 4C, then A:B: (a) 2:3:4	C is: (b) 4:3:2	(c) 6:4:3	(d) 3:4:6
51.	If $\frac{1}{3}A = \frac{1}{4}B = \frac{1}{5}C$, then A:	B:C is:		
	(a) 4:3:5	(b) 5:4:3	(c) 3:4:5	(d) 20:15:12
52.	If $A = 1/3 B$ and $B = \frac{1}{2} C$, (a) 1:3:6	then A:B:C is : (b) 3:1:2	(c) 2:3:6	(d) 3:2:6

PAPER 4: FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

53.	If 2A = 3B and 4B = (a) 4:3	5C, then A:C is: (b) 8:15	(c) 15:8	(d) 3:4
54.	If x : y = 5:2, then th (a) 26:61	e value of (8x + 9y) : (8x + 2y) (b) 61 : 26	is (c) 29:22	(d) 22:29
55.	If x:y = 2:1, then (x² (a) 3:5	$-y^2$): $(x^2 + y^2)$ is: (b) 5:3	(c) 1:3	(d) 3:1
56.	If (4x ² - 3y ²) : (2x ² +	5y²) = 12:19, then x: y is: (a) 2:3	(b) 1:2 (c) 3:2	(d) 2:1
57 .	The fourth proportio	nal of 0.2, 0.12 and 0.3 is: (b) 0.15	(c) 0.18	(d) 0.8
58.	The third proportion	al to 0.36 and 0.48 is:		
	(a) 0.64	(b) 0.1728	(c) $24\sqrt{.0003}$	(d) None of these
59 .	The mean proportion (a) 0.8	on between 0.32 and 0.02 is: (b) 0.08	(c) 0.008	(d) 0.4
60.	The third proportion (a) $\frac{x+y}{x-y}$	al to $(x^2 - y^2)$ and $(x - y)$ is : (b) $\frac{x - y}{x + y}$	(c) x + y	(d) (x - y)
61.	The ratio of third pro	oportional to 12 and 30 and th (b) 5:1	e mean proportional of 9 and (c) 7:15	d 25 is: (d) 9:14
62.	In a ratio which is e	qual to 3:4, if the antecedent	is 12, then consequent is : (c) 20	(d) 24
63.	If 0.4 of a number is (a) 2:3	equal to 0.06 of another num (b) 3:4	ber, then the ratio of the nun (c) 3:20	nbers is : (d) 20:3
64.	A friction which be	ars the same ratio to $\frac{1}{27}$ that $\frac{3}{1}$	$\frac{3}{1}$ does to $\frac{5}{9}$ is	
	(a) $\frac{1}{55}$	(b) 55	(c) 1/11	(d) $\frac{3}{11}$
65.	If a + b : b+c : c+a : (a) 6	= 6 : 7 : 8 and a+b+c = 14 , then (b) 7	n the value of c is : (c) 8	(d) 14
66.	If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$, then $\frac{a+b+c}{c}$	c is equal to:		
	(a) 7		(c) $\frac{1}{2}$	(d) $\frac{1}{7}$
67.	If $a^x = b^y = c^z$ and b (a) $\times Z$	2 = ac, then xy + yz = (b) - X z	(c) 2xz	(d) None of these
68.	If $\frac{\left(p+\frac{1}{q}\right)^{p} \cdot \left(p-\frac{1}{q}\right)^{p}}{\left(q+\frac{1}{p}\right)^{p} \left(q-\frac{1}{p}\right)^{q}} = \left(\frac{p}{q}\right)^{x}$, then the value of $old X$		
	(a) p - q	(b) p + q	(c) q - p	(d) None of these
69.	The digit in the unit	place of (2 x 4 ^x) ² + 1 (where x	is a positive integer) is:	(d) None of these

70.	If $\frac{(2^{x+1})^{y}.(2^{2x}).2^{x}}{(2^{y+1})^{x}.2^{2y}} = 1$, then the value of y is :		
	(a) 0	(b) 1	(c) X	(d) 2 X
71.	losses ₹ 60. The p	olic Day parade an Auto Riksh robability of rain on Republic o Riksha on Republic Day para (b) ₹ 45	Day parade is 0.6. Who	
72.	If 3× =5 ^y = (225) ^z , tl	nen Z :		
	(a) $\frac{xy}{x+y}$	(b) $2\frac{xy}{(x+y)}$	(c) 2(X + y)	(d) None of these
73.	If $X \neq 1$ and X^{*}	$\sqrt{x} = \left(\mathbf{X} - \sqrt[4]{\mathbf{X}}\right)^{x}$, then \mathbf{X} :		
	(a) -1	(b) 0	(c) $\frac{625}{256}$	(d) None of these
74.	If $a^{\frac{1}{3}} + b^{\frac{1}{3}} + c^{\frac{1}{3}} = 0$, the (a) 3 abc	en (a+b+c) ³ : (b) 27 abc	(c) – 27 abc	(d) None of these
75.	If $y = x^{\frac{1}{3}} - x^{\frac{1}{3}}$, then (a) $x - \frac{1}{x}$		(C) $\frac{1}{x}$ -x	(d) None of these
76.	If $a = 2 + a = 2 + \sqrt[3]{2} + (a)$	$\sqrt[3]{4}$, then $a^3 - 6a^2 + 6a$: (b) 0	(c) 2	(d) None of these
77.	If $3x = 9y$, then $\frac{1}{x}$	I		
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(d) 0
78.	If $64^x = 2\sqrt{2}$, then (a) $\frac{1}{6}$	X (b) $\frac{1}{2}$	(C) $\frac{1}{4}$	(d) None of these
79.	If X = 8, Y = 27, the	en the value of $(x^{\frac{4}{3}} + y^{\frac{2}{3}})^{\frac{1}{2}}$ is (b) 5	(c) 1	(d) 4
80.	If 9 x 81× = 1 , t	hen the value of x is		
	(a) 2	(b) 1	(c) 0	(d) None of these
81.	If $5^{4x} = 1$, 00,000, the (a) $\frac{1}{10}$	nen 5 -× : (b) ½	(C) ½	(d) 2
82.	If $X = \sqrt[3]{\sqrt{2}+1} - \sqrt[3]{\sqrt{2}}$ (a) 0	\overline{a} , then the value of $X^3 = 3X$ is: (b) 1	(c) 2	(d) None of these
83.	If $X = 5 + 2\sqrt{6}$ ar	and X y = 1, then $\frac{1}{2} + \frac{1}{2}$:		

(c) 49

(b) 98

(a) 22

(d) None of these

84.	. The probability of an ordinary year having 53 Tuesdays is			
	(a) 2/7	(b) 1/7	(c) 3/7	(d) 4/7
85.	If $X = 3 + 2\sqrt{2}$, then	the value of $\left(x^3 + \frac{1}{x^3}\right) - 5\left(x^2 + \frac{1}{x}\right)$	$(\frac{1}{2})$ - 5 $(x+\frac{1}{x})$ is:	
	(a) 0	(b) 1	(c) – 2	(d) None of these
86.	$\frac{\sqrt{3}}{\sqrt{7+\sqrt{11}}} - \frac{2\sqrt{7}}{\sqrt{11+\sqrt{3}}}$	$-\frac{\sqrt{11}}{\sqrt{3}+\sqrt{7}}$		
	(a) 0	(b) $2\sqrt{7} + \sqrt{3} - \sqrt{11}$	(c) 21	(d) None of these
87.	If $2^{x+2y} = 2^{2x-y} = \sqrt{8}$, t	hen:		
	(a) $x = \frac{3}{10}$, $y = \frac{9}{10}$	(b) $x = \frac{9}{10}$, $y = \frac{3}{10}$	(c) $x = \frac{3}{5}$, $y = \frac{6}{5}$	(d) None of these
88.	The mean proportion	al between $\sqrt{11-}\sqrt{5}$ and 1	$3\sqrt{11+19\sqrt{5}}$ is:	
	(a) $\sqrt{33} - \sqrt{15}$	(b) $\sqrt{33} + \sqrt{15}$	(c) $\sqrt{11} + \sqrt{5}$	(d) None of these
89.	Two coins are tossed (a) 0.5	five times, find the probabi	lity of getting an even numbe (c) 0.4	er of heads (d) 0.25
90.	If $x=2+\sqrt{5}$, then x^3+3 (a) 7	x²-29x : (b) 10	(c) 0	(d) None of these
91.	Mean of a Binomial d (a)72, 1/3, 2/3	iistribution is 24, Standard d (b) 60, 1/3, 2/3	eviation = 4, n, p, q respective (c) 87, ½, 3/4	ely are : (d) 90, 1/5, 4/5
92.	If $a = \frac{1}{2 + \sqrt{2}}$ and $b = \frac{1}{2}$	$\frac{1}{2\sqrt{3}}$, then the value of $2a^2$	+ 3ab – 2b ² :	
	(a) $3-16\sqrt{3}$	(b) 3+16√3	(c) 2+8√3	(d) 2-8√3
93.	If $x=7+4\sqrt{3}$, then $\sqrt{x}+\frac{1}{\sqrt{3}}$	<u> </u>		
	(a) 3	(b) 6	(c) 4	(d) 2
94.	The value of $\sqrt{6+\sqrt{6+4}}$	√6+ to infinity is:	(c) -2	(d) 3
0.5		, ,	(-) -	(2)
95.	If $\frac{(x-\sqrt{24})(\sqrt{75}+\sqrt{50})}{\sqrt{75}-\sqrt{50}} = 1$, the (a) 6	(b) 5	(c) 8	(d) None of these
96.	If $x \propto \alpha^2$, then $\alpha \propto$	••••		
	(a) x ⁴	(b) √x	(c) $\frac{1}{\sqrt{x}}$	(d) None of these
97.	If $x^2+y^2 \propto x^2-y^2$, then	X ∝	•	
	(a) y	(b) \sqrt{y}	(c) $\frac{1}{\sqrt{y}}$	(d) None of these
98.	If $x \infty \frac{1}{\sqrt{a}}$, then $a \infty$			
	(a) x ²	(b) √x	(c) $\frac{1}{x}$	(d) $\frac{1}{x^2}$

99.	If $\mathbf{A} \infty \mathbf{B}^2$ and $\mathbf{A} = 4$ then (a) 12	B = 4. When A= 3, the value (b) 16	of B ² is: (c) 9	(d) None of these
100.	If X varies inversely with (a) 24	th Y and if Y = 3, then X = 8.1 (b) 18	The value of Y when X = 2 are (c) 12	e: (d) None of these
101.	If $\mathbf{x}^2 \infty \mathbf{y} \mathbf{z}, \mathbf{y}^2 \infty \mathbf{z} \mathbf{x}, \mathbf{z}^2 \infty \mathbf{x} \mathbf{y}$, (a) 0	then the product of three co	onstant of variation is : (c) 3	(d) xyz
102.	both. If ne reader is se	lected at random, what is p	mic Times, 25% read Financi robability that he reads Eco	
	known that he read Fin (a) 1/5	(b) 3/5	(c) 2/5	(d) 4/5
103.	If x is proportional direc	ctly to x and inversely with z	; y = 5, z = 9 then $x = \frac{1}{6}$. The	e relation among x,
	y, z is: (a) $x = \frac{3y}{10z}$	(b) $x = \frac{10z}{3y}$	(c) $x = \frac{5y}{3z}$	(d) None of these
104.	If y varies inversely with (a) 6	the square x and x = 2 whe (b) 12	n y = 9, then the value of y w (C) 4	hen X = 3 is : (d) 9
105.	If $x \infty yz^2$, $y \infty ab^2$ and	$z\infty\frac{b}{a}$, then the relation of x	with a and is:	
	(a) $x \propto \frac{a_4}{p}$	(b) $x \propto \frac{\alpha}{b^4}$	(c) $x \propto \frac{b^2}{a}$	(d) $x \propto \frac{p_4}{a}$
106.	If $b \propto a^3$ and a increase	s in the ratio 3: 2, then b incr	eases in the ratio:	
	(a) 8 : 27	(b) 27:8	(c) 2:3	(d) None of these
107.	$\frac{(1-i)^2}{(2-i)^2}$ can be express	sed in the form A+iB, then		
	(a) $\frac{8}{25} - i\frac{6}{25}$	(b) $-\frac{8}{25} + i\frac{6}{25}$	(c) $-\frac{8}{25} - i\frac{6}{25}$	(d) None of these
108.	Modulus of $\frac{2+i}{2-3i}$ is :			
	(a) $\frac{5}{13}$	(b) $\sqrt{\frac{5}{13}}$	(c) $\sqrt{\frac{13}{5}}$	(d) None of these
109.	The conjugate complex	x number of $\frac{(3+i)(2-3i)}{1+2i}$ is:		
	(a) -1+ 5i	(b)1+5i	(c) -5-	(d) None of these
110.	Square root of 7-24i is:			
	(a) ±(4-3i)	(b) ± (3-4i)	(c) \pm (4 +3i)	(d) None of these
111.	If $z = \frac{1-i}{\sqrt{2}}$, then $z^2 + z^4 +$	z ⁶ :		
	(a) 0	(b) 1	(c) -1	(d) 2
112.	The least positive integ	er n for which $\left(\frac{1+i}{1-i}\right)^n = -i$ is:		
	(a) 2	(b) 3	(c) 4	(d) None of these

113.	If $x-2 + i3y = I(x-2i)$, th	nen		
	(a) $x=4$, $Y=\frac{4}{3}$	(b) x=3, y=4	(c) $x = -4$, $y = -\frac{4}{3}$	(d) None of these
114.	The least positive integ	ger n, for which $\left(\frac{1+i}{1-i}\right)^n = -i$ is	:	
	(a) 2	(b) 3	(c) 4	(d) 1
115.	The square root of 2i is		_	
	(a) ± (1-i)	(b) $\pm (\sqrt{2} + i)$	(c) $\pm (1 + \sqrt{2} i)$	(d) \pm (1 + i)
116.	If $ \mathbf{x} - 1 + 3\mathbf{i} = 3\sqrt{2}$ then	ı x:		
	(a) 4,-2	(b) -4,2	(c) 4,2	(d) None of these
117.	If $Z = \frac{1+i}{1-i}$, then $z+z^2+z^2$	z 3+ z 4 :		
	(a) 1	(b) 2	(c) 2i	(d) 0
118.	If x=3+2i and y=3-2i , the (a) 32	hen x²+xy+y²: (b) 23	(c) 25	(d) 13
110		, ,	(6) 25	(4) 10
119.	If Z=x+iy and $ z-2 = z $	(b) 4	(c) 1	(d) 0
120.	15 A 1:B = 2+i 4bon	A2 1 D2.		
120.	If A+iB = $\frac{2+i}{2-3i}$, then A		() 5	/ I) 10
	(a) $\frac{5}{13}$	(b) $\frac{13}{5}$	(c) 5	(d) 13
121.	Modulus of $\frac{1+6i}{7-5i}$ is:			
	(a) $\sqrt{2}$	(b) $\frac{1}{\sqrt{2}}$	(c) 1	(d) 2
122.	If iz³+z²-z+i = 0 then the	e value of Z is:		
	(a) 1	(b) 2	(c) 3	(d) None of these
123.	Let $z_1 = 2 + 3i$ and $z_2 =$	3+2i be two complex number		
	(a) $z_1 > z_2$	(b) $z_1 < z_2$	(c) z_1^2	(d) None of these
124.	Modulus of $\frac{\sqrt{3} - i\sqrt{2}}{\sqrt{2} + i\sqrt{3}}i$	s:		
	(a) 2	(b) 1	(c) $\frac{2}{3}$	(d) None of these
125.		al switches inspected are li rical switches inspected are (b) 81,9	kely to be defective. The I	mean and standar
126.	,	en the value of a ² + b ² is:		, ,
	(a) 3	(b) 5	(c) 10	(d) None of these
127.	If $z + \frac{1}{z} = 1$, then the val	ue of $z^{14} + \frac{1}{x^{14}}$ is:		
	(a) 0	(b) 2	(c) 1	(d) -1

128.	If α , β are the complex (a) -1	cube roots of unity, then the (b) 0	value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$ is: (C) 1	(d) None of these
129.	In how many ways 1 bo	by and 1 girl can be selected (b) 84	d out of 12 boys and 7 girls fo (c) 19	r a Kho Kho team (d) 5
130.	How many numbers co	an be formed between 100	to 1000 out of 1,3,4,7,8 witho	ut repetition of any
	(a) 60	(b) 84	(c) 120	(d) 92
131.	How many numbers ca	n be formed between 100 to	o 1000 out of 1,3,4,7,8 if repeti	tion of any number
132.	(a) 60 The value of 12 p ₂ + 8 p ₃	(b) 84 is:	(c) 125	(d) 92
	(a) 648	(b) 468	(c) 846	(d) None of these
133.	If "p ₃ = 120, then n:			
	(a) 8	(b) 4	(c) 6	(d) None of these
134.	If 11 p _r = 110, then the va (a) 2	llue of r is: (b) 10	(c) 4	(d) None of these
135.	If ${}^{n}p_{5} = 20$. ${}^{n}p_{3}$, then the	,	(0)	(a) None of mose
155.	(a) 6	(b) 8	(c) 7	(d) None of these
136.	If $^{n-1}p_3$: $^{n+1}p_3$ = 28 : 55, th		() 10	(I) 10
	(a) 6	(b) 8	(c) 10	(d) 12
137.		66, then the values of m and (b) m=5, n=2	n are: (c) m=6, n=1	(d) None of these
138.	If $^{2n+1}p_{n-1}$: $^{2n-1}p_n = 3:5$, then	nen n :		
	(a) 4	(b) 6	(c) 5	(d) None of these
139.	If ${}^{9}p_{5} + 5$. ${}^{9}p_{4} = {}^{10}p_{r}$, the (a) 3	en the value of r is (b) 4	(c) 5	(d) None of these
140		, ,		
140.	together is:		d "BANANA" in which two let	
	(a) 40	(b) 60	(c) 80	(d) 100
141.		particular books will be alw	cs can be arranged in a sh ays side by side is:	
	(a) 2,016	(b) 8,064	(c) 144	(d) None of these
142.	The number of different 7,0,9,5 is	numbers of 6 digits (withou	rt repetition) can be formed	from the digits 3, 1,
	(a) 600	(b) 120	(c) 720	(d) None of these
143.		ır the multiple of 7 he wins a	iven chance to draw two tic gift voucher of 1 10,000. Wh	•
	(a) 1/625	(b) 3/625	(c) 6/625	(d) 5/625
144.	The total number of arra (a) 2520	angements of the letters in the (b) 1260	ne expression x³y²z⁴ when writ (c) 610	tten in full length is (d) None of these

145.	The number of arrange adjacently is:	ments of the letters of the w	ord BANANA in which the two	o N's do not appear
	(a) 100	(b) 80	(c) 40	(d) 60
146.			I from the letters of the word	"TRIANGLE" so that
	no vowels are together (a) 7200	(b) 36000	(c) 14400	(d) 1240
147.	The number of ways in O,E occupy even place		rd "VOWEL" can be arrange	
	(a) 12	(b) 18	(c) 24	(d) None of these
148.	5 letters can be posted (a) 256 ways	in 4 letters in: (b) 1024 ways	(c) 625 ways	(d) None of these
149.	3 distinct prizes can be (a) 310 ways	distributed among 10 boys (b) 720 ways	(any boy can get more than (c) 1000 ways	once) in: (d) None of these
150.			word "STRANGE" can be ar	ranged so that the
	vowels may appear in (a) 1370	(b) 1440	(c) 1470	(d) None of these
151.			using the letters of the word	"assist" in which s's
	alternate with other left (a) 12	(b) 24	(c) 6	(d) 18
152.	If ${}^{n}C_{12} = {}^{n}C_{8}$, then n:			
	(a) 20	(b) 12	(c) 6	(d) None of these
153.	If ${}^{8}C_{r} - {}^{7}C_{3} = {}^{7}C_{2}$, then	r:		
	(a) 3	(b) 4	(c) 2	(d) 6
154.	If ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{x}$, the			
	(a) 2	(b) r	(c) r+1	(d) None of these
155.	If ${}^{n}c_{4}$: ${}^{n-3}c_{3} = 33:4$, then	nn : (b) 10	(a) 11	(d) None of these
	(a) 9		(c) 11	(d) None of these
156.	If ${}^{15}C_r$: ${}^{15}C_{r-1} = 11:5$, the	enr: (b) 5	(c) 6	(d) 7
157.	If ${}^{n}p_{r} = 720 {}^{n}c_{r}$, then r:			
	(a) 4	(b) 5	(c) 6	(d) 8
158.	A man has 6 friends. T	he total number of ways so	that he can invite one or m	nore of his friends is
	(a) 64	(b) 60	(c) 720	(d) 63
159.	The total number of fac (a) 14	tors of 210 (excluding 1 and (b) 16	(c) 18	(d) 20
160.			else. The total number of ha	andshakes is 66. The
	total number of person (a) 11	s in the room is : (b) 12	(c) 10	(d) 14

161.	of ways in which the I	n a room. Each one of the hall can be illuminated is:		dependently. The number	
	(a) 100	(b) 10 24	(c) 1023	(d) 10!	
162.	questions of which t answering in question	he question under 1 is one	compulsory. The total nu	andidate has to answer 6 imber of selections of his	
	(a) 462	(b) 252	(c) 210	(d) None of these.	
163.	•		from any group. Total i	stions. A candidate has to number of selections of 9	
	(a) 1470	(b) 735	(c) 145	(d) None of these	
164.	give vote to any nun		•	be selected. A voter can be elected. Then the total (d) None of these	
	(4) 10	(6) 5	(0) 10	(a) None of mese	
165.	formed by joining the	m is:		total number of triangles	
	(a) 120	(b) 60	(c) 116	(d) None of these	
166.	•	• '	J	xcept 5 points which are	
	(a) 140	(b) 142	(c) 144	(d) 146	
167.	The number of diagor	nals that can be drawn by (b) 28	joining the vertices of an	octagon is: (d) None of these	
	(d) 20	(D) 20	(C) 20	(a) None of friese	
168.		in which a committee of tif it includes the oldest is:		n 10 candidates so as to	
	(a) 178	(b) 196	(c) 202	(d) None of these	
169.	The number of comm	_	ast one female member,	that can be formed from 6	
	(a) 246	(b) 252	(c) 6	(d) None of these	
170.		gonals, then the number o			
	(a) 11	(b) 7	(c) 8	(d) None of these	
171.	-	in an examination paper udent can give his answer	-	an alternative. The number	
	(a) 6561	(b) 256	(c) 6560	(d) None of these	
172.	Total number of 9 digit (a) 10!	it numbers which have all (b) 9!	different digit is: (c) 9 x 9!	(d) 10 x 10!	
173.	The total number of	selections of one or more	e fruits from same size of	5 apples, same size of 4	
	oranges and same siz (a) 120	ze of 3 mangoes is: (b) 119	(c) 60	(d) 59	
174.	The total number of so	elections of one or more f	ruits from different sizes of	5 apples, different sizes of	
	4 oranges and differe (a) 4095	nt sizes of 3 mangoes is: (b) 4096	(c) 120	(d) 119	
175.	. The total number of selections of at least one fruit of each kind from different sizes of 5 apples,				
175.		selections of at least one inges and different sizes of		different sizes of 5 apples,	

176.	-	on, there were 153 matches part in the competition is:	ere 153 matches. A match occurs between two teams. The total competition is:		
	(a) 17	(b) 18	(c) 19	(d) None of these	
177.	Total number of words word "JUNE" is:	formed by taking 3 letters	from the word "MARCH" an	d 2 letters from the	
	(a) 60	(b) 120	(c) 119	(d) 7,200	
178.		a straight line and 10 points otal number of triangles form	s on another straight line and need by joining them is:	d these two straight	
	(a) 325	(b) 455	(c) 120	(d) None of these	
179.			ive signs and 3 negative sign	ns can be placed in	
	(a) 15	negative signs never come (b) 20	side by side is: (c) 720	(d) None of these	
180.		ittees formed of 4 men and a in the same committee is:	3 women from 7 men and 5 v	vomen so that Mr. X	
	(a) 350	(b) 120	(c) 230	(d) None of these	
181.			aulty. The number of sample	es of 6 lamps drawn	
	from the box so that ed (a) 90	(b) 35	(c) 60	(d) None of these	
182.	If f(x) = 5, then f(5):				
	(a) 25	(b) 5	(c) 1	(d) None of these	
183.	If $f(x) = 2^x$, then $f(\log_2^x)$):			
	(a) Log2	(b) 0	(c) 1	(d) x	
184.	If $f(x) = \frac{2x+3}{4x-1}$, then $f(x) = \frac{2x+3}{4x-1}$	$(x) \cdot f(\frac{1}{x})$:			
	(a) 1	(b) $\frac{6x^2+13x+6}{17x-4-4x^2}$	(c) $\frac{6x^2-13x+6}{4x^2-4n17x}$	(d) None of these	
185.	If $f(x-1) = 2x-3$, then $f(x-1) = 2x-1$	x): (b) 2x + 1	(c) x – 2	(d) 3x + 2	
186.	If $f(x) = \frac{x^2}{x}$, then $f(0)$:				
	(a) 0	(b) 1	(c) x	(d) Does not exist	
187.	If $f(x) = x - 1 - x$, then				
	(a) 1	(b) -1	(c) 11	(d) None of these	
188.	If $f(x) = x - [x]$ where [$f(2.9)$:	x] denotes the greatest inte	eger contained in x but not g		
	(a) 0.1	(b) -0.1	(c) 0.9	(d) None of these	
189.	If $f(x) = x - x $, then $f(-\frac{1}{2})$		(a) 0	(d) None of these	
	(a) -6	(b) 6	(c) 0	(d) None of these	
190.	If $f(x) = \sqrt{x-4} + \sqrt{6-x}$ (a) $-6 \le x \le 4$, then the domain of f(x) is: (b) $4 \le x \le 6$	(c) - 4 ≤ x ≤ 6	(d) $-6 \le x \le -4$	
191.	If $f(x) = x^2$ and $g(x) = local (a)$	g, then g {f(e) }: (b) 2	(c) e ²	(d) None of these	

