

Financial Management and Business Data Analytics

Paper

11

The Institute of Cost Accountants of India

Statutory Body under an Act of Parliament

www.icmai.in

WORKBOOK

Financial Management and Business Data Analytics

INTERMEDIATE

Paper 11

SYLLABUS 2022

The Institute of Cost Accountants of India

CMA Bhawan, 12, Sudder Street, Kolkata - 700 016

www.icmai.in

First Edition : March 2025
Published by :
Directorate of Studies The Institute of Cost Accountants of India CMA Bhawan, 12, Sudder Street, Kolkata - 700 016 studies@icmai.in
Copyright of these Study Notes is reserved by the Institute of Cost Accountants of India and prior permission from the Institute is necessary for reproduction of the whole or any part thereof.
Copyright © 2025 by The Institute of Cost Accountants of India

Preface

he landscape of professional education is undergoing a profound transformation, driven by the evolving demands of a globally integrated economy. In this dynamic environment, it is imperative to equip students not only with technical knowledge but also with the analytical skills and professional acumen essential for success.

Effective learning extends beyond theoretical understanding—it necessitates the development of strong conceptual foundations, critical thinking abilities, and disciplined study habits. These attributes are cultivated through continuous practice and engagement with thought-provoking academic material. To facilitate this process, the curriculum, instructional methods, and assessments must be designed to provide comprehensive, structured, and intellectually stimulating learning experiences.

Building on the success of the previous editions, we are pleased to present the new edition of our 'Workbook' in an e-distributed format. This edition has been meticulously developed to enhance students' comprehension and application of key concepts. Each chapter is structured to offer a seamless learning experience and integrating practical illustrations in a phased manner to align with the evolving regulatory framework.

We are confident that this new edition will continue to serve as a valuable academic resource, empowering students to achieve their professional aspirations with confidence and competence. The Directorate of Studies, The Institute of Cost Accountants of India

The Directorate of Studies,
The Institute of Cost Accountants of India

INDEX

Sl. No.	Module Description	Page No.
1.	Fundamentals of Financial Management	1-9
2.	Tools for Financial Analysis	10-25
3.	Sources of Finance and Cost of Capital	26-38
4.	Capital Budgeting	39-54
5.	Working Capital Management	55-67
6.	Financing Decision of a Firm	68-83
7.	Business Data Analytics	84-89

Fundamentals of Financial Management [Study Material - Module 1]

ILLUSTRATION 1

A machine costs $\stackrel{?}{\sim}$ 1,96,000 and its effective life is estimated at 12 years. If the scrap value is $\stackrel{?}{\sim}$ 6,000, what should be retained out of profit at the end of each year to accumulate at compound interest rate at 5% p.a., so that a new machine can be purchased after 12 years?

Solution:

Effective cost of the machine = ₹. 1,96,000 - 6,000 = ₹. 1,90,000.

Now FV = Annuity Amount \times FVIFA (5%, 12y)

or, ₹. 1,90,000 = Annuity Amount × 15.917

or, Annuity Amount = ₹. 1,90,000 ÷ 15.917

or, Annuity Amount = ₹. 11,936

So, annual profit retained of ₹. 11,936 for 12 years @ 5% will accumulate to ₹. 1,90,000 which together with scrap value of ₹. 6000 can be used to purchase the new machine.

ILLUSTRATION 2

A 10-year savings annuity of ₹. 4,000 per year is beginning at the end of current year. The payment of retirement annuity is to begin 16 years from now (the first payment is to be received at the end of year 16) and will continue to provide a 20-year payment annuity. If this plan is arranged through a savings bank that pays interest @ 7% per year on the deposited funds, what is the size of the yearly retirement annuity that will result?

Solution:

Compounded amount of the 10-payment savings annuity of $\overline{*}$. 4,000 corresponding to 10 payments and 7%.

 $FV = Annuity Amount \times FVIFA(r,n)$

$$FV = ₹.4,000 \times FVIFA (7\%,10)$$

$$FV = 4,000(13.816) = ₹.55,264$$

The amount of \mathfrak{T} . 55,264 is available immediately after the last payment. Now, compound the amount of \mathfrak{T} . 55,264 for 5 years as a single payment at 7%. This will give the total cumulative value in the beginning of year 16.

$$FV = PV \times FVIF(r,n)$$

$$FV = PV \times FVIF (7\%,5)$$

$$FV = 55,264(1.403) = ₹.77,535.$$

Finally, obtain the size of the equal retirement annuity payment by using the amount of $\stackrel{?}{\underset{?}{?}}$. 77,535 as the present value of the retirement annuity. Substitute the values corresponding to 20-payments and 7% as follows:

 $PV = Annuity Amount \times PVIFA(r,n)$

 $PV = Annuity Amount \times PVIFA (7\%,20)$

₹. 77,535 = Annuity Amount × (10.594)

Annuity Amount = ₹. 7,318.

Thus, the savings annuity of ₹. 4,000 for 10 years will produce 20 years retirement annuity of ₹. 7,318 per year starting at the end of 16 years from now.

ILLUSTRATION 3

A company is offered a contract which has the following terms: An immediate cash outlay of ₹. 15,000 followed by a cash inflow of ₹. 17,900 after 3 years. What is the company's rate of return on this contract?

Solution:

The amount of ₹. 15,000 cash outflows earn an unknown rate of interest of r% to generate compounded amount of ₹. 17,900 after 3 years.

Accordingly,

$$FV = PV(1 + r)^n$$

₹. 17,900 = ₹. 15,000 (1 +
$$r$$
)³

₹. 17,900/ ₹. 15,000 =
$$(1 + r)^3$$

$$1.193 = (1 + r)^3$$

As per the FVIF table, value closest to the value of 1.193 in the 3 years row is found in 6% interest rate. Thus, the actual rate of interest on the contract is slightly greater than 6%.

ILLUSTRATION 4

Mr. Q deposited ₹. 50,000 in bank for a time period of 1 year. The bank gives two options: (i) to receive interest at the rate of 11% per annum compounded monthly and (ii) to receive interest at the rate of 11.75% per annum compounded semi-annually. Which option Mr. Q would choose?

Solution:

$$FV = PV \left(1 + \frac{r}{m}\right)^{mn}$$
 when compounding is done multiple times.

PV = Present Value

FV = Future Value

r = Interest rate

n = Number of years

m = Number of times compounding is done.

Option (i)

FV = 50,000
$$\left(1 + \frac{0.11}{12}\right)^{12 \times 1}$$
 = 50,000 × 1.1157188 = ₹. 55,785.94

Option (ii)

FV = 50,000
$$\left(1 + \frac{0.1175}{2}\right)^{2 \times 1}$$
 = 50,000 × 1.12095156 = ₹. 56,047.58

Therefore, Mr. Q should choose option (ii) which has the highest Future Value as compared to option (i).

ILLUSTRATION 5

Mr. U takes loan of ₹. 45,50,000 from bank for purchasing house. He decides to repay the loan in 15 years in 15 equal annual instalments. The bank charges an interest at the rate of 9% p. a. What will be the amount of instalment if payments are to be made bi-annually?