192.	The domain of $f(x) = \frac{x}{x}$ (a) {2}	$\frac{^{2}-4}{(-2)}$ is:	(c) - ∞ < x < 2, 2 < x < ∞	(d) -2 < x < 2
193.	If $2f(x) + 3f(-x) = 5 - 6x$, (a) $6x + 1$	then f(x): (b) 1 – 6x	(c) 6x – 1	(d) None of these
194.	If $f(x) = + \sqrt{x^2}$ and $g(x)$ (a) - $\infty < x < \infty$) = x are identical then: (b) $0 < x < \infty$	(c) - ∞ < x ≤	(d) 0 ≤ x < ∞
195.	If $f(x) = 2^{px+q}$, then $f(a) = (a) f(a+b+c) \cdot 4^{q}$		(c) f (a+b+c) .	(d) None of these
196.	If x is a real number an	d f(x)= $\frac{x}{\log(2+x)}$, then the	domain of f(x) is:	
		(b) - $\infty < x < -1$	$(c) - 2 < x < \infty$	(d) None of these
197.	If $f(x) = x - \frac{1}{x}$ and $f(\frac{1}{x})$	= k . f(x), then k :		
	(a) 1	(b) -1	(c) $\frac{1}{2}$	(d) 2
198.	If $f(x) = \frac{1+x}{1-x}$, then $f(f(\frac{1}{x}))$	1x)}:		
	(a) x	(b) $\frac{1}{x}$	(c) $-\frac{1}{x}$	(d) - x
199.	If $f(x) = 2x^2 - 5x + 4$, and (a) 1	d 2f(x) = f(2x), then x: (b) -1	(c) ± 1	(d) 2
200.	If $f(x) = \sqrt{25 - x^2}$, (- 5 (a) $0 \le f(x) \le 5$	\leq x \leq 5), then the range (b) 0 < f(x) < 5	of $f(x)$ is: (c) - 5 \le f(x) \le 0	(d) None of these
201.	If $f(x) = \frac{3x - 5}{5x - 3}$, then $f(x) = \frac{3x - 5}{5x - 3}$	$(x) \cdot f(\frac{1}{x})$:		
	(a) x	(b) $\frac{1}{x}$	(c) 1	(d) - 1
202.	A can't buy more than following inequalities		X and Y. X and Y can be r	elated by which of the
	(a) (x+y=100)	(b) (x+y≤100)	(c) (x+y≥100)	(d) (x+y<100)
203.		pieces of shirt and trous rousers, this can be expres (b) $(x+y\leq 200)$	ser for his newly opened shessed as (c) (x+y=200)	owroom. If X stands for (d) $(x+y\ne100)$
204.	A manufacturer production of the second of t	ces two items X and Y. X bility with him is 2 tons. 1	requires 20kg of raw materi his can be expressed in th	al and Y requires 25 kg.
	following linear equation (a) (20x+25y≤2000)	on. (b) (20x+25y=2000)	(c) (25x+20y>2000)	(d) (20x+25y≥2000)
205.	items only. X cost him	₹400 per piece and Y co	only ₹25,000 to invest and s st him ₹250 per piece. This c	
	form of which of the fol (a) x+y≤300 400x+250y≥25000	lowing set equation (b) x + y ≤300 400x+250y≤25000	(c) x+y =300 400x+250y≥25000	(d) x+y≤300 400x+250y≤10000

x≥0, y≥0

x≥0,y≤0

x=0,y≤0

x,y ≥0

206.	than 50 and 100 pieces of X & Y respectively per day. If he has only ₹10,000 to invest and if the cos of each item is ₹50 and 40 respectively, this can be expressed in the following equation				
	(a) x≤50 y≤100 50x+40y≥10000	(b) x≤50 y≥100 50x+40y≤10000	,	c) x+y≤50 50x+40y≤10000	(d) x≤50,y≤100 150x+40y≤10000
207.					ed in two machines I and II. ch product in each machine
	MACHINE	Χ	Υ	TIME Availat	ole (Hours)
	1	3	1	20	
	II	3	4	40	
		n be expressed in the	e following s	et of linear equa	ion:
	(a) 2x+y≤20	(b) x+y≤20	(c) 2x+4≤20	(d) 2x+3y≥20
	3x+4y≤40	x+4y≤240		3x+4y≥40	x+y≤40
	x≥0, y≥0	x≥0,y≥0		x≥0,y≥0	x≥0,y≥0
208.					d in two names I and II. The roduct in each machine are
	MACHINE	Χ	Y II	ME AVAILABLE	
	I		1 2		24
	II	2	3	36	
	This situation car	n be expressed in the	following s	et of linear equa	ion:
	(a) x+2y≤24	(b) x+2y≤24	(c)	x+24=24	(d) x+2yy≤24
	3x+4y≤36	x+3y≤36		2x+3y=36	2x+3y≥36
	x≥0,y≥0	x≥0,y≥0		x,y≥0	x≥0,y≥0
010	which of the following (a) x≥0 y≥0 maximize 20X+25y	set equation: (b) maximize 20x+25y x≥100 y≥150	(c) minimize 20x+25y x≤100 y≤150	(d) minimize 20x+25y x≥100 y≥150
210.	increase its sale. Each more than 6 kg of Y. Th	pack must weigh at	least 10kg I	and should conto	Dewali season in order to ain at least 2 kg of X and not
	(a) x+y=10	(b) x+y≥10	(c)	x+y≤10	(d) x+y ≤10
	x≥2	x≥2		x≥0	x=2
	y≤6	y≤6		y≥6	y=6
	x,y ≥0	x,y≥0		x,y≥0	x,y≥0
211.	contain at least 2 kg o	f X and not more tha	ın 3 kg of Y.	This situation car	
	(a) x+y=5	(b) x+y≤5	(C)	x+y≥5	(d) x+y=0
	x≥2	x≥2		x≥2	x≥2
	y≤3	y≤3		y≤3	y≥6
	x,y≥0	x,y≥0		x,y≥0	x,y≥0
212.	for ₹175 per piece. If i storage capacity is linequation	Z is retail dealer in ti mited to 500 piece	e has only of ties. This	₹30,000 to spend situation can be	ole for ₹120 per piece and Y on purchase of tie and his expressed in the following
	(a) x+y≤500	(b) x+y ≥500	, ,	x+y=200	(d) x+y≥500
	120x+175y≤30000	120x+175y≤300	00	120x+175y =3000	_ '
	x,y≥0	x,y≥0		x,y≥0	x,y≥0

213.	250 packets o	of shaving c This situation (k	reams at most a	it a time. S sed in the (C		ost ₹2 (0	and has space to store 40 per box and Y cost d) x+y=200 240x+420y=20000 x,y≥0
214.	If 3X-5=4X-10	, then X is ed (b) -5	qual to	(c) 6		(d) 4	
215.	If -3X+18=4X-	3, then X is 6 (b) -5	equal to	(c) 3		(d) 1	
216.	Find the value	e of K if 5X+3 (b) 15	7=K-3X, when X	is equal to (c) 21	·	(d) 10)
217.	If X+Y=3, 3X+4 (a) (1,2)	4Y=11, then (b) (-5,1)	(X,Y) are equal t	o (c) (6,2)		(d) (4	,1)
218.	If 3X+Y=7, 2X+	+ 3Y=7 then > (b) (2,1)	(, Y are equal to	(c) (6,1)		(d) (1	.4)
219.	For which value (a) (4,3)	ue of X,Y, 3X (b) (2,3)	(-2Y-6 = 2X+3Y-1	7 =0 (c) (3,1)		(d) (1	,2)
220.	If 5X+Y =15, 27 (a) (5,2)	X- 2Y=-6 the (b) (2,5)	n X,Y are equal t	(c) (6,3)		(d) (1	,1)
221.	For which value	ue of X,Y X	$+\frac{y}{5}$ -6= $\frac{x}{2}$ + $\frac{y}{2}$ -11	= 0 are e	qual to		
	(a) (1,2)	(b) (2,3)	5 2 3	(c) (6,1)		(d) (1	2,15)
222.	If X/3+Y/2=7, (a) (1,5)	2X+Y=26 the (b) (1,3)	en X,Y are equal	to (c) (9,8)		(d) (6	,3)
223.	The point, (a) (2,-1)		- is on the line Y=	:X-3 (c) (0,1)		(d) (3	,-1)
224.	The point, (a) (2,-1)	(b) (4,3)	n the line Y=2X-3	(c) (4,5)		(d) (3	,-1)
225.	For the line 2X	(- Y=5 if X=4 to (b) 3	then Y=	(c) -1		(d) 0	
226.	For the line 3X	(-2y=5 if X=2 (b) 3/4	? then Y=	(c) 3/5		(d) 1	
227.	The solution to	3X+2Y=-25 (b) 2,9	, -2X-Y=10 is	(c) 5,8		(d) 4,	9
228.	The solution to	3X-2Y=11 , (b) 2,1	-2X-Y=8 is	(c) 5,-2		(d) 4,	9
229.	The solution to	5X+2Y=-16 (b) 2,3	, -2X-2Y=-10 is	(c) 5,8		(d) 4,	9
230.	2X+3Y-5=0 an	nd KX-6Y-8=0 (b) 3	0 have unique so	olutions if K	=	(d) -4	

231.				duced by 3 we get 18/11. But we get 2/5, then the fraction
	(a) 13/25	(b) 20/21	(c) 12/25	(d) 11/19
232.				3 and if 1 is subtracted from
		comes $\frac{1}{2}$, then the fracti		(4) 3/10
	(a) 2/5	(b) 3/7	(c) 2/6	(d) 3/10
233.	A two digit No. is s less by 9. The origin	ix times the sum of its o	digits. The number obtained	by interchanging the digit is
	(a) 68	(b) 72	(c) 54	(d) 63
234.	If sum of digits of t	wo digit No is 9 and the	e digits obtained by interch	anging the digits exceeds the
		7, then the number is	. a.g c,	
	(a) 36	(b) 45	(c) 23	(d) 65
235.	In the equation 2x-	v=5 if v=4 than v=		
255.	(a) 3	(b) 4	(c) -2	(d) -5
	()	· /	()	,
236.	Point =		() (1 1)	(1) (0.1)
	(a) (1,1)	(b) (-1,-1)	(c) (1,-1)	(d) (0,1)
237.	If x+4=4, 2x-5y=1 th	nen x & y are	•••••	
	(a) (1,0)		(c) 1,1/5	(d) 1/5,0
238.	If 2x+3y=1, x+3y=-1 (a) (2,-1)	(b) (1,-2)	(c) (-1,2)	(4) (0.3)
	(a) (2,-1)	(D) (1,-2)	(C) (-1,2)	(d) (0,2)
239.	If 2x+3y=7, x+3y=5,	, then x and y are		
	(a) (2,-1)	(b) (1,-2)	(c) (-1,2)	(d) (2,1)
240.	If 2v-2v=1 v-2v=-1	, then x and y are		
240.	(a) (2,1)		(c) (-1,2)	(d) (0,2)
	() (-)	() (·)		
241.		then x and y are		/ IV (0.0)
	(a) (2,-1)	(b) (4,-1)	(c) (-1,2)	(d) (0,2)
242.	If 3x-y=0, x+3y=10,	then x and y are		
	(a) (2,-1)		(c) (-1,2)	(d) (0,2)
0.42	If			
243.	(a) (2,-1)	en x and y are (b) (1,1)	(c) (-1,2)	(d) (0,2)
	(0) (2, 1)	(6) (1,1)	(0) (1)2)	(0,2)
244.		f the line passing throug		
	(a) -3	(b) 3	(c) 2	(d) -2
245.	What is the slone o	f the line passing throug	ah (5.3) and (3.6)	
240.	(a) -3/2	(b) 3/2	(c) 2	(d) -2
	. ,	. ,	, ,	
246.		f the line passing through		1-1) 0
	(a) -3	(b) -5/2	(c) 5/2	(d) -2
247.	What is the slope o	f the line passing throug	gh (4,3) and (3,-5)	
	(a) 3	(b)8	(c) 2	(d) -3
249	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	f the line nearly a thirtie	nh (4 2) and (2 - 5)	
248.	(a) -1	f the line passing throug (b) -3	gn (- 4,2) ana (3,-5) (c) 2	(d) -2
	•	•		

249.	What is the slope of the (a) -3	line passing through (4,-2) (b) -9	(c) 2	(d)-2
250.	At the rate of 6% p.a. siyears?	imple interest, a sum of ₹ 2,	500 will earn how much inte	rest by the end of 5
	(a) ₹ 150	(b) ₹ 700	(c) ₹ 750	(d) ₹ 3,250
251.	A person borrowed ₹ 5 debt after 4 years?	00 at the rate of 5% per ar	nnum S.I. What amount will	he pay to clear the
	(a) ₹ 200	(b) ₹ 550	(c) ₹ 600	(d)₹700
252.	If A lends ₹ 3,500 to B a (in ₹) in a period of 3 ye		same sum to C at 11.5% p.a	., then the gain of B
	(a) 107.50	(b) 115.50	(c) 157.50	(d) 177.50
253.	In what time will ₹ 500 g	ive ₹ 50 as interest at the ra	te of 5% p.a. S.I.?	
	(a) 2 Years	(b) 2 $\frac{1}{2}$ Years	(c) 3 Years	(d) 4 Years
254.		00 from Sanjay at simple in vinash. What was the rate o	terest. After 3 years, Sanjay of	got ₹ 300 more than
	(a) 2%	(b) 5%	(c) 8%	(d) 10%
255.	Ashok took a loan of ₹ is the rate of interest pe		interest. If the total interest p	oaid is ₹ 2,700, what
	(a) 5.4%	(b) 6%	(c) 9%	(d) 18%
256.	Rakesh took a loan for principal was:	6 years at the rate of 5% p	o.a. S.I. If the total interest po	aid was ₹ 1,230, the
257.	(a) ₹ 4,100	(b) ₹ 4,920	(c) ₹ 5,000	(d) ₹ 5,300
257.	of $1\frac{1}{2}$ Years?	rson iena ar simple raie or i	interest of 15% in order to ho	ive ₹ 764 at the ena
	(a) ₹ 640	(b) ₹ 620	(c) ₹ 610	(d) ₹ 680
258.		% p.a. S.I. After 4 years, he what is the principal amour	returned the principal along	g with the interest. If
	(a) ₹ 3,250	(b) ₹ 2,500	(c) ₹ 3,150	(d) ₹ 2,100
259.	₹ 800 amount to ₹ 920 if amount to how much?	in 3 years at simple interest	. If the interest rate is increa	sed by 3%, it would
	(a) ₹ 992	(b) ₹ 1,056	(c) ₹ 1,112	(d) ₹ 1,182
260.	The simple interest at x	% for x years will be₹X on a	sum of:	
	(a) ₹ x	(b) ₹ 100x	$(c) \notin \left(\frac{100}{x}\right)$	$(d) \not\in \left(\frac{100}{x^2}\right)$
261.	_) in 2 years, what will ₹86 aı	mount to in 4 years at the sai	me rate percent per
	annum? (a) ₹ 127.40	(b) ₹ 124.70	(c) ₹ 114.80	(d) ₹ 137.60
262.	The simple interest on a for 5 years at 4% will be	•	for 4 years. The simple interes	est on the same sum
	(a) ₹ 40	(b)₹48	(c) ₹ 50	(d) ₹ 60
263.	A certain sum of mone lent is:	y lent out at S.I. amounts to	o ₹ 690 in 3 years and ₹ 750	in 5 years. The sum
	(a) ₹ 400	(b) ₹ 450	(c) ₹ 500	(d) ₹ 600

264.	A certain sum of money at simple interest amounts to ₹ 1,012 in 2 ½ Years and to ₹ 1,067.20 in 4				
	years. The rate of interest (a) 2.5%	st per annum is: (b) 3%	(c) 4%	(d) 5%	
265.	A sum of money at sim the principal amount?	ple interest amounts to ₹ 2,	240 in 2 years and to ₹ 2,600	0 in 5 years. What is	
	(a) ₹ 1,520	(b) ₹ 1,880	(c) ₹ 2,120	(d) None	
266.		ould ₹ 600 be invested at 10 g ₹ 800 at 12% p.a. for 5 yea	0% p.a. in order to earn the s	ame simple interest	
	(a) 6	(b) 8	(c) 12	(d) 16	
267.	The simple interest on a certain sum of money at the rate of 5% p.a. for 8 years is ₹ 840. At what rate of interest the same amount of interest can be received on the same sum after 5 years? (a) 6% (b) 8% (c) 9% (d) 10%				
268.	The simple interest on ₹ (a) ₹ 1.20	10 for 4 months at the rate o (b) ₹ 12	of 3 paise per rupee per mon (c) ₹ 120	th is (d) ₹ 1200	
269.	=	· · · · · · · · · · · · · · · · · · ·	st. He returns ₹ 100 at the en	d of 1 year. In order	
	to clear his dues at the	end of 2 years, he would pa (a) ₹ 115.50	ny: (b)₹110	(c) ₹115 (d) ₹100	
270.	interest in one year be	on the same deposit at 5% p	02.50 in one year. How muc o.a.?		
271.	(a) ₹ 22.5 A sum of money was le	(b) ₹ 20.25 Int at simple interest at 11%	(c) ₹ 225 p.a. for $3\frac{1}{2}$ years and $4\frac{1}{2}$ y	(d) ₹ 427.50	
_,		ts for two periods was ₹412.	2	cuis respectively.	
	(a) ₹ 3,250	(b) ₹ 3,500	(c) ₹ 3,750	(d) ₹ 4,250	
272.		repaid when the total inter	6% at the same time and o rest amounts to ₹ 126. The lo		
	(a) 2	(b) 3	(c) 4	(d) 5	
273.		oan at the rate of 12% p.a.	ink at the rate of 8% p.a. S.I. If at the end of 12 years, he	•	
	(a) ₹ 2,000	(b) ₹ 3,000	(c) ₹ 4,000	(d) None of these	
274.			0 to Deepak for 2 years. If	he receives ₹ 90 as	
	simple interest altogethe (a) 12%	er, the rate of interest is: (b) 10%	(c) 5%	(d) 4%	
275.	at the same rate. If he g	ets₹50 more from B than fr	mple interest and ₹ 1,000 to om C, then the rate percent	is:	
07/	(a) $8\frac{1}{3}$	(b) $6\frac{2}{3}$	(c) $10\frac{1}{3}$	(d) $9\frac{2}{3}$	
276.	Rahul borrowed ₹ 830 from Mr. Lal at 12% p.a. S.I. for 3 years. He then added some more money to the borrowed sum and lent it to Shobha for the same period at 14% p.a. rate of interest. If Rahul gains ₹ 93.90 in the whole transaction, how much money did he add from his side: (a) ₹ 35 (b) ₹ 55 (c) ₹ 80 (d) ₹ 105				
277.	2.50. The difference bet	ween their rates is:	m two different banks on ₹		
	(a) 1%	(b) 0.5%	(c) 0.25%	(d) 42.5%	

278.	278. The simple interest on ₹ 1,820 from March 9, 1994 to May 21, 1994 at 7 $\frac{1}{2}$ % rate will be :				
	(a) ₹ 29	(b) ₹ 28.80	(c) ₹ 27.30	(d) ₹ 22.50	
279.	A sum was put at simple would have fetched ₹		e for 2 years. Had it	been put at 3% higher rate, it	
	(a) ₹ 1,200	(b) ₹ 1,500	(c) ₹ 1,600	(d) ₹ 1,800	
280.		at compound interest at 49	· ·		
	(a) ₹ 7,800	(b) ₹ 8,100	(c) ₹ 8,112	(d) ₹ 8,082	
281.	interest on the same s	um for the same period at t	he same rate, is:	ars is ₹ 1,200, the compound	
	(a) ₹ 1,260	(b) ₹ 1,261	(c) ₹ 1,264	(d) ₹ 1,265	
282.		en the compound interest num is ₹ 150. The sum is:	and the simple inte	rest on a sum of money for 2	
	(a) ₹ 9,000	(b) ₹ 9,200	(c) ₹ 9,500	(d) ₹ 9,600	
283.		een the compound interest Innum for one year is ₹ 25, t		yearly and the simple interest	
	(a) ₹ 9,000	(b) ₹ 9,500	(c) ₹ 10,000	(d) ₹ 10,500	
284.		pound interest and simple i ar is ₹ 620. What is the princ		amount at 10% per annum at	
	(a) ₹ 40,000	(b) ₹ 1,20,000	(c) ₹ 10,000	(d) ₹ 20,000	
285.		0 at 10% per annum simple ound interest. What does he (b) ₹ 8		diately lent the whole sum at 2 years? (d) $₹$ 12	
286.		ney will the simple interes ₹ 400 for 2 years at 10% pe		% per annum be half of the	
	(a) ₹ 125	(b) ₹ 150	(c) ₹ 175	(d) ₹ 200	
287.	If the compound interes	est on a certain sum at 16 $\frac{2}{3}$	g % for 3years is ₹ 1,5	270, the simple interest on the	
	same sum at the same (a) $\stackrel{?}{=}$ 1,200	e rate and for the same peri (b) ₹ 1,165	iod is: (c) ₹ 1,080	(d) ₹ 1,220	
288.	for that sum at the san	ne rate and for the same pe	-	rs is ₹ 328. The simple interest	
	(a) ₹ 320	(b) ₹ 322	(c) ₹ 325	(d) ₹ 326	
289.	The compound interes	t on $\overline{\xi}$ 5,600 for $1\frac{1}{2}$ years at	10% per annum com	npounded annually is:	
	(a) ₹ 882.70	(b) ₹ 873.50	(c) ₹ 868	(d) ₹ 840	
290.	The compound interes	t on ₹ 20,480 at 6 ½ % per a		days, is:	
	(a) ₹ 3,000	(b) ₹ 3,131	(c) ₹ 2,929	(d) ₹ 3,636	
291.	per annum?		•	st for the second year at 10%	
	(a) ₹ 1,000	(b) ₹ 1,200	(c) ₹ 1,320	(d) ₹ 1,188	
292.		ompound interest amounts per annum is:	to ₹ 578.40 in 2 yec	irs and to ₹ 614.55 in 3 years.	
	(a) 4%	(b) 5%	(c) $6\frac{1}{4}\%$	(d) $8\frac{1}{3}\%$	

293.	A sum of money at compound interest amounts to $\overline{\epsilon}$ 5,290 in 2 years and to $\overline{\epsilon}$ 6,083.50 in 3 years. The rate of interest per annum is:				
	(a) 12%	(b) 14%	(c) 15%	(d) $16\frac{2}{3}\%$	
294.	If the amount is $2\frac{1}{4}$ time	es the sum after 2 ye	ears at compound interest, the r	ate of interest per annum	
	is: (a) 25%	(b) 30%	(c) 40%	(d) 50%	
295.	A sum of money amou sum is:	nts to ₹ 4,624 in 2 y	ears and to ₹ 4,913 in 3 years a	t compound interest. The	
	(a) ₹ 4,096	(b) ₹ 4,260	(c) ₹ 4,335	(d) ₹ 4,360	
296.	A sum of money place itself in:	d at compound inte	erest doubles itself in 5 years. It	will amount to eight times	
	(a) 10 years	(b) 12 years	(c) 15 years	(d) 20 years	
297.	A sum of money at corbe 9 times itself in?	npound interest an	nounts to thrice itself in 3 years.	In how many years will it	
	(a) 12	(b) 9	(c) 6	(d) 8	
298.	In how many years will 926.10?	a sum of ₹ 800 at	10% per annum compounded	semi-annually become ₹	
	(a) $2\frac{1}{2}$	(b) $1\frac{1}{2}$	(c) $2\frac{1}{3}$	(d) $1\frac{1}{3}$	
299.	The present worth of ₹ 1 (a) ₹ 150.50	69 due in 2 years a (b) ₹ 154.75	t 4% per annum compound inte (c) ₹ 156.25	erest is: (d) ₹ 158	
300.	following information gi A: the rate of inter	ven in the statemer est was 6% per ann interest on the sam	ccrued on a sum of money at hts A and B is/are sufficient? hum. he amount after 5 years at the so (b) Either A or B is sufficient (d) Both A & B are not sufficien	ame rate will be₹600.	
301.	following information gi P: The sum was ₹2	ven in the statemer 20,000. nt of simple interest	and Corued on a sum of money at a nots P and Q will be sufficient? To on the sum after 5 years was ₹ (b) Only Q is sufficient (d) Both P& Q are needed		
302.	the end of 4 years is ₹ 2	56.40.	st and the simple interest earne ng information given in the st		
		le interest accrued	after 4 years.		
	(a) Only P is necessary (c) Either P or Q is nece	•	(b) Only Q is necessary (d) Neither P nor Q is necessary	/	
303.			terest and simple interest earn	ed at the end of second	
	year on a sum of mone (a) \neq 4,000	y at 10% per annun (b) ₹ 2,000	n is ₹ 20. The sum is: (c) ₹ 1,500	(d) Data inadequate	
304.	•	sited at compound	d interest becomes double after	r 5 years. After 20 years it	
	will become: (a) ₹ 1,20,000	(b) ₹ 1,92,000	(c) ₹ 1,24,000	(d) ₹96,000	

305.	The least number of complete years in which a sum of money put out at 20% compound interwill be more than doubled is:					
	(a) 3	(b) 4	(c) 5	(d) 6		
306.	A tree increases annu	vally by $\frac{1}{8}$ th of its height. By	how much will it increase a	fter 2 years, if it stands		
	today 64 cm high? (a) 72 cm	(b) 74 cm	(c) 75 cm	(d) 81 cm		
307.			and the simple interest for ₹ 1,440, the rate per cent is:	2 years on a sum of		
	(a) $4\frac{1}{6}\%$	(b) $6\frac{1}{4}\%$	(c) 8%	(d) $8\frac{1}{3}\%$		
308.	the same period is ₹ 8 3 years will be:	00. The difference between	832 and the simple interest the compound interest and	the simple interest for		
	(a) ₹ 48	(b) ₹ 66.56	(c) ₹ 98.56	(d) None of these		
309.	annum, when the inte	The difference between compound interest and simple interest on a sum for 2 years at 10% p annum, when the interest is compounded annually is ₹ 16. If the interest were compounded have yearly, the difference in two interests would be:				
	(a) ₹ 24.81	(b) ₹ 31.61	(c) ₹ 32.40	(d) ₹ 26.90		
310.	The value of $\log_{343} 7$ is (a) $\frac{1}{3}$: (b) - 3	(c) - $\frac{1}{3}$	(d) 3		
311.	The value of $\log_5 \left(\frac{1}{125}\right)$	is:	3			
	(a) 3	(b) - 3	(c) $\frac{1}{3}$	(d) - $\frac{1}{3}$		
312.	The value of $\log_{\sqrt{2}} 32$	is:				
	(a) $\frac{5}{2}$	(b) 5	(c) 10	(d) $\frac{1}{10}$		
313.	The value of log ₁₀ (.00	=				
	(a) $\frac{1}{4}$	(b) - $\frac{1}{4}$	(c) - 4	(d) 4		
314.	The value of $log_{(.01)}$ (.0					
	(a) $\frac{1}{3}$	(b) - $\frac{1}{3}$	(c) $\frac{3}{2}$	(d) $-\frac{3}{2}$		
315.	If $\log_3 x = -2$, then x is (a) - 9	equal to: (b) - 6	(c) - 8	(d) $-\frac{1}{9}$		
316.	If $\log_8 x = \frac{2}{3}$, then the	value of x is :				
	(a) $\frac{3}{4}$	•	(c) 4	(d) 3		
317.	If $\log_x \left(\frac{1}{125}\right) = -\frac{1}{2}$, the	x is equal to:				
	(a) $\frac{3}{4}$	(b) - $\frac{4}{3}$	(c) $\frac{81}{256}$	(d) $\frac{256}{81}$		
318.	If $\log_{10000} x = -\frac{1}{4}$, then	n, x is equal to:				
	(a) $\frac{1}{10}$	(b) $\frac{1}{100}$	(c) $\frac{1}{1000}$	(d) $\frac{1}{10000}$		
319.	If $\log_x 4 = \frac{1}{4}$, then x is					
	(a) 16	(b) 64	(c) 128	(d) 256		