Solution:

 $PV = Annuity \times PVIFA(r, n)$

Here, PV = Present Value, i.e. 45,00,000

A = Annuity i.e., Equated Half Yearly Instalment

r = Discount rate, i.e. 9% or 0.09 p.a. i.e., 0.045 per semi-annual period

n = Number of years, i.e. 15 years = 30 half years

Conditionally,

 $45,00,000 = A \times PVIFA (4.5\%, 30)$

or, $45,00,000 = A \times 16.29$

or, A = 45,00,000/16.29 = ₹.2,76,243.09

So, amount of instalment payable is ₹. 2,76,243.09 per half year.

ILLUSTRATION 6

Mr. P wants to save for his son's education. The approximate amount required to be paid in 15 years from now is ₹. 65,00,000. With this plan, he wants to save fixed amount annually in the form of bank deposit. The bank pays interest at the rate of 14% p.a. How much Mr. P should save per year if the amount of deposit with interest would be sufficient to finance his son's education after 15 years?

Solution:

 $FV = A \times FVIFA (r, n)$

Where, A = Annual fixed amount

r = Rate of interest i.e. 14% or, 0.14 p.a.

n = Number of years i.e. 15 years

FV = Compounded sum of Annuity or Future Value of an Annuity

Conditionally,

 $65,00,000 = A \times FVIFA (14\%, 15 \text{ years})$

or, $65,00,000 = A \times 43.8424$

or, A = 65,00,000/43.8424

or, $A = \mathbb{Z}$. 1,48,258.31

So, Mr. P should invest ₹. 1,48,258.31 per year.

ILLUSTRATION 7

What is the Effective Rate of Interest, if the Rate of Interest is 12 per cent per annum, when compounding is done annually, semi-annually, and quarterly?

Solution:

Effective Rate of Interest =
$$\left(1 + \frac{r}{m}\right)^m - 1$$

In this case, i = 12%

- A. When interest is compounded annually, m = 1. Hence, Effective Rate of Interest = 12%
- B. When interest is compounded semi-annually, m = 2,

Effective Rate of Interest =
$$\left(1 + \frac{r}{m}\right)^m - 1 = \left(1 + \frac{0.12}{2}\right)^2 - 1 = \left(1.06\right)^2 - 1 = 0.1236 = 12.36\%$$

C. When interest is compounded quarterly, m = 4

Effective Rate of Interest = -1 = -1 = (1.03)4 - 1 = 0.1255 = 12.55%

ILLUSTRATION 8

Mr. X is planning to buy a machine for his firm. He has two options. He can either purchase it by making cash payment of \mathbb{R} . 5 lakhs or \mathbb{R} . 6,15,000 is to be paid in six equal annual instalments. Which option do you suggest to the doctor, assuming the rate of return is 12%?

Solution:

Present Value of outflow under both options is required for decision-making purposes.

Option One

Payment of ₹. 5,00,000 in cash now. Hence, the Present Value of cash outflow is ₹. 5,00,000.

Option Two

Payment of ₹. 6,15,000 in six equal annual instalments. That is, payment of ₹. (6,15,000/6) = ₹. 1,02,500 at the end of each year.

At discount rate of 12%, the present value of ₹. 1,02,500 paid at the end of each year, for six years is:

Work Book: Financial Management and Business Data Analytics

Year	Cash Inflows (₹.)	PV of Re. l at 12%	PV of Cash Flows (₹.)
1	1,02,500	0.893	91,532.50
2	1,02,500	0.797	81,692.50
3	1,02,500	0.712	72,980.00
4	1,02,500	0.636	65,190.00
5	1,02,500	0.567	58,117.50
6	1,02,500	0.507	51,967.50
		4.112	4,21,480.00

0r

PV of Annuity = $P \times PV$ of Annuity of Re. 1 at 1% for n years

= ₹. 1,02,500 × PV of Annuity of ₹. 1 at 12% for 5 years

= ₹. 1,02,500 × 4.112

= ₹. 4,21,480

Decision: Since payment of \mathbb{Z} . 1,02,500 each year-end for 6 years is cheaper in today's value when compared to payment of \mathbb{Z} . 5,00,000 at the time of purchase, it is advisable for the doctor to choose the second option.

ILLUSTRATION 9

Mr. Y wants to make a deposit at year zero into an account that will earn 8% compounded annually. It is desired to withdraw ₹. 5,000 three years from now and ₹. 7,000 six years from now. What is the size of the year zero deposit that will produce these future payments?

Solution:

The initial deposit should be the sum of the present values of the two later withdrawals by using the present value table.

$$PV = FV \times PVIF(r, n)$$

$$PV = ₹.5,000 \times PVFIF (8\%, 3) + ₹.7,000 \times PVIF (8\%, 6)$$

$$PV = ₹.5,000(0.794) + ₹.7,000(0.630)$$

$$PV = ₹.3,970 + ₹.4,410 = ₹.8,380.$$

The amount of ₹. 8380 grows to a value of ₹. 10,559 in three years; ₹. 5,000 is withdrawn then,

leaving ₹. 5,559. This amount is left for another three years to compound to the desired amount of ₹. 7,000. Therefore, an amount of ₹. 8,380 deposited today will result in the desired withdrawals.

ILLUSTRATION 10

Calculate the ex-ante return and risk from the following information.

Scenario	Boom	Moderate	Recession
Return (Ri) (%)	20	15	10
Probability (Pi)	0.2	0.5	0.3

Solution:

Calculation of ex-ante return and risk

Scenario	Return (R _i) (%)	Probability (P _i)	R _i P _i	[R _i - E(R)]	$[R_i - E(R)]^2$	$P_{i}[R_{i}-E(R)]^{2}$
Boom	20	0.2	10.0	1.0	1	0.2
Moderate	12	0.5	6.0	-7.0	49	24.5
Recession	10	0.3	3.0	-9.0	81	24.3
			19.0		96	49

Ex-ante Return =
$$\sum$$
 Ri Pi

Ex-ante Risk =
$$\sigma = \sqrt{49} = 7\%$$

ILLUSTRATION 11

Your client holds the following securities:

Particulars of Securities	Cost (₹.)	Dividends (₹.)	Market Price (₹.)	ВЕТА
Equity Shares:				
Co. A	8,000	800	8,200	0.8
Co. B	10,000	800	10,500	0.7
Co. C	16,000	800	22,000	0.5
Co. D	34,000	3,400	32,300	0.2

Assuming a Risk-free rate of 6%, calculate the expected rate of return in each, using the Capital

Asset Pricing Model (CAPM). Assume equal proportion of securities for market portfolio as also for the client. Calculations should be presented up to two decimal places.

Solution:

Calculation of expected return on market portfolio (R_m)

Investment	Cost (₹.)	Dividends (₹.)	Capital Gains (₹.)
Shares A	8,000	800	200
Shares B	10,000	800	500
Shares C	16,000	800	6,000
Shares D	34,000	3,400	-1,700
	68,000	5,800	5,000

 $Rm = (5,800 + 5,000) / 68,000 \times 100 = 15.88\%$

Calculation of expected rate of return on individual security:

Security

Share A 6 + 0.8(15.88-6.0) = 13.90 %

Share B 6 + 0.7(15.88-6.0) = 12.92 %

Share C 6 + 0.5(15.88-6.0) = 10.94 %

Share D 6 + 0.2(15.88-6.0) = 7.98 %

ILLUSTRATION 12

During a five-year period, the relevant results for the aggregate market are that the risk-free rate (rf) is 8% and the return on market (rm) is 14%. For that period, the results of five portfolio managers are as follows:

Portfolio Manager	Actual Average Return (%)	Beta (B)
P	13	0.80
Q	14	1.05
R	17	1.25
S	13	0.90
Т	15	0.95

Using CAPM model, you are required to:

- (i) calculate the expected rate of return for each portfolio manager and compare the actual returns with the expected returns; and
- (ii) find which of the mangers need to be warned for under-performance?

Solution:

(i) CAPM Equation: $Rj = Rf + \beta (Rm - Rf)$

Where Rj = Expected rate of return Rf = Risk free rate

Rm = Return on Market

 β = Beta

The expected rates of return are as follows:

Portfolio Manager	Expected Return (%)	Actual Average Return (%)	Difference between Actual & Expected Returns
P	8% + 0.80 (14%-8%) = 12.8	13	+ 0.2
Q	8% + 1.05(14%-8%) = 14.3	14	- 0.3
R	8% + 1.25(14%-8%) = 15.5	17	+1.5
S	8% + 0.90(14%-8%) = 13.4	13	- 0.4
T	8% + 0.95(14%-8%) = 13.7	15	+1.3

(ii) Managers Q and S did not perform up to expectation, they have to be warned.

2

Tools for Financial Analysis[Study Material - Module 3]

1. K Ltd. provides you the following income statement, you have to prepare a Common Size Statement and also interpret the results.

Income Statement for the year ended 31st March

Particulars	2022 (₹.)	2023 (₹.)
Net Sales	10,50,000	13,50,000
Less: Cost of Goods Sold	5,70,000	6,45,000
Gross Profit	4,80,000	7,05,000
Less: Other Operating Expenses	1,50,000	2,16,000
Operating Profit	3,30,000	4,89,000
Less: Interest on Long term Debt	60,000	51,000
Profit Before Tax (PBT)	2,70,000	4,38,000

Solution:

 $$\rm K\,Ltd.$ Common Statement for the year 31st March, 2022 and 2023

Particulars	2022	2023
Net Sales	100%	100%
Less: Cost of Goods Sold Cost of Goods Sold Net Sales Net Sales	54.3%	47.8%
Gross Profit Gross Profit Net Sales	45.7%	52.20%

Work Book: Financial Management and Business Data Analytics

Particulars	2022	2023
Less: Other operating expenses Other Operating Expenses Net Sales Net Sales	14.3%	16%
Operating Profit Operating Profit Net Sales Operating Profit Net Sales	31.4%	36.2%
Less: Interest on Long term Debt Interest Net Sales × 100	5.7%	3.8%
Profit Before Tax (PBT) PBT Net Sales × 100	25.7%	32.4%

Comments:

- The PBT to net sales has increased from 25.7% in the year 2022-23 to 32.4% in the year 2022-23. It indicates that the profit earning capacity of the company has improved during the study period.
- The interest on long-term debt to net sales has declined from 5.7% in the 2022-23 to 3.8% in 2022-23. It implies that the financial burden of the company has reduced significantly during the study period.

ILLUSTRATION 2

The income statements of B & Co. for the year ended on 31.12.2021 and 2022 are given below. Prepare a Comparative Income Statement and comment. (₹. in lakh)

Particulars	2021 (₹.)	2022 (₹.)
Net Sales	1,890	2,500
Cost of Goods Sold	1,240	1,570
Operating expenses:		
Office and administrative expenses	180	210
Selling and distribution expenses	90	104

Particulars	2021 (₹.)	2022 (₹.)
Non-operating expense:		
Interest on loan	50	70
Income tax	110	120

Solution:

M/S Y & Co.

Comparative Income Statement

For the year ended on 31.12.2021 and 2022

Particulars	2021 (₹.)	2022 (₹.)	Absolute Change (₹.)	Percentage Change (%)
Net Sales	1,890	2,500	610	32.28
Less: Cost of Goods Sold	1,240	1,570	330	26.61
Gross Profit (a)	650	930	280	43.07
Less: Operating expenses:				
Office and admn. expenses	180	210	30	16.67
Selling and dist. expenses	90	104	14	15.56
Total (b)	270	314	44	16.30
Operating Profit (a - b)	380	616	236	62.10
Less: Non-operating expense:				
Interest on loan	50	70	20	40.00
Net Profit before tax	330	546	216	65.45
Less: Income tax	110	120	10	9.09
	220	426	206	93.64

ILLUSTRATION 3

Following are Balance Sheets of NELCO Ltd. for the year ended 31st March, 2023 and 2024.

Convert them into common size balance sheet and interpret the changes. (Figures in $\mathbf{\xi}$.)

Work Book: Financial Management and Business Data Analytics

Liabilities	2023	2024	Assets	2023	2024
Equity Share Capital	1,00,000	1,65,000	Fixed Assets (net)	1,20,000	1,75,000
Preference Sh. Capital	50,000	75,000	Stock	20,000	25,000
Reserves	10,000	15,000	Debtors	50,000	62,500
Profit & Loss Account	15,000	22,500	Bills Receivable	10,000	30,000
Bank Overdraft	25,000	25,000	Prepaid Expenses	5,000	6,000
Creditors	20,000	25,000	Cash in Bank	20,000	26,500
Provision for Taxation	10,000	12,500	Cash in Hand	5,000	15,000
	2,30,000	3,40,000		2,30,000	3,40,000

Solution:

Common Size Balance Sheet as on 31st March, 2023 and 2024

Doubi sulore	20	23	2024	
Particulars	₹.	%	₹.	%
Shareholders' Fund:				
Equity Share Capital	1,00,000	43.48%	1,65,000	48.53%
Preference Share Capital	50,000	21.74%	75,000	22.05%
Reserves	10,000	4.34%	15,000	4.41%
Profit & Loss Account	7,500	3.26%	10,000	2.95%
(1)	1,67,500	72.82%	2,65,000	77.94%
Current Liabilities:				
Bank Overdraft	25,000	10.87%	25,000	7.35%
Creditors	20,000	8.70%	25,000	7.35%
Provision for Tax	10,000	4.35%	12,500	3.68%
Proposed Dividend	7,500	3.26%	12,500	3.68%
(2)	62,500	27.18%	75,000	22.06%
Total Liabilities (1) + (2)	2,30,000	100%	2,40,000	100%
Fixed Asset (Net) (a)	1,20,000	52.17%	1,75,000	51.47%
Current Assets				
Stock	20,000	8.70%	25,000	7.35%
Debtors	50,000	21.74%	62,500	18.38%

Doutioulous	20	23	2024	
Particulars	Particulars ₹. %		₹.	%
Bills Receivables	10,000	4.34%	30,000	8.82%
Prepaid Expenses	5,000	2.17%	6,000	1.78%
Cash in Bank	20,000	8.70%	26,500	7.79%
Cash in Hand	5,000	2.18%	15,000	4.41%
(b)	1,10,000	47.83%	1,65,000	48.53%
Total Assets (a) + (b)	2,30,000	100%	3,40,000	100%

Interpretation:

- a. In 2023, Current Assets increased from 47.83% to 48.53%.
- b. Cash in Hand and Bank is increased by ₹.16,500
- c. Current Liabilities were decreased from 27.18% to 22.06%. The company can settle the current liabilities from current assets. The liquidity position is reasonably good.
- d. Fixed Assets were increased from ₹.1,20,000 to ₹.1,75,000. These were purchased from the additional share capital issued.
- e. The overall financial position is satisfactory.