PAPER 4: FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

- 320. If $\log_x (0.1) = -\frac{1}{3}$, then the value of x is:
 - (a) 10
- (b) 100

- (c) 1000
- (d) $\frac{1}{1000}$

- 321. If $log_{32} x = 0.8$, then x is equal to:
 - (a) 25.6
- (b) 16

(c) 10

(d) 12.8

- 322. If $log_4 x + log_2 x = 6$, then x is equal to:
 - (a)

(b) 4

(c) 8

(d) 16

- 323. If $\log_8 x + \log_8 \frac{1}{6} = \frac{1}{3}$, then the value of x is:
 - (a) 10
- (h) 14

(c)18

(d) 24

- 324. If $\log 2 = 0.30103$, then the number of digits in 4^{50} is:
 - (a) 30
- (b) 31

(c) 100

(d) 20

- 325. If $\log 2 = 0.30103$, then the number of digits in 5^{20} is:
 - (a) 14
- (b) 16

(c) 18

(d) 25

- 326. The value of $log_{(-1/3)}$ 81 is equal to:
 - (a) 2i
- (b) 4

(c) 4

(d) 27

- 327. The value of $\log_2 \sqrt{3}$ (1728) is equal to:
 - (a) 3

(h) 5

(c) 6

(d) 9

- 328. The value of log_2 (log_5 625) is:
 - (a) 2
- (b) 5

(c) 10

(d) 15

- 329. The value of $(\frac{1}{3} \log_{10} 125 2 \log_{10} 4 + \log_{10} 32)$ is:
 - (a) (

(b) $\frac{4}{5}$

(c) 2

(d) 1

- $330. \qquad \Bigg[log \Bigg(\frac{a^2}{bc} \Bigg) + log \Bigg(\frac{b^2}{ac} \Bigg) + log \Bigg(\frac{c^2}{ab} \Bigg) \Bigg] is \ \text{equal to} \ :$
 - (a) 0
- (b) 1

(c) 2

(d) abc

- 331. $(\log_{b^{\alpha}} x \log_{c^{b}} x \log_{a^{c}})$ is equal to:
 - (a) 0
- (b) 1

- (c) abc
- (d) a+b+c

- 332. $\left[\frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)}\right]$ is equal to:
 - (a)

(b) 2

(c) 3

(d) 4

- 333. $\left[\frac{1}{\left(\log_{\mathbf{a}}\mathsf{bc}\right)+1} + \frac{1}{\left(\log_{\mathbf{b}}\mathsf{ca}\right)+1} + \frac{1}{\left(\log_{\mathbf{c}}\mathsf{ab}\right)+1}\right] \text{ is equal to:}$
 - (a) 1
- (b) 2

(c) 3

(d) $\frac{3}{2}$

- 334. If $log_2 [log_3 (log_2 x)] = 1$, then x is equal to:
 - (a) 512
- (b) 128

(c) 12

(d) 0

335.	(log ₅ 3) x (log ₃ 625) eq (a) 1	uals: (b) 2	(c) 3	(d) 4
336.	(log ₅ 5) (log ₄ 9) (log ₃ 2)	is equal to :		
	(a) 2	(b) 1	(c) 5	(d) $\frac{3}{2}$
337.	If log ₁₀ 2 = 0.3010 and I (a) 0.7161	og ₁₀ 3 = 0.4771 , then the val (b) 0.1761	ue of log ₁₀ 1.5 is (c) 0.7116	(d) 0.7611
338.	If log ₁₀ 2 = 0.3010 , then (a) 0.3322	log ₂ 10 is: (b) 3.2320	(c) 3.3222	(d) 5
339.	The value of $\left(\frac{1}{\log_3 60} + \frac{1}{\log_3 60}\right)$	$\frac{1}{9460} + \frac{1}{\log_5 60}$ is:		
	(a) 0	(b) 1	(c) 5	(d) 60
340.	Two numbers are in th	e ratio 3:4. If 10 is subtracte	d from both of them the rati	io will be 1:2. So the
	numbers are (a) 15 and 20	(b)12 and 16	(c) 30 and 40	(d) None of them
341.	The mean of age of 5	men is 40 years. Three of the	em are of some age and the	y are excluded. The
			excluded person in years is:	(d) None of them
	(a)20	(b)25	(c) 40	(a) None of mem
342.	respectively and mixe	d them together. The cost pr	:3 with prices per kg. Rs. 390 ice of the mixture per kg. in	Rs. is:
	(a)395	(b)420	(c) 400	(d) None of them
343.			Ram at the end of 3 years in	simple interest fully.
	The rate of interest Ran (a)13%	n charged to Hari per annun (b)12%	n for repayment of loan is (c) 10%	(d)None of them
344.	A Bill of ₹ 1,020 is due i	n 6 months. True discount in	rupees at interest rate 4% pe	r annum is
	(a) 25	(b) 20	(c) 20.4	(d) None of them
345.		, $2\sqrt{6}$ in descending order		
	(a) $3\sqrt{3}$, 5, $2\sqrt{6}$	(b) $2\sqrt{6}$, $3\sqrt{3}$, 5	(c) $3\sqrt{3}$, $2\sqrt{6}$, 5	(d) None of them
346.	If $y \propto \frac{1}{x^3}$ and $x = 2$ whe	n y = 3, then for $x = 3$ the va	lue of y is:	
	(a) $\frac{4}{3}$	(b) $\frac{8}{9}$	(c) $\frac{4}{9}$	(d) None of them
347.	The number of ways in (a) 240	which the letters of word the	COLLEGE can be arranged	is: (d) None of them
	(=) = ==	(12) = 12=2	(=) =/= /=	(2)
348.	The number of digits in (a) 12	is (given 0.30103) (b) 11	(c) 13	(d) None of them
349.	Correct statement amo	ong $1 \subset \{1,3,4\},\{1,3\} \in \{1,3,4\}$	and {1,4}⊂{1,3,4} is:	
	(a) 1⊂{1,3,4}	(b) {1,4}⊂{1,3,4}	(c) {1,3}e{1,3,4}	(d) None of them
350.	What is the slope of the	e line passing through (-4,-2) (b) 5	and (-5,-7) (c) 2	(d) -2

351.	What is the slope of the	line passing through (2,-5) o (b) 10/3	(c) 5	(d) 3
352.	What is the slope of the	line passing through (3,-5) c (b) 7	(c) 5	(d) 4
353.	What is the slope and Y (a) (-3/5,9/5)	intersect of line 3X+5Y=9 (b) (9,-3/5)	(c) (3/5,-9)	(d) (-3/5,-9)
354.	What is the slope and Y (a) (-6/5,12)	intersect of line 6x+5y=12 (b) (12,-6/5)	(c) (12/5,-12)	(d) (-6/5,-12)
355.	What is the slope and Y (a) (-3/5,9)	intersect of line 3x-5y=9 (b) (9,-3/5)	(c) (3/5,-9/5)	(d) (-3/5,-9)
356.	What is the slope and Y $(a)(-3/5,9)$	intersect of line 7x+5y=10 (b) (9,-3/10)	(c) (7/5,-10)	(d) (-7/5,2)
357.	What is the slope and Y (a) (-3/7,11)	intersect of line 3x+7y=11 (b) (9,-3/5)	(c) (3/7,11/7)	(d) (-7/5, -11)
358.	What is the slope and Y (a) (-6/5,9)	intersect of line 4x+5y=7 (b)(7,-4/5)	(c) (4/5,7/5)	(d) (-3/5,-9)
359.	What is the slope and Y (a) (-3/4,-9/4)	intersect of line 3x+4y=9 (b) (9/4,-3/5)	(c) (3/5,-9/4)	(d) (-5/7,-9)
360.	If $f(X) = e^{2x-3}$: then $\frac{f(x-1)}{f(x)}$	<u>-y)</u> is		
	(a) e ³	(b) e-3	(c) 1	(d) None of them
361.	The value of $\lim_{x\to 0} \frac{3^x - 2}{x}$	$\frac{2^{\mathbf{x}}}{}$ is:		
		(b) $\log_{10}\left(\frac{3}{2}\right)$	(c) 1	(d) None of them
362.	If y = 4x then, $\frac{d^2y}{dx^2}$ is:			
	(a) 4 ^x	(b) 4× log _e 4	(c) log _e 4	(d) None of them
363.	The value of x for which (a) 0	x(12-x²) is maximum is (b) -2	(c) 2	(d) None of them
364.	The value of $\int_{0}^{1} \frac{e^{X} dx}{1+e^{X}}$ is:			
	(a) log _e (1+e)	(b) $\log_e \left(\frac{1+e}{2}\right)$	(c) 2	(d) None of them
365.	If the total cost function (a) $x^2 - 4x + 5$	C = $x^3 - 2x^2 + 5x$, then the m (b) $3x^2 - 4x + 5$	narginal cost is equal to: (c) $3x^2 - 4x$	(d) None of them
366.	The arithmetic mean of (a) 45	first 9 counting numbers occ (b) 190	curring with same frequency	has its value: (d) None of them
367.	If 2 occurs 4 times, 4 oc of them is	ccurs 3 times, 8 occurs twice	and 16 occurs once then the	ne geometric mean
	(a) 4	(b) 8	(c) 2	(d) None of them

368.	average speed during this journey is:			5 km @ 5km/hr, his
	(a) 3 km/hr	(b) $\frac{38}{10}$ km/hr	(c) $\frac{10}{3}$ km/hr	(d) None of them
369.	The median of marks 5	5,60,50,40,57,45,58,65,57,48	of 10 students is	
	(a) 55	(b) 57	(c) 52.5	(d) None of them
370.	(a) 5	(b) 7.5	- 2y = 5 and mode of x is 5 th	(d) None of them
371.	What is the slope and Y (a) (1/2,-11/6)	(intersect of line 3x+6y=11 (b) (9/4,-11/6)	(c) (1/5,-11/7)	(d) (-4/7,-9)
372.	If $\sum_{i=1}^{10} (x_i \ 3) = 10 \text{ and } \sum_{i=1}^{10} (x_i \ 3)^2 = is :$	100 then standard deviation	on of 10 observations x ₁ ,x	2,,X ₁₀
	(a) 9	(b) 3	(c) 10	(d) None of them
373.	If the relation between the standard deviation		+ 3y = 5 and standard devi	iation of y is 10 then
	(a) 15	(b) 10	(c) $\frac{25}{2}$	(d) None of them
374.	If mean, mode and sta of skewness of the data	a is	vations are 65, 80 and 25 res	
	(a) Symmetric	(b) Positively skewed	(c) Negatively Skewed	(d) None of them
375.	If the mean of 50 obse correct mean will be		ervation 94 is wrongly record	
	(a) 49.1	(b) 50	(c) 50.9	(d) None of them
376.	them is		I harmonic mean is 5 then	
	(a) 20	(b) 400	(c) 16	(d) None of them
377.	For moderately skewed (a) 112	d distribution A.M. = 110, Mod (b) 108	de = 104 , then median is: (c) 104	(d) None of them
378.	If the maximum and m	inimum values of 10 observa	ations are 40 and 10 then co	efficient of range is:
	(a) $\frac{5}{3}$	(b) $\frac{3}{5}$	(c) 30	(d) None of them
379.	The standard deviation (a) 10	(SD) of a variable x is 10, the (b) - 10	en the SD of the variable 2x (c) 20	+ 10 is: (d) None of them
380.	The number to be adde (a) 2	ed to each term of the ratio (b) 1	3:7 to make it 1:2 is: (c) 3	(d) None of these
381.	What is the slope and Y (a) (-3/4,-9/4)	(b) (-5/7,-11/7)	(c) (3/5,-9/4)	(d) (-5/11,-11)
382.	The time in which a sur (a) 8 years	n of money becomes doubl (b) 10 years	e at 10% p.a., simple interest (c) 12 years	t is (d) None of these
383.	If $x = 2 + \sqrt{3}$ then the v	value of $x^4 + \frac{1}{x^4}$ is:		
	(a) 98	(b) 196	(c) 194	(d) None of these

384.	${}^{n}c_{r} + {}^{n}c_{r+1}$ is equal to				
	(a) ⁿ⁻¹ C _r	(b) ⁿ⁺¹ C _r	(C) ⁿ C _{r+1}	(d) None of these	
385.	wages of ₹ 600 p.m., s	Industrial workers of a city to tandard deviation of ₹50. 228 of industrial workers in the cit (b) 10,000	workers have monthly inco		
386.	In question no. 385 , ho	w many workers have incom	e between ₹ 550 to ₹ 650 p.r (c) 6,598	n. (d) 6,902	
387.	If $\frac{\log x}{\sqrt{2}} = \frac{\log y}{\sqrt{2}} = \frac{\log z}{\sqrt{2}}$	then the value of xyz is:			
	(a) 1	(b) 0	(c) -1	(d) None of these	
388.	What is the slope and '(a) (-5/4,-11/4)	(b) (7/4,-11/5)	(c) (11/5,-9/4)	(d) (-7/4,-11/4)	
389.	Find the value of X if IX	(+11 =3X-5 (b) 3 or 1	(c) 1 or 2	(d) 2 or 3	
390.	If $X^2+6X = -9$, then the (a) $(-3,-3)$	roots of the equations are (b) (-3,3)	 (c) (2,4)	(d)(4.2)	
391.	X ² +X=12, then the roots (a) (3,4)	s of the equations are (b) (-4,3)	(c) 2,3)	(d)(4.3)	
392.	3X²+6X+3 =0, then the (a) (3,3)	roots of the equations are (b) (-1,-1)	 (c) (2,4)	(d)(4.1)	
393.	If 4X ² -8X+3= 0, when X (a) (3)	=1/2Y, find the value of Y	(c) (3/2)	(d) (2)	
394.	16X ² -8X+1= 0, when X=	$=\frac{1}{4}$ Y. Find the value of Y			
	(a) (1/4)	(b) (1)	(c) (2)	(d) (-1/4)	
395.	If the roots of the equa (a) (8)	tions 2X ² +8X+C = 0, are equal (b) (6)	Il then C is equal to(c) (5)	(d) (4)	
396.	If the roots of the equa (a) (7)	tion X2+6X+C = 0, are equal t (b) (6)	hen C is equal to (c) 9	(d) (3)	
397.	If h = g(x) = $\frac{px + q}{rx - p}$ the	n g(h) is equal to			
	(a) q	(b) x	(c) p	(d) None of these	
398.	$\lim_{x\to 0} \frac{e^{px} - e^{qx}}{x}$ is evaluate	ed as			
	(a) q - p	(b) p	(c) p - q	(d) None of these	
399.	If $y=x\sqrt{1+x^2}$ then $\frac{dy}{dx}$	is $x = \sqrt{3}$			
	(a) $\frac{1}{2}$	(b) $\frac{7}{2}$	(c) 5	(d) None of these	

400.	$\int\limits_0^1 \frac{\mathrm{d} x}{\sqrt{x+1}\sqrt{x}} \ \text{is evaluated as}$				
	(a) $\frac{2\sqrt{2}}{3}$	(b) $\frac{4\sqrt{2}}{3}$	(c) $\frac{2}{3}(2\sqrt{2}+1)$	(d) None of these	
401.	$f f(x, y) = 3x^3 - 5x^2y + 2y$	f^3 then $\mathbf{X} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} + \frac{\partial \mathbf{f}}{\partial \mathbf{y}}$ is			
		(b) 3	(c) 3f(x,y)	(d) None of these	
402.	First 10 odd counting no (a) 40	umbers each occurring twic (b) 10	e has arithmetic mean (c) 20	(d) None of these	
403.	Geometric mean (G.M	.) of six numbers is 16. If G.M	A. of first four of them is 8 the	en G.M. of other two	
	(a) 8	(b) 16	(c) 32	(d) None of these	
404.	is multiplied by 2 then h		and geometric mean 2 $\sqrt{2}$.	If each observation	
	(a) $\frac{16}{3}$	(b) $\frac{8}{3}$	(c) 12	(d) None of these	
405.	respectively then arithr	metic mean of the observation			
	(a) 4	(b) 6	(c) 10	(d) None of these	
406.	If the relation between harmonic mean of vari		2 and arithmetic mean of v	ariable x is 10, then	
	(a) $\frac{1}{5}$	(b) $\frac{1}{10}$	(c) $\frac{2}{5}$	(d) None of these	
407.	is the binomic (a) (0.25+0.75)	al distribution having mean (b) (0.75+0.25)16	of 4 and variance of 3 (c) (0.4+0.6) ¹⁸	(d) (0.4+0.6) ¹⁰	
408.			5 and mean deviation of x vons of corresponding 10 y-val (c) 6		
409.		n of deviations about 5 is 10	and sum of squares of device	ations about 4 is 100	
	then variance of x is (a) 4	(b) 6	(c) 10	(d) None of these	
410.	•	tandard deviation of the cor	ean but different standard onbined sample is	deviations 1 and 3	
	(a) √5	(b) $\frac{\sqrt{51}}{3}$	(c) $\frac{7}{3}$	(d) None of these	
411.	If the mode, variance respectively then mean		s of a frequency distribution	n are 100, 16 and 6	
	(a) 124	(b) 76	(c) 108	(d) None of these	
412.	If P = $\frac{4}{5}$ and Q = $2\frac{1}{2}$ R,	then P: R is			
	(a) 1:2	(b) 2:1	(c) 4:5	(d) None of these	
413.	If the roots of the equation (a) (5)	tion 3/4X²+9X+C³=0, are equ (b) (3)	al then C is equal to (c) (8)	 (d) (5)	

414.	Time in which ₹5000 wi (a) 2 years	Il be the amount ₹6000 at si (b) 5 years	mple interest @5% p.a. is (c) 4 years	(d) None of these
415.		which letters of the word 'A	LGEBRA' can be arranged so	that the two A's will
	not remain together is (a)1600	(b) 1800	(c) 2000	(d) None of these
416.		be 'It is dry'. Then the state	ment 'It is not hot and it is no	t dry' can be written
	in symbolic form as (a) ~pvq	(b) ~ p^ ~ q	(c) ~ p v q	(d) pvq
417.	The number of zeros be 0.30103, is	etween decimal point and	the first significant digit in (0	0.5) ²⁰ , given log ₁₀ 2 –
	(a) 8	(b) 7	(c) 5	(d) none of these
418.	Find the number of term (a){ 1 }	ns in the expansion of (1-5x) (b) { 5 }) 7 + (1+5x) 7 (c) {1, 5}	(d) none of these
419.	If $X^a = Y^b = Z^c$ and $xyz =$	1 then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{a}$	1 c is	
	(a)8	(b) 4	(c) 5	(d) 9
420.	If $(1 - \sqrt{2})$ is one of the recall (a) $X^2-2X-X=0$	poots of an equation, the equation (b) $X^2-2X-1=0$	on is (c) X ² -4X-2 = 0	(d) X2-3X-X=0
42 1.	If (2 + $\sqrt{3}$) is one of the (a) $X^2-2X-3=0$	e roots of an equation, the e (b) X²-2X-2=0	equation is(c) X2-4X+1=0	(d) X ² -3X-5=0
422.	If (3 – $\sqrt{3}$) is one of the (a) $X^2-2X-3=0$	roots of an equation, the e (b) X2-3X-1=0	quation is (c) X2-4X+2=0	(d) X ²⁻ 6X+6=0
423.		roots of an equation, the ed (b) $X^2-2X+4=0$	quation is (c) X ² -4X-1 = 0	(d) X ² -3X-2 = 0
424.	The g.c.d of the equation $(2x+1)$	on =2X ² -X-1 and 4X ² +8X+3 is (b) (2x-1) (c) (3x+		2)
425.	If A = (x+1)/(x-1), then (a) (2x-3)	A-1/A is equal to (b) 4x/(x²-1)	(c) 2x/3-5	(d) X/3+3
426.	(a) X2-4X-1=0	is the quadratic equation v (b) 2X2-4X=1	whose roots are 2+5 and 2- $\langle C \rangle$ (C) X ² -2X-1=0	(d) 2X ² -2X-1=0
427.	If the mean of a binom distribution	ial distribution is 5 and stan	dard deviation 2 find the nu	mber of items in the
	(a) 20	(b) 25	(c) 16	(d) 9
428.	(a) 32	e numbers between 20-50 (b) 35	is (c) 37	(d) 39
429.	If f (x) = $\frac{1 \times 1}{x}$ then for c		() 0	
	(a)1	(b) 2	(c) 0	(d) None of these
430.	The value of $\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$	<u>x</u> -		
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) 0	(d) None of these

431.	When x = 4t - t ² ,	$y = t^2 + 3$, $\frac{dy}{dx}$ at $t = 1$ is		
	(a) 0	(b) -1	(c) 2	(d) None of these
432.	The value of $\int_{0}^{1} $	$\frac{dx}{x+1-\sqrt{x}}$ is	, ,	, ,
	(a) $\frac{4\sqrt{2}}{3}$	(b) 3√2	(c) $\frac{2\sqrt{2}}{3}$	(d) None of these
433.	Find the co-effic (a) 51624	cient of x ⁷ in the expansion (b) 52720	of (x - 2x ²)-3 (c) 67584	(d) None
434.	If the relation be	etween x and y is x = 2y + 5 (b) 10	and the median of x is 25 the	en the median of y is (d) None of these
435.		an of 10 observations is 8 can of last four observation:	3. If geometric mean of first s is	six observations is 4 then
	(a) $16\sqrt{2}$	(b) 8	(c) 16	(d) None of these
436.		an of first 5 observations is of all 10 observations is:	5/2 and harmonic mean of a	nother 5 observations is the
	(a) 7	(b) $\frac{45}{14}$	(c) $\frac{101}{36}$	(d) None of these
437.		rvations 25 observations ha ion of 100 observations is :	ave the value 1 and rest of the	e observations are zero. The
	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{3}{2}$	(c) $\frac{\sqrt{3}}{4}$	(d) None of these
438.			observations about 4 is 30 a	nd that about 3 is 40. Then
	mean of the obs	servations is : (b) 10	(c) 11	(d) None of these
439.	Variance of first	5 positive integers is		
	(a) 3	(b) 2	(c) 1	(d) None of these
440.	Mean deviation	of first 5 positive integers of (b) 1.7	ubout median is: (c) 1.2	(d) None of these
44 1.			variable x are σ^2 and respec	tively. If the variable $y = x^2$,
	the mean of y is $(a) \sigma$	(b) σ^2	(c) 1	(d) None of these
442.	For 5 values of c	variable x, $\sum_{1-1}^{5} x_1 (x_1 - 5)^2 =$	= 30, the variance of x is	
	(a) 2	(b) 4	(c) 6	(d) None of these
443.	(a) G1 is more sk		10 and group G_2 has a.m = 18 (b) G_1 is less skews (d) None of these	
444.	If 2-x, 3-x, 5-	x and 7 – x are proportion (b) -1	, then the value of x is (c) 2	(d) None of these
445.	If $\sqrt{x} + \frac{1}{\sqrt{x}} - 1 + \frac{1}{x^2}$	$\sqrt{X} - \frac{1}{\sqrt{X}} + 1 = \frac{1}{3}$, then the v	alue of x is	
	(a) (1,2/3)	(b) (5/3,-1)	(c) (2/3,-2)	(d) (2/5,-1/3)

446.	True discount of a bill value due in 2 years at 4% per annum. Simple interest is ₹ 40. Then bill value				
	is (a) ₹ 540	(b) ₹ 500	(c) ₹ 460	(d) None of these	
447.	The number of the way 4 things respectively is	s in which 9 different things	can be divided into 3 groups	containing 2,3 and	
	(a) 15120	(b) 1260	(c) 630	(d) None of these	
448.	If $x + iy = \frac{1}{3+2i}$ the value	e of x - y is			
	a) $\frac{1}{3}$	(b) $\frac{1}{\sqrt{14}}$	(c) $\frac{1}{5}$	(d) None of these	
449.	The maximum value of (a) 10	13C _r is equal to (b) 8	(c) 4	(d) 5	
450.	The logarithm of 324 to	the based $\frac{1}{3\sqrt{2}}$ is			
	(a) -4	(b) -2	(c) 4	(d) None of these	
45 1.		is a girl" and q be "the studies is a boy but he is not studies	dent is studious". Then the sy	ymbolic form of the	
	(a) p^~q	(b) ~p^q	(c) ~p^~q	(d) None of these	
452.	If $\frac{\sqrt{x}}{x-1} + \frac{\sqrt{x+1}}{x} = \frac{7}{5}$, then 2	c is equal to			
	(a) (4/3,3/2)	(b) (1/3,2/3)	(c) (3/5,2/5)	(d) (3/5,5/7)	
453 .		ation X ² -8X+M=0, exceeds t	he other by 2, then the val	ue of M is equal to	
	(a) 12	(b) 15	(c) 10	(d) 16	
454 .		ation X²-9X+M=0, exceeds	the other by3, then the val	ue of M is equal to	
	(a) 8	(b) 10	(c) 12	(d) 18	
455 .	If one root of the equa	ation X²-3X-M=0, exceeds t	he other by 7, then the val	ue of M is equal to	
	(a)8	(b) 11	(c) 12	(d) 10	
456 .	If one root of the equa	ation X ² —7X+M=o, exceeds	the other by 1, then the val	ue of M is equal to	
	(a) 9	(b) 10	(c)12	(d) 18	
457 .			x + a)n are 240, 720 and 10	80 the value of x, a	
	and n respectively are (a) (2, 3, 5)	(b) (3, 2, 5)	(c) (5, 2, 3)	(d) (3, 5, 2)	
458.	If one root of the equ	uation X2+9X+M=0, is doub	le the other, then the valu	e of M is equal to	
	(a) -6	(b) 7	(c) 12	(d) 18	
459.	If the equations X ² +7X	(+12=0 and X ² +MX+5=0 have	ve common roots, the valu	e of M is equal to	
	(a) (21/4,14/3)	(b) (21,15/4)	(c) 18/7,13/5	(d) 13/2,14/3	
460.	If the equations X2+22	K-3=0 and X²+MX+2=0 hav	e common roots, the value	e of M is equal to	
	(a) (1/4,4/3)	(b) (11/3,15/4)	(c) 7/3,-3	(d)13/2,14/3	

461.	If $y=f(x)=\frac{ax+b}{cx-a}$ then for $x\neq \frac{a}{c}$, $f(y)$ is			
	(a) x	(b) - x	(c) $\frac{1}{x}$	(d) None of these
462.	The value $\lim_{x\to\infty} \frac{4x^2+3x-7}{2x^2+7x+5}$	ls is		
	(a) 2	(b) $\frac{1}{2}$	(c) Does not exist	(d) None of these
463.	If $y = x^x$ then $\frac{dy}{dx}$ is			
	(a) x log x	(b) x (1+log x)	(c) x ^x (1 + log x)	(d) None of these
464.	The value of $\int_0^1 \frac{dx}{x + \sqrt{x}}$ is			
	(a) log _e 2	(b)2 log _e 2	(c) - log _e 2	(d) None of these
465.	If $u = x^2y + y^2z + z^2x$ ther (a) $(x+y+z)$	$u_x + u_y + u_z$ is (b) $(x+y+z)^2$	(C) $(x^2+y^2+z^2)$	(d) None of these
466.	If 1, 2, 3, 4 occur with re (a) 7.5	spective frequencies 1 (b) 2.5	, 2,3,4 then their arithmetic	mean is (d) None of these
467.				thmetic mean of first 100 observations of the group is (d) None of these
468.	_	1995, in 2006 the Cons	-	n 1995 when the consumer 95. The additional DA to be
	(a) ₹12,000	(b) ₹13,200	(c) ₹11,850	(d) ₹ 10,000
469.	If the arithmetic mean $\frac{10}{x_1}, \frac{10}{x_2}, \dots, \frac{10}{x_{10}}$ is:	of 10 observations x1,	x_2, \ldots, x_{10} is 20 harmoni	c mean of 10 observations
	(a) 2	(b) $\frac{1}{2}$	(c) $\frac{1}{20}$	(d) None of these
470.	If the variables x and y (a) 18	are related by 3x – 2y (b) 15	+ 6 = 0 and the range of x (c) 12	is 10 then range of y is (d) None of these
47 1.	If sum of deviation of 4 squares of the 4 observe		d standard deviation of tho	se 4 values is 2 then sum of
	(a) 52	(b) 40	(c) 20	(d) None of these
472.	The weight of 3 major categories of items of wholesale price index are 20%, 50% & 30 respectively. If the prices of the items falling under these categories have gone up by 25%, 15 and 20% respectively, the wholesale price index has gone up by			
	(a) 18.55%	(b)21.50%	(c) 16.60%	(d) 15.40%
473.	The media of the follow X :	•	4	
	Frequency :	1 2 3 7 12 18 (b) 3		(d) None of these

474.	If the mean and coed deviation of 3 – 2x is	fficient of valuation of x ar	re 10 and 50% respectively	, then the standard
	(a) 100	(b) 50	(c) 10	(d) None of these
475.	If the coefficient of ske then media of the valu (a) 46	ewness, mean and variance es is (b) 42	e of a set of values are -3, 4	(d) None of these
4	•	. ,		(4)
476.	(a) (-3,-3)	(b) (-3,3)	(c) (2,4)	(d)(4.2)
477.	X2+X=12, then the roots (a) (3,4)	s of the equations are (b) (-4,3)	(c) 2,3)	(d)(4.3)
478.	3X²+6X+3 =0, then the (a) (3,3)	roots of the equations are (b) (-1,-1)	(c) (2,4	(d)(4.1)
479.	If 4X 2- 8X+3= 0 , when X (a) (3)	=1/2Y, find the value of Y (b) (-1)	(c) (3/2)	(d) (2)
480.	16X ² -8X+1= 0, when X=	= $\frac{1}{4}$ Y. Find the value of Y	•••••	
	(a) (1/4)	(b) (1)	(c) (2)	(d) (-1/4)
481.	If the roots of the equal (a) (8)	utions 2X ² +8X+C = 0, are equ (b) (6)	val then C is equal to (c) (5)	(d) (4)
482.	If the roots of the equa (a) (7)	tion X ² +6X+C = 0, are equal (b) (6)	then C is equal to (c) 9	(d) (3)
483.	If the roots of the equa (a) (5)	tion 3/4X²+9X+C³=0, are equ (b) (3)	(c) (8)	(d) (5)
484.	If (1- $\sqrt{2}$) is one of the ro(a) X ² -2X-X=0	pots of an equation, the equation (b) $X^2-2X-1=0$	(c) X ² -4X-2 = 0	(d) X ² -3X-X=0
485.	If (2 + $\sqrt{3}$) is one of th (a) $X^2-2X-3=0$	e roots of an equation, the e (b) X ² -2X-2=0	equation is(c) X ² -4X+1=0	(d) X ² -3X-5=0
486.	If (3 \(\bar{3} \) is one of the	ne roots of an equation, the e	oguation is	
400.	(a) $X^2-2X-3=0$	(b) X ² -3X-1=0	(c) X ² -4X+2=0	(d) X ² -6X+6=0
487.		n 1995 and 2005 were ` 200 of pulses is		aking 1995 as a base
	(a) 225	(b) 350	(c) 315	(d) 280
488.	The g.c.d of the equation (2x+1)	on =2X²-X-1 and 4X²+8X+3 is (b) (2x-1)	s (c) (3x+1)	(d) (2x-2)
489.	If A = (x+1)/(x-1), then (a) (2x-3)	A-1/A is equal to (b) 4x/(x²-1)	(c) 2x/3-5	(d) X/3+3
490.		- is the quadratic equation v	whose roots are 2+5 and 2—	√5
- · · ·	(a) X2-4X-1=0	(b) 2X2-4X=1	(c) X2-2X-1=0	(d) 2X ² -2X-1=0
491.	If 3X+2Y=6; (k+1)x+4y= (a) 3	(2k+2),if k is (b) 5	the equation will have infinit	te solution (d) 6

492.	The method of the (a) 32	prime numbers between 2 (b) 35	2 0-50 is (c) 37	(d) 39	
493.	If $\frac{\sqrt{x} + 1}{\sqrt{x} + 1} + \frac{\sqrt{x} - 1}{\sqrt{x} + 1} =$	$\frac{1}{3}$, then the value of X is			
	(a) $(1,2/3)$	(b) (5/3,-1)	(c) (2/3,-2)	(d) (2/5,-1/3)	
494.	If $\frac{\sqrt{x}}{x-1} + \frac{\sqrt{x+1}}{x} = \frac{7}{5}$, th	en X is equal to			
	(a) (4/3,3/2)	(b) (1/3,2/3)	(c) (3/5,2/5)	(d) (3/5,5/7)	
495.	If one root of the	equation X²-8X+M=0, exc	eeds the other by 2, then	the value of M is equal to	
	(a) 12	(b) 15	(c) 10	(d) 16	
496.	If one root of the	equation X²-9X+M=0, exc	eeds the other by3, then t	he value of M is equal to	
	(a) 8	(b) 10	(c) 12	(d) 18	
497.	If one root of the ed (a)8	quation X²-3X-M=0, excee	ds the other by 7, then the v	value of M is equal to (d) 10	
498.	If one root of the	equation X2—7X+M=o, exc	eeds the other by 1, then	the value of M is equal to	
	(a) 9	(b) 10	(c) 12	(d) 18	
499.	If one root of the ed (a) -6	quation X2-3X+M=0, excee	ds the other by 5, then the	value of M is equal to (d) 18	
500.	If one root of the	If one root of the equation $X^2+9X+M=0$, is double the other, then the value of M is equal to			
	(a) -6	(b) 7	(c) 12	(d) 18	
501.	If the equations $X^2+7X+12=0$ and $X^2+MX+5=0$ have common roots, the value of M is equal to				
	(a) (21/4,14/3)	(b) (21,15/4)	(c) 18/7,13/5	(d) 13/2,14/3	
502.			times in comparison to the	e base period, the present	
	(a) 235	(b) 135	(c) 210	(d) 321	
503.	If the equations X ² -(a) (1/4,4/3)	5X+6=0 and X²+mX+3=0 h (b) (7/3,1/4)	ave common roots, the value (c) (7/4,-3/5)	ue of m is equal to (d) (-7/2,-4)	
504.	The roots of the equal (a) (3,-2)	uation X²-X-6=0,are (b) (-3,2)	(c) (1,5)	(d) (5,-1)	
505.	The roots of the equal (a) (3,-6)	uation X2+X-20=0, are (b) (-4,-5)	(c) (2,5)	(d) (4,-5)	
506.	The roots of the equ (a) (-1,2,-4)	uation (x+1)(x-2)(x+4) are- (b) (1,-2,-4)	(c) (-1,-2,-4)	(d) (2,-3,-4)	
507.	The roots of the equation (a) (-2,2,4)	uation (x+2)(-2)(x-4) are (b) (1,-2,-4)	(c) (-1,-2,-4)	(d) (2,-3,-4)	
508.	The roots of the equ	uation (x+2)²(x-2)(x-4) are	(c) (-1,-2,-2,-4)	(d) (2,2,-3,-4)	

509.	Find the least +iv value (a) (4)	of M for which the equation (b) (5)	X ² +MX+9 has real root (C) (3)	(d) (6)
510.	If the index number of	silver in 2005 is 415 with b	pase year 1995, the prices	of silver must have
	increased by(a) 415% (b) 315		(c) 224.5%	(d) 120.5%
511.	The roots of the equation (a) $(-2,2,2,4)$	n (x-4) ² (x-2)(x+4) are (b) (1,-2,4,-4)	(c) (4,4,2,-4)	(d) (2,-3,1,-4)
512.	The roots of the equation (a) (-2,2,4)	n (x-3)(x-2)(x-4) are (b) (3,2,4)	(c) (-1,-0,-4)	(d) (2,-1,-3)
513.	Find the value of M if or (a) 1	ne root of the equation F(x) = (b) -1/4	mx ² +2x-3=0, is 2 (C) -1	(d) ¹ / ₄
514.	Find the value of M, if o (a) 1	ne root is 2, F(x) = 2x²+mx-6= (b) -1	:0 (c) 2	(d) -2
515.	The roots of the equatio (a) (3,2,2,4)	n (x-3)(x-2)²(x-4) are (b) (1,-2,2,-4)	(c) (-1,-2,2,-4)	(d) (2,-3,2,-4)
516.	The value of M for which (a) ± 2	n the difference between the (b)±5	e roots of the equation x²+m (c) ±6	x+8=0, is 2 are (d)±3
517.	Find the degree of the α	equation 3x+yz²+3Y³ (b) 3	(c) 4	(d) 5
518.	Find the degree of the e	equation 3x ⁵ +xyz ² +y ³ (b) 3	(c) 4	(d) 5
519.	Find the zero's x^2 + $7x$ + (a) $\{4,-3\}$	12=0 (b) (-4,3)	(c) (-4,-3)	(d) (4,3)
520.	Find the zero's of $=x^2-8x$ (a) $(-2,6)$	-1 2=0 (b) (-6,2)	(c) (2,6)	(d) (-2,-6)
521.	Find the degree of the ϵ (a) 2	equation 4x² + xyz² + xy³ + yz (b)3	(c) 4	(d) 6
522.	If P,Q are the roots of th (a) 1/25	e equation F(x) = 6x² + x - 2 , (b) 25/16	find the value of P/Q-Q/P (c) 16/25	(d) -7/25
523.	If P and Q are the roots (a) -1	of equation F(x) = 6x² + x - 2 (b) 25/16	Find the value of p/q+q/p (c) -25/16	(d) 16/25
524.	Find the degree of the ϵ (a) 2	equation $x^2 + xyz^2 + xy^3 + zy^5$ (b) 3	(c) 4	(d) 6
525.	If p,q are zero of the eq	uation F(x)= x²+x+1 then 1/p (b) -1	+1/q=0 (c) 1	(d) -2
526.		numerator of a fraction it is and 1 added to the num	•	

527.	On deduction of 1 from the numerator of a fraction it becomes equal to 2/3, however if 2 is deducted from the denominator it becomes equal to 1. The number is			
	(a) 5/9	(b) 7/9	(c) 7/8	(d) 3/5
528.		denominator and 3 is a	he denominator it becomes added to numerator it beco	•
	(a) 4/9	(b) 7/10	(c) 8/12	(d) 9/15
529.		multiplied by 3 it becor	mes equal to 1, however i	f 2 is deducted from
	(a) 5/7	(b) 3/7	(c) 5/8	(d) 1/3
530.		of two friends X and Y is in ye ₹100 PM, their monthly	the ratio of 3:2 and their experience is	enses are in the ratio of
531.	(a) (₹900, 600)	(b) (700, 600)	(c) (575, 725) in the ratio of 5;6 and their so	(d) (750, 960)
331.		al). Their monthly earning		avings in the ratio of 6.5
	(a) (₹900,700)	(b) (750,580)	(c) (₹1,000 , ₹1,200)	(d) (750,960)
532.			are in the ratio of 2:3 and the	
			ofit of ₹10,000 PM, their sales	
	(a) (₹69,000 , 70,000)	(D) (73,000, 63,600)	(C) (₹60,000, ₹90,000)	(d) (54,750, 45,960)
533.	•		of his son's age and after 7 y	ears it will be twice the
	(a) 53,23	sent age of the father and (b) 50,27	(c) 58,30	(d) 61,32
534.	X as Y and Z as his sor	n and arandson. His prese	nt age is 1.5 times the age of	his son and arandson.
	X as Y and Z as his son and grandson. His present age is 1.5 times the age of his son and grandson. 10 years ago his age was twice the age of his son and grandson, the present age of the father and			
	sum of age of son and (a) 93,63	l grand-son are (b) 85,57	(c) 88,64	(d) 90,60
535.	•		age of his son, five years fror	
	25 more than the age (a) 55,30	of his son. The present ag (b) 54,27	e of the father and son is (c) 58,30	(d) 60,30
536.	•	es the age of his wife Y. 1 resent age is	10 years before his age woul	d have been twice the
	(a) 53,43	(b) 50,37	(c) 30,20	(d) 45,30
537.	A two digit number is reversed. The number		git, however if 27 is deducte	d from it the digits are
	(a) 63	(b) 65	(c) 75	(d) 69
538.	A two digit number is sum of digits. The num	_	it, however if 9 is added to it	becomes 10 times the
	(a) 68	(b) 55	(c) 81	(d) 59
539.			nd 1995 index with base year	1990 is 120, then 2005
	index with base year 1 (a) 150	(b) 210	(c) 310	(d) 305
540.	• •	(- / -	t, however if 9 is deducted fr	` '
J-10.		he number is	i, nowever ii 7 is dedocted ii	om ii becomes o iiines
	(a) 63	(b) 69	(c) 77	(d) 81
541.			bled it is short by 18 from the	
			he greater it added up to 19.	
	(a) (55,64)	(b) (76,57)	(c) (55,44)	(d) (65,87)

542.			ller is equal to 1/5 th of the gre of the greater. The numbers at (c) (55,44)		
543.		uch that twice the big	gger is equal to 2.5 times th	ne smaller. The numbers	
	(a) (20,35)	(b) (36,57)	(c) (50,40)	(d) (62,83)	
544.			doubled it is short by 12 from of the greater number. The nu (C) (36,60)		
545.		uch that if the smaller	is doubled it is 2/3 of the	other one. The numbers	
	(a) (2,4)	(b) (2,6)	(c) (3,8)	(d) (5,12)	
546.	•	A two digit number is such that if the digits are reversed, the greater is $\frac{3}{4}$ times more than the smaller. The number is			
	(a) (12)	(b) (32)	(c) (41)	(d) (23)	
547.	If the sum of two nat	ural number is 9 and sur	m of their square is 53. The nu	mbers are	
	(a) (2,7)	(b) (3,6)	(c) (3,7)	(d) (4,5)	
548.	If the difference of tw (a) (13,8)	vo numbers is 5 and diffe (b) (12,7)	erence of their square is 45. The (c) (2,7)	he numbers are (d) (14,9)	
549.	If the sum of two natural numbers is 9 and sum of their square is 5 times their sum less 4. The numbers are				
	(a) (2,7)	(b) (1,9)	(c) (3,6)	(d) (4,5)	
550.	Two numbers are such that their sum is 19 and their product is 8 times the greater number. The				
	numbers are (a) (12,7)	(b) (11,8)	(c) (13,6)	(d) (14,5)	
551.	Two numbers are such that their difference is 5 and their product is 100 times difference. The				
	numbers are (a) (12,7)	(b) (11,6)	(c) (13,18)	(d) (20,25)	
552.	Two numbers are such that their sum is 15 and their difference is 1/5 of their total. The numbers are				
	(a) (12,3)	(b) (11,4)	(c) (9,6)	(d) (14,1)	
553.	Two numbers are	such that their differe	ence is 24 and product is	180. The numbers are	
	(a) (30,6)	(b) (4,30)	(c) (15,39)	(d) (1,25)	
554.	3 times of a number i	is equal to 3/5 of its squ (b) (7	are. The number is(c) (9)	(d) (5)	
555.	5 times of a number i	is 14 less than its square (b) (9)	e. The number is(c) (13)	(d) (18)	
556.	If 50 is divided into tv	vo parts in such a way t	that 1/8 of the greater numbe	r equals 1/2of the smaller.	
	The number are (a) (40,10)	(b) (30,20)	(c) (32,18)	(d) (33,17)	
557.	If 60 is divided into	two parts such that t	heir product is 15 times the	eir sum. The numbers are	
	(a) (30,30)	(b) (20,40)	(c) (10,50)	(d) (25,35)	

558.	X is older than Y by 5 ye (a) 10 years	ears 10 years ago, how muc (b) 15 years	h older X will be than Y after (c) 5 years	15 years. (d) 20 years	
559.	If in Question No.33 if pr (a) 40	esent age of Y is 55 years, w (b) 50	rhat was the age of X 10 year (c) 45	rs ago (d) 35	
560.		cost ₹1200 whereas 5 T shirt:	s and 2 Trousers cost ₹1750. F	Find the cost of one	
	T shirt and one Trouser. (a) (₹150, ₹500)	(b) (₹250,₹550)	(c) (₹175, ₹625	(d) (₹125,₹525)	
561.	-	•	beg. If he has total 50coins	valued ₹15, find the	
	(a) (10,40)	50 paise coins he has in his (b) (40,10)	(c) (30,20)	(d) (20,30)	
562.			pocket totaling 20 notes vo	alued ₹70. Find the	
	(a) (5,15)	es of each denomination. (b) (15,5)	(c) (10,10)	(d) none.	
563.			e ₹20, I will have twice the c ame amount you are left wit		
	(a) (₹140, ₹100)	(b) (₹100, ₹140)	(c) (₹80, ₹120)	(d) (₹120, ₹80)	
564.	In NCR area a Radio Taxi charges ₹150 for a distance of 12 Km and ₹180 for a distance of 15 Km. Find the charges for a distance of 20 Km.				
	(a) ₹230	(b) ₹250	(c) ₹300	(d) ₹200	
565.	In Question No. 564 who (a) ₹230	at will be the charges for 25 (b) ₹250	Km. (c) ₹300	(d) ₹280	
566.	In Question Nos. 564 and (a) ₹30	d 565 what is the fixed charg (b) ₹200	ges. (c) ₹50	(d) ₹40	
567.	In Question NO. 564 who (a) ₹10 per Km+ ₹30 fixe	at is per Km. charges d charges. (b) ₹10 per Km	(c) ₹12.50 per Km	(d) ₹12 per Km	
568.	Let marks obtained by Ram, Rahim and Jodu be A, B and C respectively. Given A: $B-1:2$, B:C = 3:4. The combined ratio A; B: C is				
	(a) 1:2:4	(b) 3:6:8	(c) 1:6:8	(d) none of them	
569.	If $\frac{\sqrt{\alpha + \sqrt{b}}}{\sqrt{\alpha - \sqrt{b}}} = \frac{2}{1}$ then $\frac{\alpha}{\alpha}$	+b/-b is equal to			
		(b) 4/5	(c) 3	(d) none of them	
570.	The time, in which the tr (a) 2 years	ue discount on amount ₹550 (b) 3 years	due is ₹50 at 4% per annum (c) 2.5 years	, is (d) none of them	
571.	After rationalization $\frac{\sqrt{3}}{\sqrt{3}}$	$\frac{+\sqrt{2i}}{-\sqrt{2i}}$ will be			
	(a) 1+2√6i	(b) $\frac{5+2\sqrt{6i}}{5}$	(c) 1-2√6i	(d) $\frac{1+2\sqrt{6i}}{5}$	
572.	$(2^{n+1})+(2^{n+2}) \over (2^{n+2})-2(\frac{1}{2})^{1-n}$ simplifies to	·		-	
	(a) 4	(b) 2	(c) 8	(d) 20	

573.	The value of log 2 log 2	log 3 81 is (b) 4	(c) 3	(d) 2
574.	The value of x satisfies	the equation $\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = \frac{1}{x}$	<u>3</u>	
	(a) $(\frac{2}{3}, \frac{3}{2})$	(b) $(\frac{4}{9}, \frac{9}{4})$	(c) (4,9)	(d) None of these
575.	If "c ₆ : "-3c ₃ = 91: 4, t	hen the value of m is		
	(a) 13	(b) 15	(c) 14	(d) none of these
576.	If the equations X ² -5X+(a) (1/4,4/3)	6=0 and X ² +mX+3=0 have c (b) (7/3,1/4)	ommon roots, the value of m (c) (7/4,-3/5)	is equal to (d) (-7/2,-4)
577.	The roots of the equation (a) (3,-2)	on X²-X-6=0,are(b) (-3,2)	 (c) (1,5)	(d) (5,-1)
578.		on X2+X-20=0, are		
	(a) (3,-6)	(b) (-4,-5)	(c) (2,5)	(d) (4,-5)
579.	In 2005 the consumer p 2000 is times of		as 240 in 2000, the purchasi	ng power of money in
	(a) 1.21 times	(b) (1,-2,-4)	(c) (-1,-2,-4)	(d) (2,-3,-4)
580.	The roots of the equation (a) (-2,2,4)	on (x+2)(-2)(x-4) are (b) 0.85 times	(c) 1.33 times	(d) 1.05 times
581.	The roots of the equation (a) (-2,-2,2,4)	on (x+2)²(x-2)(x-4) are (b) (1,-2,-2,-4)		(d) (2,2,-3,-4)
582.	Find the least +iv value	of M for which the equation (b) (5)	X2+MX+9 has real root (C) (3)	(d) (6)
583.	Find the least +iv value (a) (2)	of M for which the equation (b) (3)	X ² +MX+4 has real root (C) (4)	(d) (-4)
584.	If $f(x) = \frac{x+1}{x-1}$, $f(f(x))$ for	x ≠ 1 is		
	(a) 1	(b) 2	(c) x	(d) $\frac{x+1}{x-1}$
585.	$\lim_{x \to 12} \frac{(x^2 - 1)2^x}{x^2 - 3x + 1}$ is evo	ıluated as		
		(b) 2	(c) 3	(d) 4
586.	If y = $(x^2 + 5)^2$ then $\frac{d}{d}$	$\frac{y}{x}$, at x = 2 is		
	(a) 18	(b) 72	(c) 81	(d) 36
587.	If $f(x, y) = x^3 + y^3$ then 2	$(\frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y})$ is		
	(a) f (x, y)	(b) 3 f(x, y),	(c) 3	(d) none of these
588.	$\int_{1}^{2} \frac{dx}{\sqrt{x-1}}$ is evaluated as			
	(a) 2	(b) 2√2	(c) - 2	(d) - 2√2

589.	In 2005 the consumer price index was 210, if the purchasing power of money in 2005 was 1.4 times of 2005 the consumer price index in 2000 will be				
	(a) 150	(b) 175	(c) 122	(d) 145	
590.	Two groups of 10 a (a) 15	ind 15 observations hav (b) 16	e means 10 and 20 respectiv	ely. Then grouped mean is (d) none of these	
591.	is 128 $\sqrt{2}$. Then grou	ped geometric mean is			
592.	(a) 64	(b) 32√2,	(c) 32 ve harmonic means $\frac{2}{5}$, and	(d) None of these	
372.		ic mean of 5 observations		5, respectively men	
	(a) $\frac{1}{2}$,	(b) $\frac{1}{4}$,	_	(d) none of those	
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$,	(c) $\frac{1}{3}$,	(d) none of these	
593.	arithmetic mean o	f the two observations	ean and geometric mean 9 a		
	(a)12	(b) 25	(c) √135	(d) none of these	
594.	If this is 6 then standard	-	y are related by $2x + 3y = 12$	and standard deviation of x	
	(a) 2	(b) 10	(c) 4	(d) none of these	
595.	For 10 values of va	riable x it is given that	$\sum x = 13$, $\sum x^2 = 400$ and $u = \frac{x^2}{2}$	$\frac{-3}{2}$. Then $\sum u^2$ is	
	(a) 100	(b) 520	(c) 260	(d) none of these	
596.	Mean deviation at	oout mean is 5.8. Co-eff (b) 2.9	icient of mean deviation abo (c) 29	out mean is 0.2. Then mean is (d) none of these	
597.		observations, $\sum x = 452$,	$\sum x^2 = 24270$ and mode 43.7 i	the coefficient of skewness	
	is (a) 0.8	(b) 0.08	(c) 8	(d) none of these	
598.	The mean and coefficient of variation of runs made by a batsman in 10 innings are 40 and 125%				
	(a) 50	s. d. of the runs made by (b) 40	(c) 20	(d) none of these	
599.	What is the coefficient of regression of X on Y from the following information $\sigma_x = 4$, $\overline{Y} = 20$, $\overline{X} = 25$, $r = 0.6$. Standard deviation of Y = 5				
	(a) 0.48	(b) 0.75	(c) 0.90	(d) 0.58	
600.	What is the coefficient of regression of X on Y from the following information $\sigma_x = 8$ $\overline{Y} = 36$ $\overline{X} = 30$, r=0.7 . Standard deviation of Y = 6				
	(a) 0.40	(b) 0.75	(c) 0.93	(d) 0.65	
601.	What is the coeffic $\sigma_x = 36$ $\overline{Y} = 30$		n Y from the following informo ard deviation of Y = 32	ation	
	(a) 0.48	(b) 0.55	(c) 0.40	(d) 0.90	
602.	What is the coeffic $\sigma_x = 5$ $\overline{Y} = 32$	ient of regression of X o \overline{X} =25, r=0.64 . Standa	n Y from the following informo	ation	
	(a) 0.50	(b)0.70	(c) 0.618	(d) 0.65	
603.	What is the regress X = 0.64y + 19.10;	sion coefficient b_{xy} from $Y = x + 5.25$	the following details		
	(a) 0.85	(b) 0.64	(c) 0.98	(d) 1	