ILLUSTRATION 4

The following are the ratios relating to the activities of A Ltd:

Debtors velocity 3 months

Stock velocity 8 months

Creditors velocity 2 months

Gross profit ratio 25 per cent

Gross profit for the current year ended December 31 amounts to ₹ 4,00,000. Closing stock of the year is ₹ 10,000 above the opening stock. Bills receivable amount to ₹ 25,000 and bills payable to ₹ 10,000. Find out: (a) Sales, (b) Sundry debtors, (c) Closing stock, and (d) Sundry creditors.

Solution:

- (a) Determination of sales: Sales = ₹ 4,00,000/25% = ₹.16,00,000
- (b) Determination of sundry debtors:

Debtors velocity is 3 months. In other words, debtors' collection period is 3 months, or debtors' turnover ratio is (12/3) 4. Assuming all sales to be credit sales and debtors turnover ratio being calculated on the basis of year-end figures,

Debtors turnover ratio = Credit sales /(Closing debtors + Bills receivable)

or, Closing debtors + Bills receivable = Credit sales/ Debtors turnover ratio = ₹ 16, 00, 000/4 = ₹ 4,00,000

Closing debtors = ₹ 4,00,000 – ₹ 25,000 = ₹ 3,75,000

(c) Determination of closing stock:

Stock velocity of 8 months signifies that the inventory holding period is 8 months and stock turnover ratio is $1.5 = (12 \text{ months} \div 8)$.

Stock turnover = Cost of goods sold (i.e., Sales – Gross profit)/ Average stock

or, 1.5 = ₹ 12, 00, 000/Average stock

or, Average stock = ₹ 12,00,000/1.5 = ₹ 8,00,000

Closing stock – Opening stock = ₹ 10,000(1)

(Closing stock + Opening stock)/2 = ₹8,00,000

Or, Closing stock + Opening stock = ₹ 16,00,000(2)

Subtracting (1) from (2) we have,

2 Opening stock = ₹ 15,90,000

or, Opening stock = ₹ 7,95,000

Therefore, Closing stock = ₹ 8,05,000

(d) Determination of sundry creditors:

Creditors velocity of 2 months signifies that the credit payment period is 2 months. In other words, creditors' turnover ratio is $6(12 \text{ months} \div 2)$. Assuming all purchases to be credit purchases and creditors turnover is based on year-end figures,

Creditors turnover ratio = Credit purchases/ (Creditors + Bills payable)

or, 6 = ₹ 12,10,000/(Creditors + ₹ 10,000)

or, Creditors + ₹ 10,000 = ₹ 12,10,000/6 = ₹ 2,01,667

Creditors = ₹ 2,01,667 – ₹ 10,000 = ₹ 1,91,667

Note: Credit purchases are calculated as follows:

 $Cost\ of\ goods\ sold\ =\ Opening\ stock\ +\ Purchases\ -\ Closing\ stock$

₹ 12,00,000 = ₹ 7,95,000 + Purchases - ₹ 8,05,000

₹ 12,00,000 + ₹ 10,000 = Purchases

₹ 12,10,000 = Purchases (credit).

ILLUSTRATION 5

From the following particulars, prepare a summarised Balance Sheet in detail as at 31st March, 2023:

Fixed Assets to Net worth = 0.8: 1.

Current Ratio = 3: 1

Fixed Assets = ₹. 16,00,000.

Reserve included in proprietor's fund = 25%

Acid Test Ratio = 3: 2

Cash and Bank = ₹. 30,000

Long-term Loan = Nil

Solution:

(1) Fixed Assets/Net worth = 0.8

16,00,000/Net worth = 0.8

Net worth = 20,00,000.

So, Share Capital + Reserves = 20,00,000

Reserve included in proprietor's fund ---- 25%

So, Share Capital = 75% of 20,00,000 = 15,00,000

Reserves = 25% of 20,00,000 = 5,00,0000

Again, Net Worth = Fixed Assets + Working Capital = 20,00,000

Working Capital = 20,00,000 - 16,00,000 = 4,00,000

(2) Current Assets/Current Liabilities = 3

or, Current Assets = 3 Current Liabilities.

Working capital = Current Assets -- Current Liabilities = 4,00,000

or, 3 Current Liabilities -- Current Liabilities = 4,00,000

or, 2 × Current Liabilities = 4,00,000; Current Liabilities = 2,00,000;

Current Assets = $3 \times 2,00,000 = 6,00,000$.

Acid Test Ratio = 3:2

or, (Current Assets - Stock)/Current Liabilities = 3/2

or, (6,00,000 - Stock)/2,00,000 = 3:2

or, 12,00,000 -- 2 Stock = 6,00,000

or, 2 Stock = 6,00,000

or, Stock = 3,00,000.

Balance Sheet as on 31.03.2023

Liabilities	₹.	Assets		₹.
Share Capital	15,00,000	Fixed Assets		16,00,000
Reserve	5,00,000	Current Assets:		
Current Liabilities	2,00,000	Bank	30,000	
		Stock	3,00,000	
		Others	2,70,000	6,00,000
	22,00,000			22,00,000

ILLUSTRATION 6

Using the following data, complete the Balance Sheet of F Limited as at 31.3.2023:

- (a) Gross Profit 25% of Sales
- (b) Gross Profit = ₹. 2,40,000
- (c) Shareholders' equity = ₹. 40,000
- (d) Credit sales to total sales = 80%
- (e) Total turnover to total assets = 4 times
- (f) Cost of sales to Inventory = 10 times
- (g) Average collection period = 5 days, assume 365 days in a year.
- (h) Long-term debt =?
- (i) Current ratio = 1.5
- (j) Sundry Creditors = ₹. 1,20,000.

Solution:

Working Notes:

(1) Calculation of Sales

Given, Gross profit @ 25% = 2,40,000

Sales =
$$2,40,000/25\% = 9,60,000$$
.

- (a) Credit Sales = 80% of ₹. 9,60,000 = ₹. 7,68,000
- (b) Cash Sales = 20% of ₹. 9,60,000 = ₹. 1,92,000.
- (2) Calculation of Cost of Goods Sold

Cost of Goods Sold = Sales - Gross Profit = ₹. 9,60,000 - ₹. 2,40,000 = ₹. 7,20,000.

(3) Calculation of Closing Inventory

Cost of Goods Sold to Inventory = 10 times.

Inventory = COGS / 10 = 720000 / 10 = 72,000 (assuming opening and closing inventory are same)

(4) Calculation of Total Assets

Total Turnover to Total Assets = 4 times.

Total Turnover/Total Assets = 4

Total Assets = 9,60,000/4 = 2,40,000

(5) Calculation of Current Assets

Current Ratio = Current Assets/Current Liabilities = 1.5: 1 (as, CL = Creditors = 120000)

1.5 Current Liabilities = Current Assets

or Current Assets = ₹. 1,20,000 / 1.5 = ₹. 1,80,000.

(6) Calculation of Debtors

Average collection period = 5 days

Debtors = (Credit Sales/365)
$$\times$$
 5

Debtors = $(7,68,000/365) \times 5 = 10,520$

(7) Calculation of Cash

Current Assets = 1,80,000

Cash + Debtors + Inventory = 90,000

Cash = 1,80,000 - 10,520 - 72,000 = 97,480

Balance Sheet as on 31.03.2023

Liabilities	₹.	As	sets	₹.
Shareholders' equity	40,000	Fixed Assets (b. f)		60,000
Long term loan (b. f)	80,000	Current Asse	ts:	
Current Liabilities	1,20,000	Cash	97,480	
		Debtors	10,520	
		Stock	72,000	1,80,000
	2,40,000			2,40,000

ILLUSTRATION 7

From the information given below relating to Bad Past Ltd., calculate Altman's Z-score and comment:

Working Capital to Total Assets = 30%

Retained Earnings to Total Assets = 25%

EBIT to Total Assets = 20%

Market Value of Equity Shares to Book Value of Total Debt = 170%

Sales to Total Assets = 0.5 times

Solution:

As per Altman's Model (1968) of Corporate Distress Prediction:

$$Z= 1.2 X_1 + 1.4 X_2 + 3.3 X_3 + 0.6 X_4 + 1.0 X_5$$

Here, the five variables are as follows:

 X_1 = Working Capital to Total Assets = 30%

 X_2 = Retained Earnings to Total Assets = 25%

 X_3 = EBIT to Total Assets = 20%

 X_4 = Market Value of Equity Shares to Book Value of Total Debt = 70%

X = Sales to Total Assets = 0.5 times

Hence, Z-score =
$$(1.2 \times 30\%) + (1.4 \times 25\%) + (3.3 \times 20\%) + (0.6 \times 170\%) + (1 \times 0.50)$$

= $0.36 + 0.35 + 0.66 + 1.02 + 0.50$
= 2.89

Comment: As the calculated value of Z-score is higher than 1.81 but lower than 2.99, it falls in the grey area and hence the bankruptcy status cannot be identified explicitly. It requires further analysis.

ILLUSTRATION 8

A firm wants to know whether it belongs to the non- bankrupt class of firms. Certain figures are extracted from the financial statements of the firm. You are required to use Altman's Z score model and place the firm in the appropriate class.

Sales : ₹. 40,00,000 **EBIT** : ₹. 20.00.000 : ₹. Total Assets 80,00,000 Book Value of Total Liabilities : ₹ 32,00,000 **Retained Earnings** : ₹. 48,00,000 Market Value of Equity : ₹. 1,60,00,000 **Working Capital** : ₹. 16,00,000

Solution:

As per Altman's model,

$$Z = 1.2 X_1 + 1.4 X_2 + 3.3 X_3 + 0.6 X4 + 1.0 X_5$$

Where.

 $X_1 = Working Capital / Total Assets = 16,00,000/80,00,000 = 0.2$ $X_2 = Retained Earnings / Total Assets = 48,00,000/80,00,000 = 0.6$ $X_3 = Earnings Before Interest and Tax / Total Assets = 20,00,000/80,00,000 = 0.25$ $X_4 = Market Value of Equity / Total Liabilities = 1,60,00,000/32,00,000 = 5$ $X_5 = Sales / Total Assets = 40,00,000/80,00,000 = 0.5$ $X_5 = 1.2(0.2) + 1.4(0.6) + 3.3(0.25) + 0.6(5) + 1.0(0.5) = 5.405$

Since, in this case the Z score of the firm is higher than 2.99, the firm is a non-distressed firm and is in a non-bankrupt class.

ILLUSTRATION 9

From the following information extracted from the Balance Sheets of W Ltd., calculate Funds from Operations: (Figure in ₹.)

	31.03.2021	31.03.2022
Share Capital	80,000	1,00,000
General Reserve	30,000	35,000
Profit and Loss Account	40,000	1,00,000
Depreciation Fund	15,000	18,000
Goodwill	15,000	10,000
Preliminary Expenses	3,000	2,000
Patents	10,000	8,000

Bonus shares have been issued for ₹. 20.000 during 2021-22 capitalizing profits from Profit and Loss Account. It is observed in the Profit and Loss Account that an income from sale of machinery ₹.6.000 has been received.

Solution:

	(₹.)
Profit and Loss Account (as on 31st March. 2022)	1,00,000
+ Increase in share capital (Bonus issue)	
Transferring from Profit and Loss A/c	20,000
+ Transfer to General Reserve	5,000
+ Provision for Depreciation	3,000
+ Goodwill written off	5,000
+ Preliminary Expenses written off'	1,000
+ Patents written off	2,000
(-) Income from sale of machinery	6,000
	1,30,000
(-) Balance m Profit and Loss Account (31.03.21)	40,000
Funds from Operations	90,000

ILLUSTRATION 10

Following information is available from the books of Suresh Ltd. for the year end 31-12-2021 and 31-12-2022.

Particulars	31-12-2021	31-12-2022
Profit made during the year	-	2,50,000
Income received in advance	500	400
Prepaid expenses	1,600	2,000
Debtors	80,000	20,000
Bills receivable	25,000	40,000
Creditors	45,000	65,000
Bills payable	13,000	5,000
Outstanding expenses	2,500	3,000
Accrued income	1,500	1,800

Calculate cash flow from operations for the year ending 31-12-2022.

Solution:

Calculation for cash from operation for the year ending on 31.03.2022

Particulars	₹.	₹.
Profit made during the year		2,50,000
Add:		
Decrease in Debtors		
Increase in Creditors	60,000	
Increase in Outstanding Expenses	20,000	80,500
	500	3,30,500
Less:		
Decrease in income received in advance	100	
Increase in prepaid expenses	400	
Increase in bills receivable	15,000	

Work Book: Financial Management and Business Data Analytics

Particulars	₹.	₹.
Decrease in bills payable	8,000	
Increase in accrued income	300	(-)23,800
		2,06,700

ILLUSTRATION 11

Calculate Cash Flow from Operating Activities from the following:

Net Profit before tax	₹. :	13,60,000
Items considered in determining the above Net Profit:		
Interest on long term borrowings	₹.	1,60,000
Depreciation and Amortization	₹.	3,40,000
Transfer to Reserves	₹.	2,00,000
Gain on sale of machinery	₹.	1.20.000

Balances of Current Assets and Current Liabilities were as follows:

Particulars	Opening Balance (₹.)	Closing Balance (₹.)
Trade Receivables	11,00,000	9,60,000
Trade Payables	7,60,000	8,00,000
Inventories	5,60,000	6,40,000
Prepaid Expense	80,000	1,00,000
Income received in advance	20,000	60,000

Solution:

Cash Flow Statement

For the year ended on

Particulars	₹.	₹.
Net Profit before tax		13,60,000
Add: Depreciation and amortization		3,40,000
Add: Interest on long term borrowings		1,60,000

Work Book: Financial Management and Business Data Analytics

Particulars	₹.	₹.
Add: Transfer to Reserves		2,00,000
Less: Gain on sale of machinery		(1,20,000)
Operating profit before working capital changes		19,40,000
Add: Decrease in trade receivables		1,40,000
Add: Increase in trade payables		40,000
Add: Increase in income received in advance		40,000
		21,60,000
Less: Increase in inventory		(80,000)
Less: Increase in prepaid expense		(20,000)
Cash Flow from Operating Activities		20,60,000

ILLUSTRATION 12

From the following summary of cash account of XL Pharma Ltd. for the year ended 31.03.2024, calculate Cash Flow from Operating Activities using Direct Method and prepare Cash Flow Statement.