604.	In question No. 603 the	e coefficient of regression (b) 2.20	byx is equal to (c) 0.87	(d) .65	
605.		coefficient bxy from the	following details		
	13X = 7Y + 9.10 ; (a) 7/13	Y = 2X - 10 (b) 13/7	(c) 1.09	(d) 2.9	
606.	What is the regression (a) 1.85	coefficient byx in question (b) 2	on No. 605 (c) 0.09	(d) 1.05	
607.		coefficient bxy from the	following details		
	(a) 7/3	8 Y + 28.10; Y = 1.5x + 10 (b) 3/77	(c) 1.5	(d) 2.9	
608.	What is regression coe (a) 2.01	efficient byx in question N (b) 1.09	o. 607 (c) 1.5	(d) 0.87	
609.	If the regression coefficient (a) 4	icient bxy is 2.5, what is th (b) 2.5	e value of a in the given eq (c) 5.0	uation 2X = aY + 12.6 (d) 3.32	
610.	If the regression coeffi (a) 5.8	icient bxy is 2.0, what is th (b) 2.9	ne value of a in the given eq (c) 6.18	uation 2.9X = aY + 15 (d) 4.32	
611.	If the regression coefficient (a) 4	icient byx is 0.5, what is the (b) 0.5	ne value of a in the given eq (c) 1.0	uation 2Y = aX - 16.80 (d) 3.32	
612.	If the regression coefficient (a) 2.5	icient byx is 3.0, what is the (b) 1.5	e value of a in the given eq (c) 4.0	uation 2Y = aX + 18 (d) 6.00	
613.			ng data are as under Y = 2	x+5, $3X = 2y - 18$. If the	
	(a) 16	e variance of y will be (b) 81	(c) 36	(d) 75	
614.	In question No. 613 the	e covariance of xy is (b) 50	(c) 99	(d) $66\sigma_x = 4$	
615.	From the regression equations $8x - 10y + 66 = 0$, $40x - 18y - 214 = 0$, the value of Mean X, Mean Y,				
	bxy, byx are		(c) (11,15,8/20,4/5)	(d)	
616.	From the regression e bxy, byx are	. ,	40x - 18y - 220 = 0, the vo	ılue of Mean X, Mean Y,	
	(a) (10,10,9/20,1,/4)	(b) (11,18,19/20,2/5)	(c) 10,13,8/20,4/5)	(d) (10,17,15/20,1/5)	
617.	From the regression e bxy, byx are		0, 8x - 18y + 60 = 0, the va	lue of Mean X, Mean Y,	
	(a) (11,20,9/20,4/5)	(b) (15.71,8.42)	(c) $\frac{5}{3}$	(d) $\frac{4}{9}$	
618.	What is co-efficient of (a) 0.33	correlation in question No. (b) 1.76	o. 616 (c) 2.21	(d) 154	
619.	What is co-efficient of (a) 0.90	correlation in question No. (b) 0.86	o. 617 (c) 0.98	(d) 2.22	

620. If regression coefficient between x and y is 1/3, y on x is – ¾, the coefficien x and y is				t of correlation between
	(a) -3	(b) 2	(c) -1/2	(d) 1/3
621.	If regression coefficient between x and y is	nt between x and y is – 2 	/3, y on x is $-1/6$, the c	oefficient of correlation
	(a) - 3	(b) 1	(c) - 1/2	(d) - 1/3
622.	If regression coefficier and y is	nt between x and y is 1/6, y	on x is 6, the coefficient of	of correlation between x
	(a) - 1	(b) 1	(c) 4	(d) 1/3
623.	If regression coefficie between x and y is	nt between x and y is -2	/5, y on x is -5/2, the c	oefficient of correlation
	(a) - 3	(b) 2	(c) -1/5	(d) -1
624.		elation between x and y ean of X is 10, and Mean of (b) x=0.56Y + 9		
625.	In question No. 624 the (a) y=1.5x-6	e regression line of y on x is (b) y=x-2	(c) y=0.9x+8	(d) y=2.1x+12
626.		ation between x and y is 0.6 15, and Mean of Y = 10, the (b) x=0.125Y + 10		
627.	In question No. 626 the (a) y=0.2x+7	e regression line of y on x is (b) y=1.5x-10	(c) y=01.878x-15	(d) y=2.6x-14
628.	below: Mean marks in Mean marks in Co-efficient of Standard devia Standard devia	Accounts and Law(X) = 70 Maths and Economics(Y)=8 correlation between Accounts(X) ation of marks in Accounts(X) ation of marks in Maths(Y)=1 be details the regression line (b) x=0.09+62.0	35, ints(X) and Maths(Y) pape () = 12 5	er = 0.8
629.	In question No. 628, the	e regression line of Maths o	n Accounts is	(d) 0.25x + 45
630.	In question No. 628 est	timate of Marks in Maths if r	narks in Accounts paper is	s 75 is (c) 79 (d) 74
631.	In question NO. 628 the	e estimate of marks in Acco	ounts paper if marks in Ma (c) 68.92	ths paper are 84 (d) 75
632.	•	tion of two variables are X= on between X and Y are (b)(6,7,0.3)		the mean value of X, Y, (d) 6,8,0.45)
633.	in Bombay on the eve	ice of chicken in Delhi core of New Year, if mean pric ith a standard deviation of ₹ (b) 114.17	e of chicken in Delhi and	Bombay is ₹ 98 per kg.

634. In question No. 633 the prevailing price in Mumbai will be – correspor per Kg. prevailing in Delhi				the price of Rs. 110
	(a) 122	(b) 130	(c) 121.20	(d) 119.24
635.	In question No. 633 Mumbai will be		Delhi is Rs. 125 per kg. the cor	responding price in
	(a) 169.82	(b) 134.65	(c) 139.25	(d) 151.61
636.	In question No. 633 if	the prevailing price in Mu	umbai is Rs. 130 per kg. the price	in Delhi will be
	(a) 122	(b) 103.25	(c) 128.01	(d) 148.20
637.	Avero Avero Stand Standard deviation second=0.6	age score in first inning = 5 age score in second inning ard deviation of score in f of score in second innin	g = 48 runs	in inning first and
	(a) 63	(b) 113	(c) 71	(d) 76
638.	In question No. 637 i		ond inning how many runs he is	likely o score in first
	(a) 85	(b) 91	(c) 81	(d) 66.4
639.	 Average rainfall = 26.7 cm, standard deviation of rainfall 4.6cm, Mean of Sugar crop = 508. Standard deviation of Sugar production = 36.8 qt. correlation = 0.6, the estimate of production sugar in 2007 corresponding to the estimate of 32cm rainfall is 			
	$\sigma_{_{\mathrm{X}}}=4$		6 . Standard deviation of Y = 5	
	(a) 520qt	(b) 533.84 qt	(c) 541.90qt	(d) 521qt
640.	In question No. 639 is	, the estimate of rainfall	corresponding to estimated pr	oduction of 600 Qt
	(a) 33.57 cm	(b) 31.6cm	(c) 29.5cm	(d) 35cm
641.	In question No. 639, 1 (a) 469.5	the estimate of production (b) 498.90	corresponding to estimated rain (c) 509.26	fall of 20 cm is (d) 419.06
642.	In question No. 639	, the estimate of rainfall	corresponding to estimated pr	oduction of 480 Qt
	(a) 33.57cm	(b)36.6cm	(c) 20.5cm	(d) 24.57cm
643.	If r=0.8, N = 100, the p (a) 0.021	probable error of coefficie (b) 0.024	nt of correlation is(c) 0.29	(d) 0.031
644.	In question No. 643, 1 (a) 0.776 to 0.824	the limit of coefficient of c (b) 0.74 to 0.810	orrelation of population is (c) 0.72 to 0.79	(d) 0.70 to 0.76
645.	If r=0.8, N=81, the pro (a) 0.0321	obable error of coefficient (b) 0.044	of correlation is (c) 0.027	(d) 0.041
646.	In question No. 645, to 0.776 to 0.824	the limit of coefficient of c (b) 0.551 to 0.648	orrelation of population is (c) 0.70 to 0.77	 (d) 0.74 to 0.79
647.			coefficient of correlation between B=0, standard deviation of y = 16,	
	(a) (3/8, 9/8, 3.52)	(b) 5/7,9/11,2.72)	(c) 1/8,3/8,1.72)	(d) 5/8,9/8,2.04)

648.	800qt, standard de	Average rainfall in Andhra = 40.0cm, standard deviation of rainfall = 3.0cm, Mean of Paddy yield = 800qt, standard deviation of paddy production = 10qt, correlation = 0.6, the estimate of production of paddy in 2007 corresponding to the estimate of 72cm rainfall is				
	(a) 772qt	(b) 753.84Qt	(c) 641.90Qt	(d) 978		
649.	If 3X-5=4X-10 , then (a) 5	X is equal to (b) -5	(c) 6	(d) 4		
650.	If -3X+18=4X-3, the (a) 2	n X is equal to (b) -5	(c) 3	(d) 1		
651.	Find the value of K	if 5X+37=K-3X , when X is equal (b) 15	(c) 21	(d) 10		
652.	If X+Y=3, 3X+4Y=11 (a) (1,2)	, then (x,y) are equal to (b) (-5,1)	 (c) (6,2)	(d) (4,1)		
653.	If 3X+Y=7, 2X+3Y=7 (a) (5,1)	then X, Y are equal to (b) (2,1)	(c) (6,1)	(d) (1,4)		
654.	For which value of (a) (4,3)	X,Y, 3X-2Y-6 = 2X+3Y-17 =0 (b) (2,3)	(c) (3,1)	(d) (1,2)		
655.	(a) (5,2)	(b) (2,5)	(c) (6,3)	(d) (1,1)		
656.	For which value of	$X,Y = \frac{x}{4} + \frac{y}{5} - 6 = \frac{x}{2} + \frac{y}{3} - 11 = 0$ are	equal to	•••••		
	(a) (1,2)	(b) (2,3)	(c) (6,1)	(d) (12,15)		
657.	If X/3+Y/2=7, 2X+Y= (a) (1,5)	=26 then X,Y are equal to (b) (1,3)	(c) (9,8)	(d) (6,3)		
658.	The point, (a) (2,-1)	is on the line Y=X-3 (b) (4,3)	(c) (0,1)	(d) (3,-1)		
659.	The point,(a) (2,-1)	is on the line Y=2X-3 (b) (4,3)	(c) (4,5)	(d) (3,-1)		
660.	For the line 2X-Y=5 (a) 2	if X=4 then Y=(b) 3	(c) -1	(d) 0		
661.	For the line 3X-2y=5 (a) 1/2	5 if X=2 then Y= (b) 3/4	(c) 3/5	(d) 1		
662.	The solution to 3X+2Y=-25, -2X-Y=10 is					
	(a) 5,-20	(b) 2,9	(c) 5,8	(d) 4,9		
663.	The solution to 3X-2	2Y=11, -2X-Y=8 is				
	(a) (5,-2)	(b) 2,1	(c) 5,-2	(d) 4,9		
664.	The solution to 5X+:	2Y=-16, -2X-2Y=-10 is				
	(a) 5,-20	(b) 2,3	(c) 5,8	(d) 4,9		
665.	2X+3Y-5=0 and KX-	·6Y-8=0 have unique solutions	if K =			
	(a) 4	(b) 3	(c) -2	(d) -4		

666.	If the numerator of a fraction is multiplied by 3 and denominator is reduced by 3 we get 18/11. But if the numerator is increased by 8 and denominator is doubled we get 2/5, then the fraction .			
	is (a) 13/25	(b) 20/21	(c) 12/25	(d) 11/19
667.		he denominator to a cer comes $\frac{1}{2}$, then the fraction		3 and if 1 is subtracted from
	(a) 2/5	(b) 3/7	(c) 2/6	(d) 3/10
668.		six times the sum of its d	ligits. The number obtained	by interchanging the digit is
	(a) 68	(b) 72	(c) 54	(d) 63
669.			digits obtained by intercha	nging the digits exceeds the
	given number by 2 (a) 36	27, then the number is (b) 45	(c) 23	(d) 65
670.	In the equation 2x	-y=5 if x=4 then y=		
	(a) 3	(b) 4	(c) -2	(d) -5
671.	Point =			
	(a) (1,1)	(b) (-1,-1)	(c) (1,-1)	(d) (0,1)
672.		hen x & y are		4.11.4.7
	(a) (1,0)	(b) (0,-1/5)	(c) 1,1/5	(d) 1/5,0
673.		1, then x and y are		1) (0.0)
	(a) (2,-1)	(b) (1,-2)	(c) (-1,2) (c	l) (0,2) (e) 1/5,0
674.		(b) (1,-2)	(c) (-1,2)	(d) (2.1)
	(a) (2,-1)	(D) (1,-2)	(C) (-1,2)	(d) (2,1)
675.	If 2x-3y=1, x-3y=-1 (a) (2,1)	, then x and y are (b) (1,-2)	(c) (-1,2)	(d) (0,2)
	(G) (Z,1)	(6) (1,-2)	(0) (-1,2)	(a) (o,2)
676.	If x+3y=1, x+2y=2, (a) (2,-1)	then x and y are (b) (4,-1)	(c) (-1,2)	(d) (0,2)
		, , , ,		(4) (0,2)
677.	If 3x-y=0, x+3y=10 (a) (2,-1)	, then x and y are (b) (1,3)	(c) (-1,2)	(d) (0,2)
				(3) (3)2)
678.	If x-y=0, x+3y=4, th (a) (2,-1)	nen x and y are (b) (1,1)	(c) (-1,2)	(d) (0,2)
.70			() ()	(-) (-)
679.	What is the slope of (a) -3	of the line passing throug (b) 3	(c) 2	(d) -2
680.	What is the slope of (a) -3/2	of the line passing throug	h (5,3) and (3,6) (c) 2	(d) -2
				(G) Z
681.	What is the slope of (a) -3	of the line passing throug (b) -5/2	h (5,2) and (3,7) (c) 5/2	(d) -2
682.	What is the slope of (a) 3	of the line passing throug (b)8	h (4,3) and (3,-5) (c) 2	(d) -3
683.	What is the slope of	of the line passing throug	h (-4,2) and (35)	
	(a) -1	(b) -3	(c) 2	(d) -2

684.	What is the slope of the (a) -3	line passing through (4,-2) (b) -9	and (3,7) (c) 2	(d)-2
685.	What is the slope of the (a) -3	line passing through (-4,-2) (b) 5	and (-5,-7) (c) 2	(d) -2
686.	What is the slope of the (a) 12	line passing through (2,-5) (b) 10/3	and (5,5) (c) 5	(d) 3
687.	What is the slope of the (a) $-12/7$	line passing through (3,-5) (b) 7	and (-4,7) (c) 5	(d) 4
688.	What is the slope and Y (a) (-3/5,9/5)	intersect of line 3X+5Y=9 (b) (9,-3/5)	(c) (3/5,-9)	(d) (-3/5,-9)
689.	What is the slope and Y (a) (-6/5,12)	intersect of line 6x+5y=12 (b) (12,-6/5)	(c) (12/5,-12)	(d) (-6/5,-12)
690.	What is the slope and Y (a) (-3/5,9)	intersect of line 3x-5y=9 (b) (9,-3/5)	(c) (3/5,-9/5)	(d) (-3/5,-9)
691.	What is the slope and Y (a)(-3/5,9)	intersect of line 7x+5y=10 (b) (9,-3/10)	(c) (7/5,-10)	(d) (-7/5,2)
692.	What is the slope and Y (a) (-3/7,11)	intersect of line 3x+7y=11 (b) (9,-3/5)	(c) (3/7,11/7)	(d) (-7/5, -11)
693.	What is the slope and Y (a) (-6/5,9)	intersect of line 4x+5y=7 (b)(7,-4/5)	(c) (4/5,7/5)	(d) (-3/5,-9)
694.	What is the slope and Y (a) (-3/4,-9/4)	intersect of line 3x+4y=9 (b) (9/4,-3/5)	(c) (3/5,-9/4)	(d) (-5/7,-9)
695.	What is the slope and Y (a) (1/2,-11/6)	intersect of line 3x+6y=11 (b) (9/4,-11/6)	(c) (1/5,-11/7)	(d) (-4/7,-9)
696.	What is the slope and Y (a) (-3/4,-9/4)	intersect of line 5x+7y=11 (b) (-5/7,-11/7)	(c) (3/5,-9/4)	(d) (-5/11,-11)
697.	What is the slope and Y (a) (-5/4,-11/4)	intersect of line 7x+4y=11 (b) (7/4,-11/5)	(c) (11/5,-9/4)	(d) (-7/4,-11/4)
698.	Find the value of X if IX-		(c) 1 or 2	(d) 2 or 3
699.	A can't buy more than following inequalities	100 qtl of raw material X	and Y. X and Y can be rel	ated by which of the
	(a) (x+y=100)	(b) (x+y≤100)	(c) (x+y≥100)	(d) (x+y<100)
700.	-	pieces of shirt and trouser	, .	vroom. If X stands for
	shirts and Y stands for tr (a) $(x+y\geq 200)$	ousers, this can be expresse (b) (x+y≤200)	(c) (x+y=200)	(d) (x+y≠100)
701.	-	es two items X and Y. X rec	. •	
	following linear equatio (a) (20x+25y≤2000)		c) (25x+20y>2000)	(d) (20x+25y≥2000)

702.	items only. X cost him ₹4	400 per piece and Y o		nd storage capacity of 300 nis can be expressed in the
	form of which of the follo	•		
	(a) x+y≤300	(b) x+y≤300	(c) $x+y = 300$	(d) x+y≤300
	400x+250y≥25000	400x+250y≤25000	400x+250y≥25000	400x+250y≤10000
	x≥0,y≤0	x≥0, y≥0	x=0,y≤0	x,y ≥0
703.	than 50 and 100 pieces	of X & Y respectively p		mand he cannot sell more 000 to invest and if the cost owing equation (d) $x \le 50, y \le 100$
	y≤100	y≥100	50x+40y≤10000	150x+40y≤10000
	50x+40y≥10000	50x+40y≤10000	,	, , , , , , , , , , , , , , , , , , , ,
704.				d in two machines I and II. h product in each machine
	Available (Hools)	2	1 20	
	l II	3		
		3	4 40	
	This situation can be exp			
	. , ,	(b) x+y≤20	(c) 2x+4≤20	(d) 2x+3y≥20
	3x+4y≤40	x+4y≤240	3x+4y≥40	x+y≤40
	x≥0, y≥0	x≥0,y≥0	x≥0,y≥0	x≥0,y≥0
705.		ach machine and the	time required for each pro	d in two names I and II. The oduct in each machine are
		X Y	TIME AVAILABLE	
		X Y 1 2	TIME AVAILABLE 24	
	1	1 2	24	
	l II	1 2 2 3	24 36	on:
	l II This situation can b	1 2 2 3 De expressed in the fo	24 36 llowing set of linear equati	
	I II This situation can be (a) $x+2y\le 24$	$\begin{array}{ccc} 1 & 2 \\ 2 & 3 \end{array}$ be expressed in the fo $\begin{array}{ccc} \text{(b) } x+2y \leq 24 \end{array}$	24 36 Blowing set of linear equati (c) x+24=24	(d) x+2yy≤24
	I II This situation can b (a) x+2y≤24 3x+4y≤36	1 2 2 3 be expressed in the fo (b) x+2y≤24 x+3y≤36	24 36 Ilowing set of linear equati (c) x+24=24 2x+3y=36	(d) x+2yy≤24 2x+3y≥36
	I II This situation can be (a) $x+2y\le 24$	$\begin{array}{ccc} 1 & 2 \\ 2 & 3 \end{array}$ be expressed in the fo $\begin{array}{ccc} \text{(b) } x+2y \leq 24 \end{array}$	24 36 Blowing set of linear equati (c) x+24=24	(d) x+2yy≤24
706.	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the pro- least 100 units of X and	1 2 2 3 be expressed in the fo (b) x+2y≤24 x+3y≤36 x≥0,y≥0 beducts X and Y. Both to 150 units of Y per day to maximize the total	24 36 Illowing set of linear equati (c) x+24=24 2x+3y=36 x,y≥0 the products are in great d . If X & Y give a profit of ₹2	(d) x+2yy≤24 2x+3y≥36
706. 707.	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed to the firm is to the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each pomore than 6 kg of Y. This	1 2 2 3 De expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 Deducts X and Y. Both to 150 units of Y per day to maximize the total et equation: (b) maximize 20x+25y x≥100 y≥150 Deproducts X and Y to ack must weigh at least according to the expressed	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 the products are in great down in the products are in great down in the profit. This situation can be considered to the profit. This situation can be considered to the profit of ₹2 (c) minimize 20x+25y x≤100 y≤150 To form a gift during the constant of the profit of ₹2 To form a gift during the constant of \$2 To form a gift during the	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the expressed in the form of (d) minimize 20x+25y x≥100
	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed to the firm is to the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each p	1 2 2 3 De expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 Deducts X and Y. Both the street of t	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 the products are in great downs. If X & Y give a profit of ₹2 profit. This situation can be considered to the constant of	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to
	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed to the firm is to the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each pomore than 6 kg of Y. This	1 2 2 3 De expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 Deducts X and Y. Both to 150 units of Y per day to maximize the total et equation: (b) maximize 20x+25y x≥100 y≥150 Deproducts X and Y to ack must weigh at least according to the expressed	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 the products are in great down in the products are in great down in the profit. This situation can be considered to the profit. This situation can be considered to the profit of ₹2 (c) minimize 20x+25y x≤100 y≤150 To form a gift during the constant of the profit of ₹2 To form a gift during the constant of \$2 To form a gift during the	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the re expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not
	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed to the firm is to the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each pomore than 6 kg of Y. This (a) x+y=10	1 2 2 3 De expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 Deducts X and Y. Both to 150 units of Y per day to maximize the total et equation: (b) maximize 20x+25y x≥100 y≥150 Deproducts X and Y to ack must weigh at least according to the expressed (b) x+y≥10	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 the products are in great down in the products are in great down in the profit. This situation can be considered to the profit. This situation can be considered to the profit of ₹2 (c) minimize 20x+25y x≤100 y≤150 To form a gift during the constant of the profit of ₹2 (c) x+y≤10	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the re expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not (d) x+y≤10
	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed to the firm is to the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each proceed than 6 kg of Y. This (a) x+y=10 x≥2	1 2 2 3 De expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 Deducts X and Y. Both to 150 units of Y per day to maximize the total et equation: (b) maximize 20x+25y x≥100 y≥150 Deproducts X and Y to ack must weigh at least ack must weigh at least acan be expressed (b) x+y≥10 x≥2	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 the products are in great down in the products are in great down in the profit. This situation can be considered to the profit. This situation can be considered to the profit of ₹2 (c) minimize 20x+25y x≤100 y≤150 (c) minimize 20x+25y x≤100 y≤150 (c) x+y≤10 x≥0	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the re expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not (d) x+y≤10 x=2
	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed to the following set of the firm is the which of the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each proceed than 6 kg of Y. This (a) x+y=10 x≥2 y≤6 x,y≥0 The standard weight of	1 2 2 3 be expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 boducts X and Y. Both to 150 units of Y per day to maximize the total end	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 The products are in great down in the products are in great down in the profit. This situation can be considered to the profit of the profit	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the re expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not (d) x+y≤10 x=2 y=6 x,y≥0 and Y. The gift pack should
707.	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed to the following set of the firm is the which of the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each proceed than 6 kg of Y. This (a) x+y=10 x≥2 y≤6 x,y≥0 The standard weight of	1 2 2 3 be expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 boducts X and Y. Both to 150 units of Y per day to maximize the total end	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 The products are in great down in the products are in great down in the profit. This situation can be considered in the profit of the profit	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the re expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not (d) x+y≤10 x=2 y=6 x,y≥0 and Y. The gift pack should
707.	In this situation can be contained at least 2 kg of 2	1 2 2 3 De expressed in the form (b) x+2y≤24 x+3y≤36 x≥0,y≥0 Deducts X and Y. Both the sequence of the sequ	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 The products are in great down in the products are in great down in the profit. This situation can be considered in the profit. This situation can be considered in the products are in great down in the product in the produ	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the re expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not (d) x+y≤10 x=2 y=6 x,y≥0 and Y. The gift pack should be expressed as
707.	In this situation can be contained at least 2 kg of 2	1 2 2 3 be expressed in the for (b) x+2y≤24 x+3y≤36 x≥0,y≥0 boducts X and Y. Both to 150 units of Y per day to maximize the total end	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 The products are in greated at the products are in greated at the profit. This situation can be considered by the profit of the	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not (d) x+y≤10 x=2 y=6 x,y≥0 and Y. The gift pack should be expressed as (d) x+y=0
707.	I II This situation can be (a) x+2y≤24 3x+4y≤36 x≥0,y≥0 ABC Ltd. deals in the proceed of the firm is to the following set (a) x≥0 y≥0 maximize 20X+25y ABC Ltd. combines two increase its sale. Each proceed of the firm is to the firm is the firm	1 2 2 3 be expressed in the fo (b) x+2y≤24 x+3y≤36 x≥0,y≥0 boducts X and Y. Both to 150 units of Y per day to maximize the total effection: (b) maximize 20x+25y x≥100 y≥150 b products X and Y to ack must weigh at least can be expressed (b) x+y≥10 x≥2 y≤6 x,y≥0 a gift pack is 5 kg. K and not more than 3 (b) x+y≤5 x≥2	24 36 Illowing set of linear equation (c) x+24=24 2x+3y=36 x,y≥0 The products are in greated and a lift X & Y give a profit of 72 profit. This situation can be considered as 1000 y≤150 To form a gift during the constant of 1000 y≥150 To form a gift during the constant of 1000 x≥0 y≥6 x,y≥0 If contains two items X and kg of Y. This situation can (c) x+y≥5 x≥2	(d) x+2yy≤24 2x+3y≥36 x≥0,y≥0 emand. The firm can sell at 20 and ₹25 per unit and the expressed in the form of (d) minimize 20x+25y x≥100 y≥150 Dewali season in order to in at least 2 kg of X and not (d) x+y≤10 x=2 y=6 x,y≥0 and Y. The gift pack should be expressed as (d) x+y=0 x≥2

709.	for ₹175 per piece. If	Z is retail dealer in tie has	al store. Tie X is available fo only ₹30,000 to spend on . This situation can be exp	purchase of tie and his
	(a) x+y≤500 20x+175y≤30000 x,y≥0	(b) x+y≥500 120x+175y≤30000 x,y≥0	(c) x+y=200 120x+175y =30000 x,y≥0	(d) x+y≥500 120x+175y≤30000 x,y≥0
710.	250 packets of shavi		4 Y. He has ₹20,000 to spent e. Shaving cream X cost ₹2 the following equation	
	(a) x+y≤200 240x+420y≤20000 x≥0,y≥0	(b) x+y ≤200 240x+420y ≤20000 x,y≥0	(c) x+y≥200 240x+420y≤20000 x,y≥0	(d) x+y=200 240x+420y=20000 x,y≥0
711.	At what point the give	en function is discontinuous (b) (2)	$f(x) = (x^2 + 6x + 9) / (x^2 - 9)$ (C) (+ 1)	(d) (-1)
712.	At what point the give	en function is discontinuous	If $f(x) = \frac{x-4}{x^2-16} \frac{x^5-2x^2+5x}{x^3-x^2+x-1}$	
	(a) (3)	(b) (2)	(c) (1)	(d) (-1)
713.	At what point the give	en function is discontinuous	if $f(x) = \frac{x^2 - 25 + 10x}{x^2 - 25}$	
	(a) (3)	(b) (5)	(c) (1)	(d) (- 1)
714.	At what point the give	en function is discontinuous	If $f(x) = \frac{x^2}{x-5}$	
	(a) (3)	(b) (5)	(c) (1)	(d) (-1)
715.	At what point the give	en function is discontinuous	if $f(x) = \frac{x^2 + 1}{x + 3}$	
	(a) (3)	(b) (5)	(c) (1)	(d) (-3)
716.	At what point the give	en function is discontinuous	If $f(x) = \frac{3x^2 + 5x + 1}{x^3 + x^2 + x + 1} =$	
	(a) (3)	(b) (5)	(c) (1)	(d) (-1)
717.	At what point the give	en functions discontinuous l	$ff(x) = \frac{x^2 + 3x - 5}{x^2 + 3x + 2}$	
	(a) (1, 3)	(b) (1, 2)	(c) (1, 4)	(d) (-1,1)
718.	The function $f(x) = \frac{ax}{x}$	+4if $n \le 3$ is continuous at x = -1 if $n \ge 3$	= 3, if a is	
	(a) (2/3)	(b) (1 /3)	(c) (-1 /3)	(d) (-2/3)
719.	The function $f(x) = \frac{9x}{x}$	$x+6$ if $x \le 3$ is continuous at $x \ge 3$	= 3, if a is	
	(a) (2/3)	(b) (1/3)	(c) (-1/3)	(d) (-2 / 3)
720.	The value of constant	K isso that the fur	ection f (x) = $\frac{x^2 - x + 12 \text{ if } x \neq 3}{x - 3 \text{ if } x = 3}$	is continuous at x = 3
	(a) (7)	(b) (3)	(c) (5)	(d) (-7)