Particulars	₹.	Particulars	₹.
To Balance b/d	5,00,000	By Cash Purchase	5,20,000
To Cash Sales	6,00,000	By Trade Payables	5,76,000
To Trade Receivables	6,40,000	By Rent	2,00,000
To Interest and Dividend	8,000	By Administrative Exp.	1,00,000
To Bank Loan	6,00,000	By Income Tax	1,20,000
To Sale of Investment	3,20,000	By Investment	3,60,000
To Trade Commission	1,60,000	By Repayment of Loan	4,00,000
		By Interest on Bank Loan	28,000
		By Balance c/d	5,24,000
	28,28,000		28,28,000

Solution:

Cash Flow Statement For the year ended on 31.03.2024

Particulars	₹.	₹.
Cash Flow from Operating Activities		
Cash Sales		6,00,000
Collection from Trade Receivables		6,40,000
Trade Commission received		1,60,000
		14,00,000
Less: Cash purchase	5,20,000	
Less: Payment to Trade Payables	5,76,000	
Less: Payment of Rent	2,00,000	
Less: Payment of administration expenses	1,00,000	13,96,000
Cash Generated from Operations		4,000
Less: Payment of Income Tax		1,20,000
		(1,16,000)
Cash Flow from Investing Activities		
Sale of investment	3,20,000	
Interest and dividend received	8,000	
Purchase of investment	(3,60,000)	(32,000)
Cash Flow from Financing Activities		
Bank loan raised	6,00,000	
Repayment of loan	(4,00,000)	
Interest on bank loan	(28,000)	1,72,000
		24,000
Add: Opening Cash Balance		5,00,000
Closing Cash Balance		5,24,000

Sources of Finance and Cost of Capital [Study Material - Module 4]

ILLUSTRATION 1

A company's share is currently quoted in the market at ₹.20. The company pays a dividend of ₹.2 per share and the investors expect a growth rate of 5% per year. You are required to calculate (a) cost of Equity Capital of the company and (b) the market price per share if the anticipated growth rate dividend is 7%.

Solution:

(a) The cost of Equity Capital (Ke) may be ascertained as follows:

$$K_e = \frac{D_1}{P_0} + g$$

Where,

 D_1 = Dividend per share at the end of the current year, i.e. \mathbb{T} . 2

 P_0 = Market price per share, i.e. ₹. 20

g = Expected growth rate of dividend, i.e. 5% or 0.05

Therefore,
$$K_e = \frac{2}{20} + 0.05 = 0.15 = 15\%$$

(b) We know,

$$K_e = \frac{D_1}{P_0} + g$$

Where,
$$D_1 = ₹.2$$
, $K_e = 0.15$, $g = 0.07$

$$K_e = 0.15 = \frac{2}{P_0} + 0.07$$

$$P_0 = \frac{2}{0.15 - 0.07} = \text{?. 25 per share}$$

ILLUSTRATION 2

Y company Ltd. issues 1,000 12% preference shares of ₹.1000 each at a premium of 10% but redeemable at a premium of 20% after 5 years. The company pays underwriting commission at the rate of 5%. If tax on dividend is 12.5%, surcharge is 2.5% and education cess is 3%, calculate the cost of Preference Share Capital.

Solution:

The Cost of Capital of redeemable preference share $K_{_{\mathrm{D}}}$ may be computed as follows:

$$K_p = \frac{D(1 + Dt) + 1/n(RV - NP)}{1/2(RV + NP)}$$

Where,

Kp = Cost of Preference Share Capital

D = Annual Preference Dividend, i.e. ₹.120 per share

RV = Redeemable Value, i.e. ₹.1000 + (20% of ₹.100) = ₹.1200

NP = Net Proceeds of the Share, ₹.1000+ (10% of ₹.1000) – 5% of ₹.1100 = ₹.1045

n = Number of years for redemption, i.e. 5 years

D_. = Dividend Tax = 12.5+ surcharge at the rate of 2.5% + education cess at the rate of 3%

= 12.5 + 2.5% of (12.5) + 3% of (12.5 + 0.3125) = 12.5 + 0.3125 + 0.3844

= 13.1969% or 0.1319

Therefore.

$$\mbox{Kp} = \frac{120(1 + 0.1319) + 1/5(1200 - 1045)}{1/2(1200 + 1045)} = 0.1486 = 14.86\%$$

ILLUSTRATION 3

R & Co. has issued 12% debenture of face value ₹.100 for ₹.10 lakh. The debenture is expected to be sold at 5% discount. It also involves flotation cost of ₹.5 per debenture. The debentures are redeemable at a premium of 5% after 10 years. Calculate the cost of debenture if the tax rate is 50%.

Solution:

After tax cost of debenture (K_d) may be calculated as follows:

Cost of debenture
$$(K_d) = \frac{I(1-t) + 1/n(RV - NP)}{1/2(RV + NP)}$$

Where,

K_d = Cost of debt after tax

I = Rate of interest, i.e. 12% or ₹.12 per debenture

t = Tax rate, i.e. 50% or 0.50

n = Number of years in which debenture is to be redeemed, i.e. 10 years

RV = Principal value at the time of redemption, i.e. ₹.100 + (5% of ₹.100) or ₹.105 per debenture

NP = Net cash proceeds at the time of issue, i.e. [₹.100 – (5% of ₹.100) – ₹.5] or ₹.90 per debenture Therefore.

$$K_{d} = \frac{12(1 - 0.50) + 1/10(105 - 90)}{1/2(105 + 90)} = 0.07692 = 7.69\%$$

ILLUST RATION 4

Shares of A Ltd. are currently selling at ₹. 340 each. The company has been regularly paying dividends for last several years as follows:

Year	Amount (₹.)
1	24.00
2	25.44
3	26.96
4	28.58
5	30.30
6	32.14

Find out the growth rate of the company, given that the company follows a policy of fixed DP Ratio. Also find out the cost of equity of the company. Given, FVIF (6%, 5) = 1.339

Solution:

In this case, Dividend for year 1, $\stackrel{\checkmark}{_{\sim}}$ 24.00 has increased to $\stackrel{\checkmark}{_{\sim}}$ 32.14 for the year 6. So, the cumulative growth rate for 5 years is calculated as follows:

Conditionally, $D_1 \times FVIF(x\%, 5) = D_6$

or,
$$24.00 \times FVIF(x\%, 5) = 32.14$$

Or, FVIF
$$(x\%, 5) = 32.14/24.00 = 1.339 = FVIF (6\%, 5)$$

So, the growth rate in dividend = 6%

Cost of Equity =
$$\frac{D_1}{P_0}$$
 + g = $\frac{32.14(1+0.06)}{340}$ + 0.06 = 16.02%

ILLUSTRATION 5

X Ltd. has 10% perpetual debt of ₹.1,00,000. The tax rate is 35%. Determine the Cost of Capital (before tax as well as after tax) assuming the debt is issued at (i) par, (ii) 10% discount and (iii) 10% premium.

Solution:

(i) Debt issued at par:

Before-tax cost,
$$K_i = \frac{I}{NP} = \frac{100000 \times 10\%}{100000} = 10\%$$

After-tax cost,
$$K_d = K_i (1 - t) = 10\% (1 - 0.35) = 6.5\%$$

(ii) Issued at discount:

Before-tax cost,
$$K_i = \frac{10000}{90000} = 11.11\%$$

After-tax cost,
$$K_d = 11.11\% (1 - 0.35) = 7.22\%$$

(iii) Issued at premium:

Before-tax cost,
$$K_i = \frac{10000}{110000} = 9.09\%$$

After-tax cost,
$$K_d = 9.09\% (1 - 0.35) = 5.91\%$$

ILLUSTRATION 6

Equity shares (F.V $\stackrel{?}{\sim}$. 10 each) of ABC Ltd. are being quoted at PE of 7.5 times. The retained earnings of the company being $\stackrel{?}{\sim}$.12 at 40%.

- (i) Find out the cost of equity, K_a, if the growth rate of the firm is 7%.
- (ii) Find out the indicated market price of the shares, given that the K_e remains as above and growth rate increases to 9%.

(iii) If Ke of the firm is 15% and growth rate being 10%, then what is the indicated market price of the equity share.

Solution:

Retained earnings = ₹.12

Retention Ratio = 40%

So, Earnings Per Share = ₹.12/0.40 = ₹.30

Price Earnings Ratio = 7.5 times

Dividend Per share, D0 = (₹.30 – ₹.12) = ₹.18

(i) Since,
$$D_1 = D_0 (1+g) = 18.00(1+.07) = ₹. 19.26$$

$$P_0 = 30 \times 7.5 = \text{?.} 225$$

If
$$g = 7\%$$
, $K_e = (D_1/P_0) + g = (19.26/225) + 0.07 = 15.56\%$

(ii) If
$$K_a = 15.56\%$$
 and $g = 9\%$ $P_0 = 19.62/(0.1556 - 0.09) = ₹.299.09$

(iii) If
$$K_a = 15\%$$
 and $g = 10\% P_0 = 19.80/(0.15 - 0.10) = ₹.396.00$

ILLUSTRATION 7

While considering the most desirable Capital Structure of a company, the following estimates of the cost of debt and Equity Capital (after tax) have been made at various levels of the debt-equity mix:

Debt as Percentage of Total Capital Employed	Cost of Debt (%)	Cost of Equity (%)
0	-	15
10	7	15
20	7	16
30	8	17
40	9	18
50	10	21
60	11	24

What is composite Cost of Capital at different levels of debt-financing? Can you suggest an optimal debt-equity mix in the above case?

Solution:

The following table shows Cost of Capital at different levels:

	Equity		Debt		Total Cost of	
Proportion	Cost	Weighted Cost	Proportion	Cost	Weighted Cost	Capital (K_{o})
1.00	15	15	_	_	_	15.0
0.90	15	13.5	0.10	7	0.7	14.2
0.80	16	12.8	0.20	7	1.4	14.2
0.70	17	11.9	030	8	2.4	14.3
0.60	18	10.8	0.40	9	3.6	14.4
0.50	21	10.5	0.50	10	5	15.5
0.40	21	9.6	0.60	11	6.6	16.2

From the above table, it is evident that the Cost of Capital is minimum at two levels, i.e. (a) when equity is 90% and debt is 10% and (b) when equity is 80% and debt is 20%; hence, either of the two levels may be adopted.

ILLUSTRATION 8

The current Capital Structure of a firm is given as follows:

	Amount (₹. in lakh)
Equity Share Capital (₹.100 each)	400
Retained earnings	200
12% debentures (₹.100 each)	400
	1,000

You are given the following further information:

- (i) Current market value per share is ₹. 300Dividend paid per share in the last year was ₹. 45Growth rate in dividend is 10%
- (ii) The market value of debenture is ₹. 110 per debenture
- (iii) Corporate tax rate is 40%

Using market values as weights, find out the average Cost of Capital of the firm.

Solution:

Calculation of Specific Cost of Capital:

(i) For Equity Share Capital (K_a)

$$K_e = \frac{D_1}{P_0} + g$$

Where, D₀ = Previous year dividend per share, i.e. ₹. 45

 P_0 = Market price per share, i.e. ₹. 300

g = Expected growth rate in dividend, i.e. 10% or 0.10

$$D_1 = D_0(1+g) = 45(1+0.10) = ₹.49.50$$

So,
$$K_e = +0.10 = 0.265 = 26.5\%$$

(ii) For Retained Earnings (K_x)

 $K_r = K_g = 26.5\%$, assuming external yield criterion

(iii) For 12% Debentures (K_d)

$$K_d = I (1 - t)$$

where,

I = Cost of debentures before tax, i.e. 12%

t = Corporate tax rate, i.e. 40% or 0.40

$$K_d = 12 (1 - 0.40) = 7.20\%$$

Calculation of Market Value

The total market value of equity of ₹.12,00,00,000 (i.e. 4,00,000 shares at the rate of ₹.300 per share) has been divided into equity share capital and retained earnings in the ratio of their book value, i.e. 2:1.

Market value of ESC = $1200000 \times 2/3 = ₹.8,00,00,000$

Market value of Retained earnings = $1200000 \times 1/3 = ₹.4,00,00,000$

Market value of Debentures = 400000 × 110 = ₹. 4,40,00,000

Calculation of Weighted Average Cost of Capital (K₀) (using Market Values as Weights)

Source of Capital	Amount (Market value) (₹.)	Proportion or Weights	After-tax Cost (%)	Weighted Cost
Equity Share Capital	8,00,00,000	0.4878	26.50	12.9267

Source of Capital	Amount (Market value) (₹.)	Proportion or Weights	After-tax Cost (%)	Weighted Cost
Retained Earnings	4,00,00,000	0.2439	26.50	6.4634
12% Debentures	4,40,00,000	0.2683	7.20	1.9318
	16,40,00,000	1.0000		21.3219

So, WACC = $K_0 = 21.32\%$

ILLUSTRATION 9

X Ltd. provides you the following information:

Particulars	
No. of Equity Shares (₹. 10 each)	1,50,000
No. of 17% Preference Shares (₹. 100 each)	40,000
Retained Earnings	₹. 10,00,000
No. of 7.5% Debentures (₹ 100 each)	60,000
10% Long-term Loan	₹. 20,00,000

Additional Information:

- (i) The Current market price of the company's equity share is ₹. 60. Expected Dividend per Equity Share for the last year is ₹. 2.40 which is expected to grow @ 5%. The flotation cost on issue of new equity shares is expected to be ₹. 10 per share.
- (ii) The Preference shares of the company which are redeemable at par after 5 years are currently selling at ₹. 90 per Preference Share.
- (iii) The Debentures of the company which are redeemable at 10% premium after 5 years are currently quoted at ₹. 90 per debenture.
- (iv) The corporate tax rate is 20%.

Calculate Weighted Average Cost of Capital using Market Value Weights.