721.	The value	of const	ant K is		So that the	functio	$n f(x) = x^2 - \frac{1}{x^2}$	x+12ifx≠4 -4 if x=4	continuou	us at x = 4
	(a) (3)) (4)			c) (1)	-4 II X- 4	(d) (-1)	
722.	For what	value of	K is the fu	unction	$f(x) = \frac{x-4}{x^2-1}$	_x≠5 is	continuous	at x = 5		
	(a) (13)) (10)	^ .	٠.	c) (11)		(d) (-10)
723.	If f(x) = [1 (a) (1)	/ (1 – x)], the fun (b	ction is) (1)	discontinuo	ous at x (= (c) (2)		(d) (-2)	
724.	If $f(x) = \frac{x}{2}$	²ifx≠1 2 ifx=1	e functio	n is disc	ontinuous o	at x = 1				
	(a) (-1)		(b) (1)		(c) (2)		(d) (-2)	
725.	If $f(x) = \frac{1}{x}$	$x^2 - 7$	the fu	nction i	discontinu	ous if x	=			
	(a) (3)		(b) (4)		(c) (1)		(d) (-1)	
726.			(a) (3)	on is discon	(b) (4)	(c) (1)		(d) (-1)
727.								vhich is given	below:	
	{ The ' "	ı ≤ / if 7 <x:< th=""><th>≤ 12 the</th><th>function</th><th>n is discontir</th><th>nuous foi</th><th>r value of x :</th><th>= 12 if x > 12</th><th></th><th></th></x:<>	≤ 12 the	function	n is discontir	nuous foi	r value of x :	= 12 if x > 12		
	(a) (7)		(b) (5)		(c) (7, 12)		(d) (- 1)	
728.	If $f(x) = \frac{2}{3}$	x+3ifx>3 x+4ifx≤2	is disco	ntinuou	s at x					
	(a) (-1)) (-2)		,	c) (1)		(d) (2)	
729.	If $f(x) = \begin{cases} $	x if x 2x ² if x	< < 1 < ≥ 1, ba < ≥ 2 < 3	t < 2 is	discontinuo	ous at x	=			
	(a) (2)		(b) (5)		(c) (1, 12)		(d) (1)	
730.	At what v	alue of X	the fund	tion is o	continuous i	in questi	on No. 729			
	(a) (1)		(b) (5)		(c) (2)		(d) (-1)	
731.	less than	20, ₹20 p n 30. The	er piece price an	for quo	ntity above	20 but	up to 30 pie	pattern ₹15 peces, ₹10 per p at quantity x =	iece for o	
	(a) (RHL :	x- 20 ≠ LH	$1L \times \rightarrow 20$) (b) (s not define	ed at x =	:20) (c) (RH	HL x- 10 ≠ LHL	→ x 10)	(d) (none)
732.	In questic	on 731, th	e functio	n f(x) is	not a conti	nuous fu	unction at x	= 30 because		
	(a) (RHL : (c) (RHL :			,			(b) (Is not d (d) (None)	lefined at $x = 2$	20)	
733.	From the	following	g data th	e karlp	earson coe	fficient o	of correlation	n is		
	X	6	8	10	7	10	7			
	У	12	10	8	12	8	10			
	(a) 0.97		(b) (0.85		((c) -0.93			(d) 0.65

734.	From the f	ollowing	data the I	carlpearsc	on coefficie	ent of corr	elation is	
	x	9	11	13	10	13	10	
	У	16	14	12	16	12	14	
	(a) -0.93		(b) (0.85		(c) 0.7	70	(d)0.65
735.	From the f	ollowing	data the I	carlpears c	n coefficie	ent of corr	elation is	
	Χ	7	9	11	8	11	8	
	У	14	12	10	14	10	12	
	(a) 0.97		(b) (0.85		(c) 0.7	78	(d) -0.93
736.	From the f	ollowing	data the I	carlpears c	n coefficie	ent of corr	elation is	
	X	11	15	15	12	15	10	
	У	18	13	11	15	11	16	
737.	value =14 of X and Y	8, Sum of (= 124.	f squared	0; Mean) deviation	of Y from r	mean valu	om of squaredue=168. Sum of	(d) -0.50 d deviations of X from mean of multiplication of deviation
	(a) 0.79	above de	etails the c (b)		of correla	tion will be (c) 0.6		(d) 0.43
738.	Sum of mi	ultiplicati	on of devi	ation of X		2, Sum of s	quared devi	of Y from mean value =54. ations of X from mean value
	(a) 0.58		(b) ((c) 0.6		(d) 0.47
739.	deviation	22, Mear of Y from	n Y=15, Su ı mean va	m of squa lue=144. S		tiplication	of deviation	ralue = 120, Sum of squared of X and Y =124
	(a) 0.78		(b) ().87		(c) 0.6	35	(d) 0.43
740.	deviation	22, Mean of Y from	ı Y=15, Su ı mean va	lue =168. oefficient	Sum of mu	ltiplication	n of deviation	value=148, Sum of squared a of X and Y=36 (d) -0.10
741.	,	fficient of	, ,		n v and v	, ,		e is 25 and the variance of X
741.				of Y will b	e			(d) 2.99
742.	If the coef is 25, the s			of Y will b		is 0.88 and (c) 0.6		e is 54 and the variance of X (d) 1.09
743.	If the coef		correlation	n betwee		is 0.42 an		e is 30 and the variance of Y
	is 16, the s (a) 4.46	standard	deviation (b)		e	(c) 2.8	30	(d) 1.86

744.	Find the coefficient of and Y are 9 and 12.66 r			etwo	een	X an	dΥi	f the	cova	ırian	ce is	25 ar	nd the	variar	nce of)	(
	(a) 1.89	(b) 0.5	58				(0	c) 2.32	2				(d) 1	1.54		
745.	If the coefficient of cor 25, the standard deviat							48 an	d co	vario	ance	is 39,	the vo	arianc	e of Y is	5
	(a) 14.46	(b) 16	.25				(c) 12.8	30				(d) 9	9.86		
746.	What is the covariance x and y are 25 and 9 re			cient	of c	orrel	atior	betw	/een	x an	d y i	s 0.65	and th	ie vari	iance o	f
	(a) 10.25	(b) 8.6					(c) 9.73	5				(d) 1	11.06		
747.	What is the covariance x and y are 36 and 25 re			cient	of c	orrel	atior	n betw	/een	x an	d y i	s 0.87	and th	ie vari	ance o	f
	(a) 18.25	(b) 26	.10				(c) 19.2	25				(d) 2	21.06		
748.	What is the covariance deviation from mean vo											/ is 0.	92 and	the s	tandard	1
	(a) 40.25	(b) 38						c) 39.					(d) 4	12.92		
749.	If the coefficient of corre								, nur	nber	of o	bserv	ations I	being	25. Find	1
	(a) 0.631 to 0.7679	(b) 0.6	889 tc	0.82	23		(c) 0.7	65 to	0.84	3		(d) ().65 to	0.756	
750.	If the coefficient of co													e is 2	4. If the	•
	(a) 6.24	(b) 5.9						c) 6.00					(d) 5	5.54		
751.	If the coefficient of corr the limit within which th									nber	of o	bserv	ations I	being	25. Find	1
	(a) 0.614 to 0.786	(b) 0.6	629 to	0.79	93		(c) 0.6	65 to	0.76	4		(d) ().65 to	0.76	
752 .	The following are the ra		_									<u> </u>				
	Sr. No.	1	2	3	4	5	6	7	8	9	10					
	Rank Accountancy	10	4	1	8	3	9	6	5	2	7					
	Rank Economics	8	3	2	6	1	7	10	9	4	5					
	The coefficient of rank (a) 0.648	correlat (b) 0.8		etwe	en t	he m		in Ac c) 0.69		ntand	cy ar	nd Eco	onomic (d) 0			
753.	The following are the ra	nks of 1			s in I									1 -	1 1	
	Sr. no.		1	2		3	4		5	6		7	8	9	10	
	Rank Math		9	6		4	5		10	3		1	7	2	8	
	Rank English		8	9		3	6		7	1		2	5	4	10	
	The coefficient of rank of	correlat	ion b	etwe	en t	he m	arks	in Mo	aths c	and E	nalis	h is				

(c) 0.59

(b) 0.769

(a) 0.61

(d) 0.79

Sr. no.	1	2	3	4	5	6	7	8	9
Rank Physics	80	87	59	89	97	95	79	90	94
Rank English	74	78	76	70	89	90	65	81	83
he coefficient of rank	correlation b	etweer	the m	arks in A	Maths a	nd Phy	sics is		
a) 0.63	(b) 0.769			(c) 0	.73			(d) 0	.71
the following are the national classes from NDA, New		students	s in Pap	er 1 ar	nd Pape	er 2 of (CA CPT	exam	nat
Sr. no.	1	2	3	4	5	6	7	8	9
Paper I	80	59	88	89	97	95	79	90	7
Paper II	74	78	70	76	89	65	90	81	8
Interview Written Examination The above table shows	(b) 0.79 44 49 s the marks	46 44 obtaine	34 39 ed by 1	(c) 0 41 40 0 stude	36 42 nts in the	39 46 neir per			3 4 w c
Interview Written Examination The above table shows examination for MBA	(b) 0.79 44 49 s the marks Examination	46 44 obtaine	34 39 ed by 1	41 40 0 stude	36 42 ants in the between	39 46 neir per	41	43 38 attervie	3 4 w d
Interview Written Examination he above table shows examination for MBA	(b) 0.79 44 49 s the marks Examination (b) 0.19	46 44 obtaine	34 39 ed by 1 ank co	(c) 0 41 40 0 stude rrelation	36 42 nts in the betw	39 46 neir per	41 sonal in	43 38 ntervie obtai	w conec
Interview Written Examination The above table shows examination for MBA s	(b) 0.79 44 49 s the marks Examination (b) 0.19	46 44 obtaine	34 39 ed by 1 ank co	(c) 0 41 40 0 stude rrelation	36 42 nts in the between 33	39 46 neir per	41 sonal in	43 38 ntervie obtai	3 3 4 4 4 med
Interview Written Examination The above table shows examination for MBA s	(b) 0.79 44 49 s the marks Examination (b) 0.19 f correlation (b) 0.64 f correlation	46 44 obtained. The residual being (34 39 ed by 1 ank co	(c) 0 41 40 0 stude rrelation (c) 0 coeffici (c) 0	36 42 nts in the between 33 ent of contact o	39 46 neir pereen the	41 sonal in a ranks	43 38 Interview obtain (d) 0 will be. (d) 0 will be.	3 4 4 4 w conec
Written Examination The above table shows examination for MBA s	(b) 0.79 44 49 s the marks Examination (b) 0.19 f correlation (b) 0.64 f correlation (b) 0.64	46 44 obtained. The residual being (34 39 ed by 1 ank co	(c) 0 41 40 0 stude rrelation (c) 0 coeffici (c) 0 coeffici (c) 0	36 42 nts in the betw 33 ent of c 66 ent of c	39 46 neir pereen the	41 sonal in a ranks	43 38 anterview obtain (d) 0 will be. (d) 0	.42 .54
Interview Written Examination The above table shows examination for MBA s	(b) 0.79 44 49 s the marks Examination (b) 0.19 f correlation (b) 0.64 f correlation (b) 0.64 ermination b (b) 0.80	d6 44 obtaine The re being (34 39 ed by 1 ank co 0.8, the 0.9, the	(c) 0 41 40 0 stude rrelation (c) 0 coeffici (c) 0 coeffici (c) 0 t is the coeffici (c) 0	36 42 nts in the betw 33 ent of c .66 coefficien	39 46 heir pereen the	41 sonal in a ranks	43 38	.42 .54

If $y = \frac{2-3x}{(2+3x)}$, then $\frac{dy}{dx}$ is equal to..... 763.

(a)
$$\left(\frac{-12}{(2+3x)^2}\right)^2$$

(a)
$$\left(\frac{-12}{(2+3x)^2}\right)$$
 (b) $\left(\frac{12}{(2+3x)2}\right)$ (c) $\left(\frac{-12}{(2+3x)}\right)$

(c)
$$\left(\frac{-12}{(2+3x)}\right)$$

(d) $\left(\frac{1}{(2+3x)^2}\right)$

If y = (3+2x)/(3-2x), then $\frac{dy}{dx}$ is equal to......

(a)
$$\left(\frac{-12}{(2+3x)2}\right)$$

(a)
$$\left(\frac{-12}{(2+3x)^2}\right)$$
 (b) $\left(\frac{12}{(3+2x)^2}\right)$

(c)
$$\left(\frac{-12}{(2+3x)}\right)$$

(d) $\left(\frac{1}{(3+2x)}\right)$

765.

(a)
$$(-e^{1/x}/x^2)$$

(d) $(1/x^2)$

 $\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}}$ of e^{e^x} is equal to..... 766.

(d)
$$(e^x . e^{e^x})$$

If y = $1/x^5$, then $\frac{dy}{dx}$ is equal to...... 767.

(c)
$$(6x^5)$$

(d) $(x^6/5)$

If $y = \frac{x^2-1}{(x^2+1)}$, then $\frac{dy}{dx}$ is equal to...... 768.

(a)
$$\left(\frac{4x}{\left(1+x^2\right)^2}\right)$$

(a)
$$\left(\frac{4x}{\left(1+x^2\right)^2}\right)$$
 (b) $\left(\frac{2x}{\left(2+3x\right)^2}\right)$

(c)
$$\left(\frac{3x}{(2+3x)}\right)$$

(d) $\left(\frac{-x}{(2+x)}\right)$

 $\frac{x^2+1}{(x^2-1)}\frac{dy}{dx}$ is equal to..... 769.

(a)
$$\left(\frac{-4x}{\left(1-x^2\right)^2}\right)$$

(a)
$$\left(\frac{-4x}{\left(1-x^2\right)^2}\right)$$
 (b) $\left(\frac{4x}{\left(1-x^2\right)^2}\right)$

(c)
$$\left(\frac{-4}{\left(1+x^2\right)^2}\right)$$

(d) $\left(\frac{4}{(x^2+1)}\right)$

770. If $y = \frac{1+\sqrt{x}}{(\sqrt{x}-1)}$, then $\frac{dy}{dx}$ is equal to......

(a)
$$\frac{\sqrt{x}}{(\sqrt{x}-1)}$$

(b)
$$\frac{1}{\sqrt{x}(\sqrt{x}-1)^2}$$

(c)
$$\frac{-1}{\sqrt{x}(\sqrt{x}-1)^2}$$

(d) $\frac{1}{(x\sqrt{x-1})}$

If Y = $\frac{1+\sqrt{x}}{(1-\sqrt{x})}$, then $\frac{dy}{dx}$ is equal to.....

(a)
$$\frac{x}{\sqrt{x}(\sqrt{x}-1)}$$

(a)
$$\frac{x}{\sqrt{x}(\sqrt{x}-1)}$$
 (b) $\frac{1}{\sqrt{x}(\sqrt{x}-1)^2}$

(c)
$$\frac{-1}{\sqrt{x}(\sqrt{x}-1)^2}$$

(d) $\frac{1}{(\sqrt{x}-1)^2}$

If y = $(1+2x^2)/(1-2x^2)$, then $\frac{dy}{dx}$ is equal to......

(a)
$$\left(\frac{8x}{\left(1-2x^2\right)^2}\right)$$

(a)
$$\left(\frac{8x}{\left(1-2x^2\right)^2}\right)$$
 (b) $\left(\frac{12}{\left(2+3x\right)}\right)$

(c)
$$\left(\frac{-12}{(2+3x)}\right)$$

(d) $\left(\frac{-1x}{(1-2x^2)^2}\right)$

If Y = $(1-x^2)/(1+x^3)$, then $\frac{dy}{dx}$ = 773.

(a)
$$\left(\frac{x^3+x-2}{\left(1-x^3\right)^2}\right)$$

(a)
$$\left(\frac{x^3 + x - 2}{\left(1 - x^3\right)^2}\right)$$
 (b) $\left(\frac{x[3x^3 - 3x + 2]}{\left(1 + x^3\right)^2}\right)$ (c) $\left(\frac{x[3x^3 - x + 2]}{\left(1 + x^3\right)^2}\right)$

(c)
$$\left(\frac{x[3x^3-x+2]}{(1+x^3)^2}\right)$$

(d)
$$\left(\frac{\left[x^3-x+2\right]}{\left(1+x^3\right)^2}\right)$$

774. (d) (1)/(2x+5)775. (d) $(-4)/(2x^2+5)$ 776. (d) $(-2x)/(3x^2-1)$ If y = log (3x²+5x+1), then $\frac{dy}{dx}$ is equal to..... 777. (a) $(6x+5)/(3x^2+5x+1)$ (b) $(-6x+5)/(3x^2+5x+1)$ (c) $(-6)/(3x^2+5x+1)$ (d) $(6)/(3x^2+5x+1)$ If $xy = c^2$, then $\frac{dy}{dx}$ is equal to..... 778. (c) (y/x)(d)(x)If $x^2y = 5$, then $\frac{dy}{dx}$ is equal to..... 779. (c) (-2y/x)(d) (x/y)If $x^2y = 5$, then $\frac{dy}{dx}$ is equal to..... 780. (a) (-y/2x)(b) (-y/x)(c) (-2y/x)(d) (-x/y)If $x^3y^2 = 6$, then $\frac{dy}{dx}$ is equal to..... 781. (a) (-y/2x) (c) (-2y/x)(d) (2x/y)If x = 2t+3 and y = 2t²-5, then $\frac{dy}{dx}$ is equal to..... 782. (a) (2t) (c) (2t/3y/x)(d) (t) 783. (a) (t^2) (d) (t/3)784. (d) (1/5)If $x = 3z^2+2$ and $y = 2z^4+1$, then $\frac{dy}{dx}$ is equal to..... 785. (d) (-4/3z)If $x = 3n^2+1$ and $y = n^3+1$, then $\frac{dy}{dx}$ is equal to..... 786. (d) (x^2) 787. (a) $(-3)/n^4(3n^2+2)$ (b) $(-3)/n^4(n^2+2)$ (c) (3)/n(3n+2)(d) $(1/x^3+2x)$

788. (c) (18x+2x2) (d) (18x+2)789. (c) (12x+2x2) (d) (12x+2)If $y=3x^3+x^2+5x-1$, then $\frac{dy}{dx}$ is equal to..... 790. (b) $(36x^2+1)$ (c) $(32x+2x^2)$ (d) $(2x^4+2x^2)$ If y= x³+4, then $\frac{dy}{dx}$ is equal to..... 791. (c) $(6x+2x^2)$ (d) (2x+2)If y= $5x^4+2x^2$, then $\frac{d^2y}{dx^2}$ is equal to..... 792. (a) $(60x^2+4)$ (b) $(20x^3+4)$ (c) $(6x+2x^2)$ (d) $(6x^2)$ If y= 6x³+2x+1, then $\frac{d^2y}{dx^2}$ is equal to..... 793. (b) (18x²+2) (a) (12x2+2) (c) $(6x^3+2)$ (d)(36x)794. (a) $(18x^3+1)$ (c) $(90x^4+24x)$ (d) $(36x^3)$ If $Y = 2/3x^3-2x$, then f'(x) = 0, if x is 795. (c)(2/1)(d)(1/2)796. If $f(x) = 3x^2/2 - 6x$, then f'(x) = 0, if x is (c)(2/1)(d)(1/2)797. (c)(-3)(d)(1)798. (c)(-1)(d)(1)799. If $f(x) = x^3 - 27x + 8$, then f(x) = 0, if x is (c)(-2)(d)(1)800. If $f(x) = 2x^2 - 16x + 7$, then f(x) = 0, if x is (c)(-3)(d)(3)If y= (log x)4, then $\frac{dy}{dx}$ = 801. (a) $(4(\log x)^3/x)$ (b) $(4(\log x)^3/2x)$ (c) $(2(\log x)^3/x)$ (d) $(x \log x^3)$ If y=1 /(log x), then $\frac{dy}{dx}$ = 802. (b) $(-1/x(\log x)^2$ (c) $(1/x(\log x)^2)$ (d) $(1/\log x)$ If y= 3^x , then $\frac{dy}{dx}$ = 803. (a) (3logx) (b) (log 3) (c) $(3^{x}\log 3)$ (d) (log3)

804.	If y= e^{x^7} , then $\frac{dy}{dx} = 0$			
	(a) (7x ⁶ e ^{x⁷})	(b) $(7x^6e^7)$	(c) (7xe ^{x⁷})	(d) (6x-e ^{x7})
805.	If y= e^{x^n} , then $\frac{dy}{dx} = 0$			
	(a) (ne ^{xn} -1)	(b) (nx ^{x-1} e ^{xⁿ})	(c) (nx ⁻¹ x)	(d) $(e^{x^{n}} + x)$
806.		the quantity demanded, tot x = 40-2p=0 can be expresse	al revenue being px, then the	e price elasticity of
	(a) (p/7x)	(b) (-7x/p)	(c)(7p/x)	(d) (x/p)
807.	If P is the price, x being 6p is equal to		e price elasticity of the demo	ind curve, 10x=30-
	(a) (3p/3x)	(b) (-3p/x)	(c) (-3p/5x)	(d) (5x/3)
808.		the quantity of demand Reve expressed as	venue = PX. Price elasticity of	the demand
	(a) (5p/4x)	(b) (-6p/x)	(c) (-3p/5x)	(d) (4p/5x)
809.	Find elasticity of dema	nd with respect to price at po	oint p=6 for demand curve =>	$c = \left(\frac{5}{p-4}\right)$
	(a) (1)	(b) (2)	(c) (3)	(d) (-1)
810.	Find elasticity of demai (a) (3/2)	nd with respect to price at po (b) (3/5)	oint p=6, for demand curve = (c)(1/3)	x=6/(p+4)=0) (d) (0)
811.	Find elasticity of demail (a) (0.6)	nd with respect to price at po (b) (0.2)	oint p=6, for demand curve = (c) (1)	x=9/(p+4)=0) (d) (0.4)
812.	A firm's variable cost c (a) (2 ton)	= x ³ - x ² - 5x. The level of outpu (b) (5/3 ton)	t at which average variable (c) (1 ton)	cost is minimum is (d) (3/2 ton)
813.	Evaluate $\lim_{x \to 2} (3x + 6)$)		
	(a) 1	(b) 10	(c) 12	(d) 14
814.	$\lim_{x \to 5} (1/x - 5) \text{ is equa}$	Ito		
	(a) ∞	(b) 0	(c) 1	(d) -1
815.	$\lim_{x\to 0} (e^x - 1/x) $ is equal	I to		
	(a) 0	(b) 1	(c) 2	(d) -1
816.	$\lim f(x) \text{ when } f(x) = -5$			
	(a) -5	(b) 4	(c) 5	(d) -1
817.	$\lim_{x \to 2} f(x^2) \text{ when } f(x) =$: 2		
	(a) -4	(b) 3	(c) 2	(d) 4

818.
$$\lim_{x \to 2} (x^2 - 3)/(x + 1) =$$

(a) 1/3 (b) 2/3

(c) -1/3

(d) 1/4

819.
$$\lim_{x \to 3} (x^3 - 4)/(x + 1)$$
 is equal to

(a) 4/23

(c) 1/8

(d) 23/4

820.
$$\lim_{x \to 2} (x^3 + 2))/(x^2 - 1)$$
 is equal to

(a) 11

(b) 12

(c) 23

(d) 10/3

821.
$$\lim_{x \to 1} (x^3 + 2)/(2x^2 - 1)$$
 is equal to

(c) -3

(d) none

822.
$$\lim_{\substack{x \to \infty \\ (G) = e^4}} (1 + 4/x)^x =$$

(a) e4

(b) 2

(c) e^{5}

(d) 4

823.
$$\lim_{x \to \infty} \frac{(2x^3 - 5x^2 + 2x)}{(3x^3 - 2x^2 + 5x)} =$$
(a) 2/4 (b) 2/3

(c) 1/3

(d) 0

824.
$$\lim_{x \to 0} (2x^2 - 1)/x =$$

(a) Log x

(b) 1

(c) log e²

(d) -1

825.
$$\lim_{x \to 2} (e^{x^2} + 3x + 2) =$$

(a) e^2

(b) e12

(c) e^{5}

(d) e1

826.
$$\lim_{x \to 0} (e^{3x-1})/x) =$$

(a) 1

(b) 6

(c) 3

(d) 7

827.
$$\lim_{x \to 0} (8^x - 2^x)/6^x - 2^x) =$$

(a) (log3/log4)

(b) (log4/log3)

(c) (log2/log2)

(d) (log2/log3)

828.
$$\lim_{X \to 5} \sqrt{x^2 - 4} =$$

(a) $\sqrt{21}$ (b) $\sqrt{20}$

(c) √19

(d) √18

829. $\lim_{x \to 6} (x^2 - 7x + 12)/(x - 5) =$

(a) 29

(b) 25

(c) 6

(d) -24

830. $\lim_{x \to -9} (x-9)/(x^2-81) =$

(a) ∞

(b) 0

(c) 1

(d) not exist

831. $\lim_{X \to 7} \left(\frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \dots + \frac{1}{7^n} \right) =$

(a) 4/7

(b) 1/7

(c) 2/11

(d) 2/7

832. $\lim_{x\to 2} (x^2 + 5x + 6)/(x^2 + 4x + 4) = (x + 3)/(x + 2) =$

(a) 5/4

(b) 4/3

(c) 4/5

(d) 1/5

833. $\lim_{x \to 0} (\sqrt{1-x} - \sqrt{1+x})/x =$

(a) 1

(b) -1

(c) 1/5

(d) 1/3

834. $\lim_{x \to 0} x \log x =$

(a) 1

(b) -1

(c) 0

(d) 2

835. $\lim_{X \to \infty} x^{e^{-x}} =$

(a) 0

(b) 2

(c) 1

(d) -1

836. $\lim_{x \to 12} \frac{x+12}{x^2-144} =$

(a) 1/124

(b) 1/4

(c) -1/24

(d) 12

837. $\lim_{x \to \infty} (x+5)/(x+1)^{x+3} =$

(a) e4

(b) e-4

(c) 1

(d) 0

838. Statistics is derived from

(a) Latin word status

(b) Italian statista

(c) Both

(d) None

839. Statista or status means

(a) Physical state

(b) Political state

(c) Secular state

(d) Federal state

840. Class mark is

(a) A midpoint of class interval

(b) Upper point of class interval

(c) Lower class

(d) None

841. Width of class interval is

(a) Difference between lower and upper limit

(b) Midpoint of upper and lower limit and lower limit

(c) Three fourth of difference between upper and lower limit

(d) None

842.	Under exclusive class in (a) Lower limit of one is lower limit of other	nterval method (b) Lower limit of one is upper limit of other	(c) Lower limit of one is midpoint of other	(d) None
843.	Open end class interva (a) Which does not have upper limit	l is one (b) Which does not have lower limit limit	(c) Which does not have upper and lowe	(d) None er
844.	In discrete series-freque (a) Can take any Value defined value	ency (b) Frequency can take only some	(c) Both	(d) None
845.	Median is (a) Average point	(b) Midpoint	(c) Most likely point	(d) Most remote point
846.	Mode is the value whic (a) Is a mid point	h (b) Occur the most Likely	(c) Average of all	(d) Most remote
847.	A variable which can a (a) Continuous	issume any value betwee (b) Discrete Value	en two given value is called (c) Random	d (d) None
848.	A variable which can h (a) Discrete variable	ave only defined value is (b) Continuous variable		(d) None
849.	Histogram consists of a (a) Bases on X axis and with centre at the class mark and length equal to the class interval	set of rectangle having (b)Area proportionate to class frequency	(c) Either of these two	(d) Both
850.	Standard deviation is u (a)Degree of variation or uniformity in data		(c) Extent of extremes values	(d) All the three
851.	A frequency curve have (a) A bimodal frequency curve Frequency curve	ring two maximum is called (b) Multimodal frequency curve	ed (c) Symmetrical curve	(d) Skewed
852.	A U shaped frequency (a) Maxima at both maxima the ends only	curve can have (b) No maxima	(c) One maxima	(d) More than one
853.	A J shaped curve has r (a) One end only	naxima at (b) Both end	(c) Both	(d) None
854.	A ratio compound of its (a) Duplicate ratio	self is called (b) Sub- duplicate ratio	(c) Sub-triplicate ratio	(d) Triplicate ratio
855.	If a, b and c are in cor (a) Mean proportion	tinuous proportion, then t (b) Mode	he middle term b is called (c) Median	(d) None
856.	The logarithm of any nu (a) Unity	mber to the same base is (b) Zero	s (c) Infinite	(d) Non existence

857.	Logarithms of number (a) (0)	to the base are (b) (10)	known as common logarith (c) 100	m (d) 1
858.	The whole or the integr (a) Characteristic	al part of a logarithm is cal (b) Mantissa	led (c) Both	(d) None
859.	The decimal part of a l	ogarithm is called		
	(a) Characteristic	(b) Mantissa	(c) Both	(d) None
860.	If the number of eleme	nts in a sequence is finite, t	he sequence is called	
	(a) Infinite sequence	(b)Finite sequence	(c) Limited sequence	(d) None
861.	If the number of eleme (a) Infinite series	nt of a series is unending th (b) Undefined series	e sequence is called (c) Unending series	(d) Expanding series
862.	The empty set is one w	hich contains ele (b) 2	ement (c) 3	(d) 0
863.	A Binomial distribution (a) 0.10	is symmetrical when P= (b) 0.80	(c) 0.50	(d)1
864.	Sleeping habit of a per (a) An attribute variable	son is (b) A variable	(c) Continuous variable	(d) Discrete
865.	Weight of a person is (a) An attribute variable	(b) Continuous variable	(c) Variable	(d) Discrete
866.	Death toll due to earth (a) An attribute variable	quack is a (a) Continuous variable	(c) Variable	(d) Discrete
867.	The term Statistics can (a) Singular only	be used inser (b) Plural only	nse (c) Both	(d) None
868.	in a quantitative (a) Statistic	e information about some p (b) Data	particular characteristics und (c) Variable	der consideration (d) Attribute
869.	Which of the following (a) Interview method	is not a method for collection (b) Questionnaire	on of primary data (c) Observations	(d) None
870.	Data arranged region	wise is known as		
	(a) Regional data	(b) Local data	(c) Geographical data	(d) All the three
871.	Which of the following	is a qualitative data		
	(a) Salary	(b) Profits	(c) Weight	(d) Drinking habits
872.	Which of the following (a) Age	is a quantitative data (b) Weight	(c) Height	(d) All the three
873.	Presentation of data wi (a) Textual Presentation	th the help of paragraphs is (b) Diagrammatical presentation	s known as (c) Pictorial presentation	(d) None
874.	Presentation of data wi (a) Textual	th the help of pictures is kn (b) Diagrammatical	own as (c) Pictorial presentation	(d) None

875.	Presentation Horizontal bar diagran	presentation nmed is used for		
	(a) Qualitative data	(b) Quantitative data	(c) Both	(d) None
876.	For time series data	is used		
	(a) Bar diagram	(b) Vertical diagram	(c) Pie chart	(d) Line diagram
877.	Bell shaped frequency	curve is used for distributio (b) Marks	n of (c) Profit	(d) All the three
878.	Frequency distribution (a) Tabular Representation of Statistical data	may be defined as (b) Graphical representation of statistical data	(c) Pictorial representation of statistical data	(d) Line diagram
879.	(a) 4	viding a given set of data in	(c) 3	(d) 2
880.	Deciles are the values (a) 10	dividing a given set of obset (b) 5	ervations into (c) 6	(d) 4
881.	Percentiles divides a s (a) 100	et of observations into (b) 80	(c) 60	(d) 10
882.	The middle most value (a) Mean	of a frequency distribution (b) Median	table is known as (c) Mode	(d) Range
883.	Which of the following (a) Mean	measures of averages divid (b) Median	de the observation into two p (c) Mode	arts (d) Range
884.	Which of the following (a) Mean	measures of averages divid (b) Median	le the observation into four e (c) Mode	equal parts (d) Quartile
885.	The first quarter is know (a) Lower quarter		(c) Upper quarter	(d) None
886.	The third quarter is kno (a) Lower quarter	own as (b) Middle quarter	(c) Upper quarter	(d) None
887.	One number is to be a (a) 33/100	hosen from numbers 1 to 10 (b) 7/100	0, the probability that it is div (c) 4/100	visible by 4 and 6 (d) 8/100
888.	The roots of the equati (a) (-2,2,2,4)	on (x-4)²(x-2)(x+4) are (b) (1,-2,4,-4)	(c) (4,4,2,-4)	(d) (2,-3,1,-4)
889.	The roots of the equati (a) (-2,2,4)	on (x-3)(x-2)(x-4) are (b) (3,2,4)	(c) (-1,-0,-4)	(d) (2,-1,-3)
890.	Find the value of M if a	one root of the equation F(x) (b) -1/4	= mx ² +2x-3=0, is 2 (C) -1	(d) 1/4
891.	Find the value of M, if (a) 1	one root is 2, F(x) = 2x²+mx-(b) -1	6=0 (c) 2	(d) -2
892.	The roots of the equati (a) (3,2,2,4)	on (x-3)(x-2)²(x-4) are (b) (1,-2,2,-4)	(c) (-1,-2,2,-4)	(d) (2,-3,2,-4)
893.	Arithmetic mean of the	e series 1, 3, 5, 7, 9 is	 (c) 5.5	(d) 6.5

894.	GM of the series 1,	3,5,7,9 is		
	(a) 945	(b)(315) ^{1/5}	(c) (945) ^{1/5}	(d) 90/300
895.	Harmonic means o	of the series 1, 3, 5, 7, 9 is		
	(a) 1575/563	(b) 325/75	(c) 88/320	(d) 90/300
896.	Arithmetic mean o	of the series 3, 4, 5, 6, 7 is		
	(a) 5	(b) 7	(c) 5.5	(d) 6.5
897.	Geomatric mean o	of the series 3, 4, 5, 6, 7 is		
	(a) 2520 ^{1/5}	(b) 7	(C) 2120 ^{1/6}	(d) 6
898.	Harmonic mean of	i the series 3, 4, 5, 6, 7 is		
	(a) 2100/459	(b) 1800/654,	(c) 2000/ 558	(d) 6.5
899.	The Arithmetic med	an for the series 3, 5, 5, 2, 6	, 2, 9, 5, 8, 6, is	
	(a) 5. 1	(b) 5	(c) 4. 9	(d) 4. 6
900.	The median value	for the series 3, 5, 5, 2, 6, 2,	9, 5, 8, 6 is	
	(a) 5.1	(b) 5	(c) 4.9	(d) 4.6
901.	The mode for the s	eries 3, 5, 6, 2, 6, 2, 9, 5, 8, 6	S is	
	(a) 5.1	(b) 5	(c) 6	(d) 8
902.	The Arithmetic med	an for the series 51.6, 50.3,	48.9, 48.7, 48.5 is	
	(a) 49.8	(b) 50	(c) 48.9	(d) 49.6
903.	The Median for the	series 51.6, 50.3, 48.9, 48.7	, 49.5, is	
	(a) 49.8	(b) 50	(c) 48.9	(d) 49.6
904.	The Arithmetic med	an for the series 51.6, 50.3,	48.9, 48.7, 49.5 is	
	(a) 48.8	(b) 50	(c) 49.9	(d) 49.8
905.	The Mode for the s	eries 51.6, 50.3, 48.9, 48.7, 4	19.5 is	
	(a) 48.8	(b) 50	(c) None	(d) 49.5
906.	The Harmonic med	an for the series 6, 5, 3, 6, 7,	10 and 12 is	
	(a) 5.87	(b) 6.21	(c) 5.12	(d) 5.98
907.	In question No. 906	the mode is		
	(a) 6	(b) 5	(c) 5.9	(d) 5.98
908.	The harmonic mea	ın of the data 3.2, 5.2, 4.2, 6	5.1, 4.8 is	
	(a) 4.48	(b) 4.59	(c) 4.64	(d) 5.1

(a) ±2		(b)±	5				(c)±6				(d)±3
Find Arithmetic m	nean	wages	of the	worke	ers fror	n the	followi	ng deta	ils		
Wages (₹)			3000		2000)	600	0	400	00	7000
No. of worke			5		,	5		4	6	,	5
(a) ₹4400		(b) ₹	4320				(c) ₹45	600			(d) ₹4380
Find the Arithmet	ic me	ean we	ight of	the st	udent	s fron	the fo	llowing	deta	ils:	
Weight		65kg		66kg		-	59kg		72kg	ı	79kg
No. of Students		5		6			4		5		5
(a) 66 kg.		(b) 6	57 kg.				(c) 68 l	kg			(d) 68.88
A card is drawn f	rom o	a pack	of 52 c	ards.	The p	robal	oility of	getting	a Qı	Jeen is	•••••
(a) 1/4		(b) 1	/13				(c) 3/1	3			(d) 2/13
Calculate Media	n val	ue fron	n the fo	llowir	ng freq	venc	y distril	bution			
Х	4.5	5 5.	5 6	6.5	7	7.5	8				
Y(Frequency)	4	3 14	4 28	23	35	8	10				
(a) 6.5		(b) 6	,)				(c) 5.5				(d) 7
Calculate Media	n val	ue fron	n the fo	llowir	ng freq	uenc	y distril	bution			
Χ		3	5	7	9	11	13				
Y(Frequency		4	3	5	2	3	3				
(a) 6.5		(b) 6					(c) 5.5				(d) 7
Calculate Media	n val	ue fron	the fo	llowir	ng freq	uenc	y distril	bution			
Х		10)-15	15	-20	20	-25	25-30)	30-35	
Y (Frequency)		5		3		3	3	2		2	
(a) 18.5		(h) 1					(c) 19.5	5			(d) 19.28
(d) 10.5		(D)	9.166				(C) 17.0				
Calculate arithm	etic r			om th	e follo	wing			ribut	ion	
	etic r	nean v			e follo 15-20			ncy dist		ion 30-3	5
Calculate arithm	etic r	nean v	alue fr				freque	ncy dist		30-3	5
Calculate arithm	etic r	nean v	alue fro		15-20		frequer 20-25	ncy dist	5-30	30-3	2
Calculate arithm X Y (Frequency)		mean v	0-15 5 9.166		15-20		20-25 3 (c) 21.2	24 223	2	30-3	2
Calculate arithm X Y (Frequency) (a) 20.16	etic r	mean v	0-15 5 9.166	om th	15-20		20-25 3 (c) 21.2	ncy dist	5-30 2 Iribul	30-3	2
Calculate arithm X Y (Frequency) (a) 20.16 Calculate arithm	etic r	nean v (b) 1 nean s	9.166	om th	15-20 3 ne follo	owing	20-25 3 (c) 21.2 freque	ncy dist	2	30-3	2
Calculate arithm X Y (Frequency) (a) 20.16 Calculate arithm X(₹ in 000)	etic r	(b) 1	9.166 alary fr 20-30	om th	3 ne follo	owing	20-25 3 (c) 21.2 freque	25 223 23 26 26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5-30 2 tribut	30-3	(d) 19.28
Calculate arithm X Y (Frequency) (a) 20.16 Calculate arithm X(₹ in 000) Y (Frequency)	etic r	(b) 1 mean s	9.166 alary fr 20-30 3	om th	3 ne follo	owing 40-5	20-25 3 (c) 21.3 freque 0 50 (c) 35.8	25 223 23 26 26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5-30 2 tribut	30-3	

919.	Find the value of X ma (a) 15	ean of the series 7,20,1	8,10, x is 14 (c) 14	(d) 16
920.	What is the standard of (a) 3.09	deviation of the data 1 (b) 3.41	0,12,5,8,15 (c) 2.67	(d) 3.10
921.	If X and Y are so relate	ed that Y = 2x + 6 and	mode x=15, mode y is	
	(a) 36	(b) 30	(c) 38	(d) 32
922.	If AM and HM are 10 (a) 4.1	and 4.9 respectively, C (b) 13	GM will be (c) 7	(d) 14.75
923.	$\int 3x^2 dx$ is equal to (a) (x^3+c)	(b) (2X ² +c)	(c) (3x ² +x ³ +c)	(d) (4x³+4)
924.	\int 4-2x+3x² is equal to . (a) $(5x^3+x^2)$	(b) (4x-x ² +x ³)	(c) (x ³ +x ² +4x)	(d) (x³+4x)
925.	∫(3+4x²)dx is equal to			
	(a) (x ⁴ +c)	(b) $\left(3x + \frac{4x^3}{3}\right)$	(c) (x^3+x^2+4x)	(d) (x^3+x)
926.	$\int x^{1/2}+3/x$ is equal to			
	(a) (3logx+2/3 x ^{3/2}) +c	(b) (3/2x2/3+logn ²)	(c) $(\log x + 2/3x^2)$	(d) (x ³ +2)
927.	∫1/(3x+2)dx is equal to	o		
	(a) (log (3x+2))	(b) (1/3 log(3x+2)+c)	(c) $(3x^2+x^3+c)$	(d) (log(3x+4x)
928.	∫1/(3x-2)dx is equal to)		
	(a) (1/3 log(3x-2)+c)	(b) (log (3x+2))	(c) (1/3 log (3x-2))	(d) (log(3x+1))
929.	(2x-3)2dx is equal to			
	(a) (1/6 (2x-3) ³ +c)	(b) ((2x-3)+x)	(c) ((2x-c) ³ /3	(d) (None)
930.	(3x-5)³dx is equal to			
	(a) (1/12 (3x-5) ⁴ +c)	(b) ((3x-5)/12-c)	(c) $((3x+5)^3/3)+c$	(d) ((3x+5) ³ +c
931.	$\int (e^{3x+2})dx$ is equal to			
	(a) $(e^{3x+2})+c$	(b) (3e ^{3x+c} +c)	(c) (e3x+c+c)	(d) $(e^{3x+2})/3)+c$
932.			ction it becomes equal to 1, how ne numerator, the number become	
	(a) 6/9	(b) 3/10	(c) 5/8	(d) 11/15
933.	∫xexdx is equal to			
	(a) (e ^x (x-1)+c)	(b) $(e^{x}(x)+c)$	(c) $(e^{x}(x-2)+c)$	(d) (ex+c)
934.	∫Log xdx is equal to			
-	(a) (logx-x+c)	(b) (xlogx+x+c)	(c) (xlogx-x+c)	(d) (None)

935.	(1/(9x²-25)dx is equal (a) (1/30 log (3x-5)/(3x+5)+c		(c) (1/30 log (3x-5)/ (d) (3x+5)+c	(1/3 log (3x-5)/(3x+5)+c (x-5)
936.	$(e^{x}/e^{2x}-1)$ is equal to (a) $(\log (e^{x+1})/(e^{x-1}))$ $(e^{x+1})/(e^{x+1}))$		(c) (log (e ^{x-1})/(e ^{x-1}))	(d) (log
937.	∫(x+3)6dx is equal to	•••••		
	(a) $(2x^2+3/5x+c)$	(b) $((3+x)^7/7)+c$	(c) (X^3+e^{x+4})	(d) 1/6(3+x) ⁷
938.	∫(1/(25x²-16)dx is eq	jual to		
	(a) Log(5x+	(b) Log(5x+(25x ² +16) ^{1/2} +c	c (c) (1/5 log[5x+25x ² -16] -	+c (d) Log(5x+(25x ² 16)+c
	(25x ² -16) ^{1/2} +c			
939.	∫(x+3) ⁶			
	(a) (3+3/5x)+c	(b) $((3+x)^7/7)+c$	(c) (x+3) ⁴)	(d) (None)
940.	$\int (e^{x}((x+1)/(x+2)^{2}dx \text{ is} $ (a) $(e^{x}-(e^{x}/(x+1)+c)$	s equal to (b) (e ^x 2 ^{ex} /(x+1)+c	(c) (2e ^x -(e ^x /(x)+c	(d) (3e ^x -(e ^x /(x+1)+c
941.	$\int (((xe2^{x}/(1+2x)^2)dx is (a) (e^{2x}/4(1+2x)+c$	equal to (b) (e ^x -3 ^{ex} (2x+1)+c	(c) (e ^{2x} /4(1+2x)	(d) None
942.	$\int_{1}^{2} xe^{x} dx $ is equal to			
	(a) (2e²)	(b) (2e ^x)	(c) (2)	(d) (e^3)
943.	² ∫xe ^x dx is equal to			
	1 (a) 3e ³	(b) 3xe ³	(c) (e ³)	(d) (0)
944.	xexdx is equal to			
	1 (a) ½ (e-1)	(b) (e ²)	(c) (e ³)	(d) 2(e-1)
945.	odx is equal to			
	(a) (18)	(b) (24)	(c) (11)	(d) (44)
946.	$\int_{2}^{3} 3 dx$ is equal to			
	(a) (11)	(b) (21)	(c) (3)	(d) (4)
947.	$\int_{0}^{1} \frac{1}{(3x+2)dx}$ is equal	to		
	(a) (1/3 log 5/2)	(b) (1/3 log 3)	(c) (1/4 log e ³)	(d) (1/2 log x³)
948.	$\int_{0}^{1} \frac{1}{(5x+2)} dx \text{ is equal}$	to		
	(a) (1/3 log 5/2)	(b) (1/5 (log 7)/2	(c) (1/5 log 5)	(d) (1/5 log 4)

$\int_{1}^{2} \frac{1}{x^{2}} dx$ is equal to			
(a) (1/3)	(b) (-1/2)	(c) (1/4)	(d) (1/2)
$\int_{0}^{1} xe^{x} dx $ is equal to .			
(a) (-1)		(c) (2)	(d) (1/2)
$\int_{2}^{4} 3dx$ is equal to			
(a) (3)	(b) (11)	(c) (2)	(d) (1/2)
be expressed as	nction is given by mc= 3x	2+5x and fixed cost is ₹5. The to	tal cost function car
(a) $x^3 + \frac{5x^2}{2} + 5x$	(b) x ³ +5x ² +5	(c) 3x ² +5x	(d) 3x ² +5
In question No.952 tl	ne total cost of 30 units will	be	
(a) (₹30,750)	(b) (₹31,550)	(c)(₹32,550)	(d) (₹30,900)
In question No.952 tl	ne average cost is		
(a) (₹1025)	(b) (₹1150)	(c) (₹1090)	(d) (₹1250)
The marginal cost production of 500 TV	function of a TV Cabine	et is given as mc= x²/3-2x+50	0. The total cost o
(a) (₹125000000)	(b) (₹425000000)	(c) (₹13880000 approx)	(d) (₹12500000)
In question No.955 tl	ne average cost of produc	tion is	
(a) (₹27777)	(b) (₹28500)	(c) (₹29600)	(d) (₹25500)
In question No.955 tl	ne cost of increasing produ	uction from 300 units to 500 units	is
(a) ₹1,71,111	(b) ₹2,10,000	(c) ₹1,80,000	(d) ₹1,90,000
Determine the total	cost of production of 200 u	nits if Marginal cost is given as r	nc=2x+5
(a) 5000	(b) 4600	(c) 6500	(d) 5500
What is the cost of p	roduction of one toy in qu	estion No.958	
(a) 20	(b) 25	(c) 45	(d) 50
Determine the marg	inal cost of production of 1	1000 toys in Q.No.958	
(a) (2005)	(b) (2105)	(c) (2410)	(d) (2900)
Determine the marg	inal cost of production of 1	120 pen, if mc=1+x/2000+e ^{-0.03x}	
(a) (₹139.0)	(b) (₹160.0)	(c) (₹133.84)	(d) (₹169)

962.	What is the cost of 1 pe	en in Q.No.961?		
	(a) ₹2.00)	(b) (₹1.33)	(c) (₹1.84)	(d) (₹1.95)
963.	The marginal cost of p	production is mc=0.3x+4	determine the cost involve	ed to increase production
	(a) (₹900)	(b) (₹885)	(c) (₹1015)	(d) (₹1000)
964.	Which of the following (a) Mean>Variance	is true for a poison distrib (b) Mean <variance< td=""><td>ution (c) Mean=Variance</td><td>(d) None</td></variance<>	ution (c) Mean=Variance	(d) None
965.	Which of the following (a) Mean>Variance	is true for a binomial distr (b) Mean <variance< td=""><td>ribution (c) Mean=Variance</td><td>(d) None</td></variance<>	ribution (c) Mean=Variance	(d) None
966.	In a binomial distributi (a) P=0.5	on mean and mode are (b) p=0.9	equal only when (c) q=0.1	(d) all the situations
967.	The variance of a bind	mial distribution is measu	red by	
	(a) np	(b) np(1 - p)	(c) pq	(d) nq
968.	The mean of binomial	distribution is measured b	ру	
	(a) np	(b) npq	(c) pq	(d) nq
969.	If each item of the san	nple data or observation	is decreased by 25, the A	rithmetic mean will
	(a) Remain same	(b) increase by 25	(c) decrease by 25	(d) decrease by 25%
970.	If each item of the san	nple data or observation	is increased by 5, the Arith	nmetic mean will
	(b) Remain same	(b) increase by 5 (c) of	decrease by 5	(d) increase by 5%
971.			0	
,,,,,	Circular test is satisfied	l by which of these metho	oas ?	
,, 1,	Circular test is satisfied (a) Laspeyres index	(b) Fishers Ideal index	(c) Paasches index	(d) Simple Geometric
	(a) Laspeyres index	(b) Fishers Ideal index		(d) Simple Geometric mean of price relatives
972.	(a) Laspeyres index Which index satisfies for	(b) Fishers Ideal index	(c) Paasches index	mean of price relatives
	(a) Laspeyres index	(b) Fishers Ideal index	(c) Paasches index	mean of price relatives (d) Simple Aggregate
	(a) Laspeyres index Which index satisfies for (a) Laspeyres index	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index	(c) Paasches index	mean of price relatives (d) Simple Aggregate average index
972.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index	(c) Paasches index (c) Paasches index	mean of price relatives (d) Simple Aggregate average index
972.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index To check the accurace (a) Circular test	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index y of index by shifting the (b) Time reversal test	(c) Paasches index (c) Paasches index base year, which test is us	mean of price relatives (d) Simple Aggregate average index ed? (d) None
972. 973.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index To check the accurace (a) Circular test	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index y of index by shifting the (b) Time reversal test	(c) Paasches index (c) Paasches index base year, which test is us (c) Unit test	mean of price relatives (d) Simple Aggregate average index ed? (d) None
972. 973.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index To check the accurace (a) Circular test Which of the following (a) Laspeyres index	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index y of index by shifting the (b) Time reversal test method of constructing i	(c) Paasches index (c) Paasches index base year, which test is us (c) Unit test ndex number satisfies time (c) Paasches index	mean of price relatives (d) Simple Aggregate average index ed? (d) None e reversal test?
972. 973. 974.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index To check the accurace (a) Circular test Which of the following (a) Laspeyres index	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index y of index by shifting the (b) Time reversal test method of constructing i (b) Fishers Ideal index xtension of time reversal test	(c) Paasches index (c) Paasches index base year, which test is us (c) Unit test ndex number satisfies time (c) Paasches index	mean of price relatives (d) Simple Aggregate average index ed? (d) None e reversal test?
972. 973. 974.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index To check the accurace (a) Circular test Which of the following (a) Laspeyres index Which of these is an experience of the second	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index y of index by shifting the (b) Time reversal test method of constructing i (b) Fishers Ideal index xtension of time reversal test (b) Circular test	(c) Paasches index (c) Paasches index base year, which test is us (c) Unit test ndex number satisfies time (c) Paasches index rest of index numbers	mean of price relatives (d) Simple Aggregate average index ed? (d) None e reversal test? (d) All the three
972. 973. 974. 975.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index To check the accurace (a) Circular test Which of the following (a) Laspeyres index Which of these is an extended the same of the following (a) Factor reversal test	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index y of index by shifting the (b) Time reversal test method of constructing i (b) Fishers Ideal index xtension of time reversal test (b) Circular test	(c) Paasches index (c) Paasches index base year, which test is us (c) Unit test ndex number satisfies time (c) Paasches index rest of index numbers	mean of price relatives (d) Simple Aggregate average index ed? (d) None e reversal test? (d) All the three
972. 973. 974. 975.	(a) Laspeyres index Which index satisfies for (a) Laspeyres index To check the accurace (a) Circular test Which of the following (a) Laspeyres index Which of these is an exit (a) Factor reversal test	(b) Fishers Ideal index actor reversal test? (b) Fishers Ideal index y of index by shifting the (b) Time reversal test method of constructing i (b) Fishers Ideal index xtension of time reversal test (b) Circular test s positional average (B) Mean	(c) Paasches index (c) Paasches index base year, which test is us (c) Unit test ndex number satisfies time (c) Paasches index rest of index numbers (c) None	mean of price relatives (d) Simple Aggregate

978.	If standard deviation of x=3, regression equation $8x - 10y + 40 = 0$, $40x - 30y - 200 = 0$, find the deviation of y										
	(a) 1.29	(b) 0.8	(c) 0.7	(d) 0.9							
979.	If the product of to (a) 73	wo successive number is 5 (b) 83	256, find the greatest numbe (C) 84	er (d) 71							
980.	The least value of	the sum of a +ve number	and its reciprocal is								
	(a) 1	(b) 3	(c) 3	(d) 4							
981.	If the sum of two numbers is K, find the maximum of their product										
	(a) K	(b) 2K	(c) K/2	(d) K ² /4							
982.	The sum of a number and its reciprocal is 17/4. The number is										
	(a) 5	(b) 4	(c) 6	(d) 3							
983.	The value of $(1 + 2x/3)$ is equal to $7/3$, when x is equal to										
	(a) -2	(b) 2	(c) 3	(d) -3							
984.	If $x + y = 30$, such that x and y are positive integers, then the minimum value of $x^2 + y^2$ is equal to										
	(a) K, K-1	(b) K/2, K/2	(c) 1, K-1	(d) none							
985.	Set A has 3 eleme set A to set B	ents and set B has 5 eleme	nts. Find the total no. of injec	tion that can defined from							
	(a) 60	(b) 32	(c) 50	(d) 100							
986.	The maxima value of the function $4x^3 + x^2 - 4x + 12$ is										
	(a) 113/2	(b) 376/27	(c) -2/3	(d) 43/4							
987.	The minima value of the function $4x^3 + x^2 - 4x + 12$ is										
	(b) 31/2	(b) 55/2	(c) 43/4	(d) 1/2							
988.	The maxima poin	t of the function $4x^3 + x^2 - 4$	x + 12 is								
	(c) 3/2	(b) 5/2	(c) -2/3	(d) ½							
989.	The minima point	of the function $4x^3 + x^2 - 4x$	(+ 12 is								
	(d) 3/2	(b) 5/2	(c) -2/3	(d) 1/2							
990.	The marginal cos units.	t function of a TV Remote	= 0.5x+30= mc. Find the co	ost of production of first 200							
	(a) (₹16000)	(b) (₹14300)	(c)(₹12500)	(d) (₹13990)							
991.	The cost of produ	ction of 1 TV remote is	(in Q.No.42)								
	(a) (₹80)	(b) (₹145)	(c) (₹100)	(d) (₹99)							

99	2.	A's chance of getting scholarship is 0.6 and B's chance of getting the same is 0.3. The probability that atleast one of them will get the scholarship is													
		(a) 0.72	2		(b) 0.9	8			(c) 0.18			(d)	0.9		
99	3.	The Ma	ırginal R	evenue	functio	n of a p	roducti	is MR=	6-2x², de	mand f	unction	will be.			
		(a) (6x-2	2x²/3)		(b) 6x-	$-\frac{2x^3}{3}$			(c) (6x-2x²) (d) (8/3-2x²)						
99	4.	The den	nand fu	nction o	of produ	uct is D=	:12-x ^{2,} th	ne MR f	unction	will be .					
		(a) (12-)	x2)		(b) (1-	3x²)			(c) (-2x)			(d)) (-3x ²)		
99	5.	The de	mand fu	nction	is = 18- -	$\frac{4x^2}{2}$. The	e MR fur	nction v	vill be						
		The demand function is = $18 - \frac{4x^2}{3}$. The MR function will be (a) $18 - \frac{8x}{3}$ (b) $(18-2x^2)$ (c) $(6x-2x^2)$) (8/3-2x	²)		
99	6.	A pair o	of dice is	thrown	. The pr	obabilit	y of get	ting a t	otal of 8	is					
		(a) 2/26			(b) 1/4	4			(c) 1/3			(d)	5/36		
99	7.	When the		g price	of a pro	duct is	₹3 and	cost fui	nction y	= 2550+	[(x²)/50]	, the pr	ofit func	tion ca	n
		(a) 3x-2550-2x ² /50 (b) 3x-2550-x ² /50 (c) 3x-2550-x ²								(d) 3x-2550-x/50					
99	8.	∫(log x)²	is equa	l to		••••									
		(a) (x(lo 2logx³)	gx) ² -210	gx+c) (I	b) (2x+x	(logx) ² -2	2logx+c)	(c) (2x(lo	ogx) ² -2ld	ogx+c)	(d	(d) ((log x) ² -		
99	9.	∫(logx/x	²)dx is e	qual to											
		(a) (-1/>2logx³)	(logx+1)+c	(b) (2)	(+x(logx	() ² -2logx	(+c)	(c) (2x(l	ogx) ² -21	ogx+c	(d)) ((log x)	2_	
10	00.	4 cards	are dra	wn from	n the de	ck of 52	2cards. [•]	The pro	bability	of all th	e 4 card	ds draw	n being	Heart is	,
		(a) 11/	4165		(b) 22	/4165	ANSWE	R	(c) 25/	4165		(d)	0.60		
Γ	1	С	2	b	3	q	4	d	5	а	6	С	7	b	l
	8	а	9	а	10	С	11	а	12	С	13	С	14	d	
	15	b	16	С	17	С	18	b	19	С	20	а	21	b	
-	22 29	С	23 30	a	24 31	b	25 32	С	33	d	27 34	a	28 35	С	
F	36	c d	37	b C	38	a b	39	d a	40	a c	41	c b	42	a C	
F	43	b	44	a	45	b	46	a	47	С	48	b	49	b	
ı	50	С	51	С	52	а	53	С	54	С	55	а	56	С	
ļ	57	С	58	а	59	b	60	b	61	b	62	b	63	С	
	64	а	65	а	66	b	67	С	68	b	69	b	70	d	
	71	С	72	b	73	С	74	b	75	а	76	С	77	а	
	78	С	79	b	80	b	81	а	82	С	83	b	84	b	
-	85	С	86	а	87 94	Ь	88	b	89	a	90	а	91	a	
}	92 99	а	93 100	С	101	d b	95 102	b b	96 103	b	97 104	а	98 105	d d	
}	104	a	100	С	101	b	102	0	110	а	104	С	112	a	

127	120	а	121	b	122	а	123	d	124	b	125	b	126	С
134	\vdash												_	
141														
148	\vdash													
155	-												_	
142	\vdash													
149														
176	-													
183	-												_	
190	-												_	
197														
204													_	
211	-													
218	-													
225	-						_							
232	-													
239	-													
246 b 247 b 248 a 249 b 250 c 251 c 252 c 253 a 254 a 255 b 256 a 257 a 258 b 259 a 260 c 261 d 262 b 263 d 264 c 255 d 266 d 266 d 266 d 267 c 278 c 272 b 273 d d 277 c 278 c 279 a 280 c 281 b 282 d 283 c 284 d 285 b 286 c 287 c 288 d 289 c 290 c 291 b 292 c 293 c 294 d 283 d 330 a 301 d 301 d 301 <th></th>														
253	-													
260 C 261 d 262 b 263 d 264 c 265 d 266 b 267 c 270 d 271 c 272 b 273 d 274 c 275 d 276 d 277 c 278 c 279 d 280 c 281 b 282 d 283 c 284 d 285 b 286 c 287 c 288 d 289 c 290 c 291 b 292 c 293 c 294 d 295 d 296 c 297 c 298 b 290 c 291 d 300 d 300 d 301 d 308 d 307 d 308 c 300 d 311 b 312 c 313 c														
267 b 268 a 269 c 270 a 271 c 272 b 273 d 281 b 282 d 283 c 284 d 285 b 286 c 287 c 288 a 289 c 290 c 291 b 292 c 293 c 294 d 295 a 296 c 297 c 298 b 299 c 300 c 301 d 302 b 303 b 304 b 305 b 306 d 307 d 308 c 316 c 317 d 318 a 319 d 320 c 321 b 322 d 333 a 324 b 325 a 326 b 327 c 328 a												_		
274 C 275 a 276 d 277 c 278 c 279 a 280 c 281 b 282 d 283 c 284 d 285 b 286 c 287 c 288 a 289 c 290 c 291 b 292 c 293 c 294 d 295 a 296 c 297 c 298 b 299 c 300 c 301 d 309 a 310 a 311 b 312 c 313 c 314 d 312 c 313 c 321 b 322 d 323 a 324 b 325 a 326 b 327 c 328 a 329 d 330 a 331 b 332 b														
281 b 282 d 283 c 284 d 285 b 286 c 287 c 288 a 289 c 290 c 291 b 292 c 293 c 294 d 295 a 296 c 297 c 298 b 299 c 300 c 301 d 302 b 303 b 304 b 305 b 306 d 307 d 308 c 309 a 310 a 311 b 312 c 313 c 314 d 315 d 316 c 317 d 318 a 319 d 320 c 321 b 322 d 322 d 323 a 334 a 335 d 336 b 336 b 336														
288 a 289 c 290 c 291 b 292 c 293 c 294 d 295 a 296 c 297 c 298 b 299 c 300 c 301 d 302 b 303 b 304 b 305 b 306 d 307 d 308 c 309 a 310 a 311 b 312 c 313 c 314 d 315 c 313 c 314 d 315 c 313 b 322 d 326 b 327 c 328 a 329 d 330 a 331 b 322 b 333 a 334 a 335 d 336 b 337 b 336 b 333 a 3341 d 342 c 343 </th <th>-</th> <th></th> <th>_</th> <th></th>	-												_	
295 a 296 c 297 c 298 b 299 c 300 c 301 d 302 b 303 b 304 b 305 b 306 d 307 d 308 c 309 a 310 a 311 b 312 c 313 c 314 d 315 d 316 c 317 d 318 a 319 d 320 c 321 b 322 d 330 a 324 b 325 a 326 b 327 c 328 a 329 d 337 b 338 c 339 b 340 a 341 d 342 c 343 b 337 b 355 a 356 b 346 b 347 d 348 c	-													
302	-													
309													_	
316	-												_	
323 a 324 b 325 a 326 b 327 c 328 a 329 d 330 a 331 b 332 b 333 a 334 a 335 d 336 b 344 b 345 a 346 b 347 d 348 c 349 b 350 b 351 b 352 a 353 a 354 a 355 c 356 d 357 c 358 c 359 a 360 a 361 a 362 d 357 c 366 d 367 a 368 c 369 d 370 a 371 a 365 b 366 d 367 a 368 c 369 d 370 a 371 a 379 c														
330 a 331 b 332 b 340 a 341 d 342 c 343 c 344 b 345 a 346 b 347 d 348 c 349 b 350 b 351 b 352 a 353 a 354 a 355 c 356 d 357 c 358 c 359 a 360 a 361 a 362 d 363 c 3564 b 365 b 366 d 367 a 368 c 369 d 363 c 364 b 365 b 366 d 367 a 368 c 369 d 370 a 371 a 371 a 372 b 378 b 378 b 378 b 388 d 389 <th></th>														
337 b 338 c 339 b 340 a 341 d 342 c 343 c 344 b 345 a 346 b 347 d 348 c 349 b 350 b 351 b 352 a 353 a 354 a 355 c 356 d 357 c 358 c 359 a 360 a 361 a 362 d 363 c 364 b 365 b 366 d 367 a 368 c 369 d 370 a 371 a 372 b 373 a 374 c 375 c 376 a 377 b 378 b 386 a 387 a 388 d 389 b 390 a 391 b	-													
344 b 345 a 346 b 347 d 348 c 349 b 350 b 351 b 352 a 353 a 354 a 355 c 356 d 357 c 358 c 359 a 360 a 361 a 362 d 363 c 364 b 365 b 366 d 367 a 368 c 369 d 370 a 371 a 372 b 373 a 374 c 375 c 376 a 377 b 378 b 377 b 378 b 384 b 385 b 385 b 386 a 387 a 388 d 389 b 389 b 389 b 397 b 398 c 399 b	-													
351 b 352 a 353 a 354 a 355 c 356 d 357 c 358 c 359 a 360 a 361 a 362 d 363 c 364 b 365 b 366 d 367 a 368 c 369 d 370 a 371 a 372 b 373 a 374 c 375 c 376 a 377 b 378 b 379 c 380 b 381 b 382 b 383 c 384 b 385 b 386 a 387 a 388 d 389 b 390 a 391 b 382 b 393 c 394 a 395 a 396 c 397 b 398 c	-												_	
358 C 359 a 360 a 361 a 362 d 363 C 364 b 365 b 366 d 367 a 368 C 369 d 370 a 371 a 372 b 373 a 374 c 375 c 376 a 377 b 378 b 379 c 380 b 381 b 382 b 383 c 384 b 385 b 386 a 387 a 388 d 389 b 390 a 391 b 392 b 393 c 394 a 395 a 396 c 397 b 398 c 399 b 400 b 401 c 403 d 404 a 405 d 406 a	-													
365 b 366 d 367 a 368 c 369 d 370 a 371 a 372 b 373 a 374 c 375 c 376 a 377 b 378 b 379 c 380 b 381 b 382 b 383 c 384 b 385 b 386 a 387 a 388 d 389 b 390 a 391 b 392 b 393 c 394 a 395 a 396 c 397 b 398 c 399 b 400 b 401 c 402 b 403 d 404 a 405 d 406 a 407 b 408 d 409 b 410 c 411 a 412 b	-	С	359	а	360	а	361					С	364	b
372 b 373 a 374 c 375 c 376 a 377 b 378 b 379 c 380 b 381 b 382 b 383 c 384 b 385 b 386 a 387 a 388 d 389 b 390 a 391 b 392 b 393 c 394 a 395 a 396 c 397 b 398 c 399 b 400 b 401 c 402 b 403 d 404 a 405 d 406 a 407 b 408 d 409 b 410 c 411 a 412 b 413 b 414 c 415 b 416 b 417 d 418 b 419 b	-													
379 C 380 b 381 b 382 b 383 C 384 b 385 b 386 a 387 a 388 d 389 b 390 a 391 b 392 b 393 c 394 a 395 a 396 c 397 b 398 c 399 b 400 b 401 c 402 b 403 d 404 a 405 d 406 a 407 b 408 d 409 b 410 c 411 a 412 b 413 b 414 c 415 b 416 b 417 d 418 b 419 b 420 b 421 c 422 d 423 a 424 a 425 b 426 a		b		а	374	С			376	а		b	378	b
393 C 394 a 395 a 396 C 397 b 398 C 399 b 400 b 401 C 402 b 403 d 404 a 405 d 406 a 407 b 408 d 409 b 410 c 411 a 412 b 413 b 414 c 415 b 416 b 417 d 418 b 419 b 420 b 421 c 422 d 423 a 424 a 425 b 426 a 427 b 428 c 429 b 430 a 431 d 432 a 433 c 434 b 435 a 436 b 437 c 438 a 439 b 440 c	-	С		b								b		b
393 C 394 a 395 a 396 C 397 b 398 C 399 b 400 b 401 C 402 b 403 d 404 a 405 d 406 a 407 b 408 d 409 b 410 c 411 a 412 b 413 b 414 c 415 b 416 b 417 d 418 b 419 b 420 b 421 c 422 d 423 a 424 a 425 b 426 a 427 b 428 c 429 b 430 a 431 d 432 a 433 c 434 b 435 a 436 b 437 c 438 a 439 b 440 c	386		387	а	388	d	389	b	390		391	b	392	b
407 b 408 d 409 b 410 c 411 a 412 b 413 b 414 c 415 b 416 b 417 d 418 b 419 b 420 b 421 c 422 d 423 a 424 a 425 b 426 a 427 b 428 c 429 b 430 a 431 d 432 a 433 c 434 b 435 a 436 b 437 c 438 a 439 b 440 c 441 b 442 c 443 b 444 b 445 b 446 a 447 b 448 d 449 d 450 a 451 c 452 a 453 b 454 d	393	С	394	а	395	а	396	С	397	b	398	С	399	b
407 b 408 d 409 b 410 c 411 a 412 b 413 b 414 c 415 b 416 b 417 d 418 b 419 b 420 b 421 c 422 d 423 a 424 a 425 b 426 a 427 b 428 c 429 b 430 a 431 d 432 a 433 c 434 b 435 a 436 b 437 c 438 a 439 b 440 c 441 b 442 c 443 b 444 b 445 b 446 a 447 b 448 d 449 d 450 a 451 c 452 a 453 b 454 d	-		401	С	402		403		404	а	405	d	406	а
414 C 415 b 416 b 417 d 418 b 419 b 420 b 421 C 422 d 423 a 424 a 425 b 426 a 427 b 428 C 429 b 430 a 431 d 432 a 433 c 434 b 435 a 436 b 437 c 438 a 439 b 440 c 441 b 442 c 443 b 444 b 445 b 446 a 447 b 448 d 449 d 450 a 451 c 452 a 453 b 454 d 455 d 456 c 457 a 458 d 459 a 460 c 461 a	-	b	408	d	409	b		С		а	412	b	413	b
428 C 429 b 430 a 431 d 432 a 433 C 434 b 435 a 436 b 437 c 438 a 439 b 440 c 441 b 442 c 443 b 444 b 445 b 446 a 447 b 448 d 449 d 450 a 451 c 452 a 453 b 454 d 455 d 456 c 457 a 458 d 459 a 460 c 461 a 462 a 463 c 464 b 465 b 466 c 467 a 468 a 469 b 470 b 471 a 472 a 473 b 474 c 475 b	414	С	415		416				418	b	419	b	420	b
435 a 436 b 437 c 438 a 439 b 440 c 441 b 442 c 443 b 444 b 445 b 446 a 447 b 448 d 449 d 450 a 451 c 452 a 453 b 454 d 455 d 456 c 457 a 458 d 459 a 460 c 461 a 462 a 463 c 464 b 465 b 466 c 467 a 468 a 469 b 470 b 471 a 472 a 473 b 474 c 475 b 476 a 477 b 478 b 479 c 480 a 481 a 482 c	421	С	422	d	423	а	424	а	425	b	426	а	427	b
442 c 443 b 444 b 445 b 446 a 447 b 448 d 449 d 450 a 451 c 452 a 453 b 454 d 455 d 456 c 457 a 458 d 459 a 460 c 461 a 462 a 463 c 464 b 465 b 466 c 467 a 468 a 469 b 470 b 471 a 472 a 473 b 474 c 475 b 476 a 477 b 478 b 479 c 480 a 481 a 482 c 483 b 484 b 485 c 486 d 487 c 488 a 489 b	428	С	429	b	430	а	431	d	432	а	433	С	434	b
449 d 450 a 451 c 452 a 453 b 454 d 455 d 456 c 457 a 458 d 459 a 460 c 461 a 462 a 463 c 464 b 465 b 466 c 467 a 468 a 469 b 470 b 471 a 472 a 473 b 474 c 475 b 476 a 477 b 478 b 479 c 480 a 481 a 482 c 483 b 484 b 485 c 486 d 487 c 488 a 489 b 4890 a 491 b 492 c 493 b 494 a 495 b 496 d	435	а	436	b	437	С	438	а	439	b	440	С	441	b
456 C 457 a 458 d 459 a 460 C 461 a 462 a 463 C 464 b 465 b 466 C 467 a 468 a 469 b 470 b 471 a 472 a 473 b 474 c 475 b 476 a 477 b 478 b 479 c 480 a 481 a 482 c 483 b 484 b 485 c 486 d 487 c 488 a 489 b 4890 a 491 b 492 c 493 b 494 a 495 b 496 d 497 d 498 c 499 b 500 d 501 a 502 a 503 d	442	С	443	b	444	b	445	b	446	а		b	448	d
463 C 464 b 465 b 466 C 467 a 468 a 469 b 470 b 471 a 472 a 473 b 474 c 475 b 476 a 477 b 478 b 479 c 480 a 481 a 482 c 483 b 484 b 485 c 486 d 487 c 488 a 489 b 4890 a 491 b 492 c 493 b 494 a 495 b 496 d 497 d 498 c 499 b 500 d 501 a 502 a 503 d 504 a	449	d	450	а	451	С	452	а	453	b	454	d	455	d
470 b 471 a 472 a 473 b 474 c 475 b 476 a 477 b 478 b 479 c 480 a 481 a 482 c 483 b 484 b 485 c 486 d 487 c 488 a 489 b 4890 a 491 b 492 c 493 b 494 a 495 b 496 d 497 d 498 c 499 b 500 d 501 a 502 a 503 d 504 a	456	С	457	а	458	d	459	а	460	С	461	а	462	а
477 b 478 b 479 c 480 a 481 a 482 c 483 b 484 b 485 c 486 d 487 c 488 a 489 b 4890 a 491 b 492 c 493 b 494 a 495 b 496 d 497 d 498 c 499 b 500 d 501 a 502 a 503 d 504 a	463	С	464	b	465	b	466	С	467	а	468	а	469	b
484 b 485 c 486 d 487 c 488 a 489 b 4890 a 491 b 492 c 493 b 494 a 495 b 496 d 497 d 498 c 499 b 500 d 501 a 502 a 503 d 504 a	470	b	471	а	472	а	473	b	474	С	475	b	476	а
491 b 492 c 493 b 494 a 495 b 496 d 497 d 498 c 499 b 500 d 501 a 502 a 503 d 504 a	477	b	478	b	479	С	480	а		а	482	С	483	b
498 c 499 b 500 d 501 a 502 a 503 d 504 a	484	b	485	С	486	d	487	С	488	а	489	b	4890	а
	491	b	492	С	493	b	494	а	495	b	496	d	497	d
505 d 506 a 507 a 508 a 509 d 510 b 511 C	-	С	499	b	500	d	501	а		а	503	d	504	
	-	d	506	а	507	а	508	а	509	d	510	b	511	С
512 b 513 b 514 b 515 a 516 c 517 b 518 d	512	b	513	b	514	b	515	а	516	С	517	b	518	d

519	С	520	С	521	d	522	d	523	С	524	d	525	b
526	a	527	b	528	С	529	d	530	a	531	С	532	C
533	а	534	d	535	а	536	С	537	а	538	С	539	а
540	d	541	а	542	С	543	С	544	С	545	b	546	a
547	а	548	С	549	d	550	b	551	d	552	С	553	a
554	d	555	а	556	a	557	а	558	С	559	b	560	a
561	b	562	С	563	a	564	а	565	d	566	а	567	a
568	b	569	а	570	С	571	d	572	b	573	а	574	d
575	b	576	d	577	a	578	d	579	C	580	a	581	a
582	d	583	С	584	С	585	d	586	b	587	b	588	a
589	а	590	b	591	С	592	b	593	b	594	С	595	d
596	С	597	b	598	a	599	a	600	C	601	d	602	a
603	b	604	а	605	a	606	b	607	а	608	С	609	С
610	a	611	С	612	d	613	d	614	b	615	b	616	а
617	b	618	а	619	b	620	С	621	d	622	b	623	d
624	a	625	b	626	C	627	a	628	a	629	b	630	a
631	С	632	а	633	b	634	С	635	a	636	d	637	b
638	d	639	b	640	a	641	d	642	d	643	b	644	a
645	С	646	b	647	d	648	b	649	a	650	С	651	С
652	а	653	b	654	а	655	b	656	d	657	C	658	а
659	С	660	b	661	a	662	a	663	а	664	b	665	a
666	0	667	а	668	C	669	a	670	a	671	d	672	b
673	а	674	d	675	а	676	b	677	b	678	b	679	a
680	a	681	b	682	b	683	a	684	b	685	b	686	b
687	а	688	а	689	a	690	С	691	d	692	С	693	С
694	a	695	а	696	b	697	d	698	b	699	b	700	a
701	а	702	b	703	d	704	a	705	b	706	b	707	b
708	а	709	C	710	d	711	a	712	С	713	b	714	a
715	d	716	а	717	d	718	b	719	а	720	b	721	b
722	d	723	а	724	С	725	b	726	d	727	С	728	C
729	b	730	С	731	а	732	C	733	С	734	а	735	d
736	b	737	а	738	b	739	a	740	a	741	b	742	b
743	a	744	С	745	b	746	С	747	b	748	d	749	a
750	С	751	а	752	a	753	b	754	С	755	d	756	a
757	b	758	С	759	a	760	C	761	d	762	a	763	a
764	b	765	а	766	d	767	a	768	a	769	a	770	С
771	b	772	а	773	b	774	С	775	a	776	b	777	а
778	b	779	С	780	a	781	b	782	a	783	C	784	b
785	C	786	а	787	a	788	d	789	b	790	а	791	b
792	a	793	d	794	С	795	a	796	b	797	С	798	b
799	a	800	a	801	a	802	b	803	C	804	а	805	b
806	a	807	С	808	a	809	C	810	b	811	a	812	b
813	С	814	а	815	b	816	а	817	d	818	а	819	d
820	d	821	a	822	a	823	b	824	С	825	b	826	С
827	b	828	а	829	С	830	а	831	b	832	a	833	b
834	C	835	а	836	С	837	a	838	a	839	b	840	a
841	a	842	b	843	С	844	b	845	b	846	b	847	a
848	a	849	b	850	С	851	b	852	b	853	a	854	а
855	a	856	a	857	b	858	a	859	b	860	b	861	a
862	d	863	С	864	a	865	b	866	d	867	С	868	b
869	d	970	С	871	d	872	d	873	a	874	С	875	a
876	a	877	d	878	a	879	a	880	a	881	а	882	b
883	b	884	d	885	a	886	С	887	d	888	С	889	b
890	b	891	b	892	a	893	а	894	С	895	а	896	a
897	a	898	a	899	a	900	b	901	С	902	a	903	d
904	С	905	а	906	a	907	a	908	а	909	С	910	d
911	d	912	b	913	а	914	d	915	b	916	а	917	d
	J		~	7.0	J	/ 1.7	ч	, ,.5	V	7.0	ч	7 1 7	u

PAPER 4: FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

918	b	919	а	920	b	921	а	922	С	923	а	924	b
925	b	926	а	927	b	928	а	929	а	930	а	931	d
932	а	933	С	934	а	935	а	936	b	937	р	938	С
939	b	940	b	941	а	942	а	943	C	944	а	945	а
946	C	947	а	948	b	949	b	950	b	951	C	952	а
953	а	954	а	955	С	956	а	957	а	958	а	959	b
960	а	961	C	962	b	963	b	964	C	965	а	966	а
967	b	968	а	969	С	970	b	971	d	972	d	973	а
974	b	975	b	976	а	977	d	978	а	979	а	980	b
981	d	982	b	983	b	984	b	985	а	986	а	987	С
988	С	989	d	990	а	991	а	992	а	993	р	994	С
995	а	996	d	997	b	998	b	999	а	1000	а		

CMA Bhawan, 3 Institutional Area, Lodhi Road, New Delhi - 110003