Solution:

Calculation of specific costs:

Cost of Equity (
$$K_e$$
) = $\frac{D_1}{P_0}$ + g = $\frac{2.40}{60-10}$ + 0.05 = 0.098 = 9.8%

Cost of Preference Share Capital
$$(K_p) = \frac{D + 1/n(P - I)}{\frac{1}{2}(p + I)} = \frac{17 + 1/5(100 - 90)}{\frac{1}{2}(100 + 90)} = 0.20 = 20\%$$

Cost of Retained Earnings $(K_r) = K_a = 9.8\%$

Cost of Debentures
$$(K_d) = \frac{Int.(1-t)+1/n(P-I)}{\frac{1}{2}(P+I)} = \frac{7.50(1-0.20)+1/5(110-90)}{\frac{1}{2}(110+90)} = 0.10 = 10\%$$

Cost of Loan $(K_1) = r(1-t) = 10(1 - 0.20) = 8\%$

Calculation of Market Value

MV of Equity and RE = $60 \times 150000 = ₹$. 90,00,000 (to be divided in BV ratio)

MV of Equity = $90,00,000 \times 15/20 = ₹.67,50,000$;

MV of RE = $90,00,000 \times 5/20 = ₹.22,50,000$

MV of PSC = $90 \times 40000 = ₹.36,00,000$

MV of Debenture = $90 \times 60000 = ₹.54,00,000$;

MV of LTL = BV of LTL = ₹. 20,00,000

Calculation of Weighted Average Cost of Capital using Market Value weights

Sources	Market Value	MV Weights (W _i)	Cost (K _i) (%)	K _i W _i (%)
ESC	67,50,000	0.3375	9.8	3.3075
PSC	36,00,000	0.18	20	3.6
Retained Earnings	22,50,000	0.1125	9.8	1.1025
Debentures	54,00,000	0.27	10	2.70
LTL	20,00,000	0.10	8	0.80
Total	2,00,00,000	1.00		11.51

So, WACC is 11.51%

ILLUSTRATION 10

The Capital Structure and other information of a company are given as follows:

Sources	Amount (in lakh)	After-tax Cost of Capital (%)
Equity Shares (₹.100 each)	100	14
Reserve and Surplus	50	?
Debentures	200	?

The market value of equity share is ₹.300 per share. The company uses market value of weights for computing average cost of capital. Corporate tax rate is 40% whereas the average Cost of Capital is 10%. What is the cost of reserve and surplus and cost of debt (before tax)?

Solution:

Let cost of debt (k_d) be x

Computation of WACC (Weights under Market Value)

Sources	Market Value (in lakh)	Weights	Specific cost (%)	Weighted cost (%)
Equity Share Cap.	100	0.40	14	5.60
Reserve and Surplus	50	0.20	14*	2.80
Debentures	200	0.40	X	0.40x
	500	1.00		10.00 (given)

^{*}Cost of reserve and surplus = K_e = 14% (As per external yield criteria)

Now,
$$5.60\% + 2.80\% + 0.4x = 10.00\%$$

$$0.4x = (10.00 - 8.40) \%$$

$$x = 1.60\%$$

$$K_d = 1.60/.40$$

Cost of debt (before tax) = 4%/(1 - 0.40) = 6.67%

35

ILLUSTRATION 11

X Ltd. requires additional finance of ₹.20 lakhs for meeting its investment plans. It has ₹.4 lakh in the form of retained earnings available for investment purposes. The following are the further details:

- (i) Debt-equity mix, 40:60
- (ii) Cost of debt: up to ₹. 4,00,000, 10% (before tax)

Beyond ₹. 4,00,000, 12% (before tax)

- (iii) Earnings per share, ₹. 5
- (iv) Dividend payout, 60% of earnings
- (v) Expected growth rate in dividend, 5%
- (vi) Current market price per share, ₹. 35
- (vii) Tax rate, 35%

Compute the overall weighted average after tax cost of additional finance.

Solution:

Additional finance required	= ₹. 20,00,000
-----------------------------	----------------

Debt-equity mix
$$= 40.60$$

Rate of Tax
$$= 35\%$$

Equity finance required
$$= ₹. 20,00,000 × 60\% = ₹. 12,00,000$$

So, Dividend per share
$$= ₹.5 \times 60\%$$
 $= ₹.3$

(i) Cost of equity =
$$K_e = \frac{D_1}{P_0} + g = \frac{3(1+0.05)}{35} + 0.05 = 0.14 = 14\%$$

(ii) Cost of retained earnings (
$$K_r$$
) = Cost of equity (K_e) = 14%

(iii) Cost of 10% long-term debt =
$$K_d = 10\% (1 - 0.35) = 0.65$$
 or 6.50%

(iv) Cost of 12% long-term debt =
$$K_d = 12\% (1 - 0.35) = 0.780$$
 or 7.80%

Computation of WACC

Sources of Finance	Market Value (₹.)	Weights	Specific Cost (%)	Weighted Cost (%)
Equity shares capital	8,00,000	0.40	14.00	5.60
Retained earnings	4,00,000	0.20	14.00	2.80
10% Long-term debt	4,00,000	0.20	6.50	1.30
12% Long-term debt	4,00,000	0.20	7.80	1.56
	20,00,000	1.00		11.26

Therefore weighted average Cost of Capital is 11.26%

ILLUSTRATION 12

The capital structure of a company is given below:

Equity share capital (5,000 shares of ₹.100 each)	₹.	5,00,000
10% Preference share (2,000 shares of 100 each	₹.	2,00,000
12% Debentures	₹.	3,00,000
	₹.	10,00,000

The operating profit is ₹.2,90,000. The market price of each equity shares is ₹. 250 and of each preference share is ₹.125.

Find the cost of each source of capital assuming

- (a) Corporate tax to be 30% and
- (b) Corporate dividend tax to be 10%.

Solution:

(i) Corporate tax = 30%

Corporate dividend tax = 10%

Operating profit = ₹. 2,90,000

Cost of equity = $Ke = \frac{E}{P}$ where,

E = Earnings per share

 P_1 = Market price of each equity share = ₹.250

Work Book: Financial Management and Business Data Analytics

Now, earnings available to equity shareholders:

Particulars	₹.
Operating profit	2,90,000
Interest on Debenture (₹.3,00,000 × 12%)	36,000
	2,54,000
Corporate Tax @ 30% (₹.2,54,000 × 30%)	76,200
	1,77,800
Preference Dividend (₹.2,00,000 × 10%)	20,000
	1,57,800
Dividend distribution Tax on Preference Share Dividend (₹.20,000 × 10%)	2,000
Earnings available to equity share holders	1,55,800

E = Earnings per share

= Earnings available to equity shareholders/No of equity shares = 1,55,800/5,000 = ₹.31.16

Cost of equity = Ke =
$$\frac{E}{P_1} = \frac{31.16}{250} = 0.12464 = 12.464\%$$

Cost of Preference Shares =
$$K_p = \frac{D}{P_1} (1 + Dt)$$

where,

D = Dividend per preference share = ₹. 10

 P_1 = Market price of preference share = ₹. 125

Dt = Corporate dividend tax = 10%

So,
$$Kp = \frac{D}{P_1}(1 + Dt) = \frac{10}{125}(1 + 0.10) = 8.8\%$$

Cost of Debentures = $K_d = I (1 - t)$

where,

I = Rate of interest

t = Corporate tax = 30%

$$K_d = I (1 - t) = 12(1 - 0.30) = 8.4\%$$

So, Cost of Debentures = K_d = 8.4%.

Capital Budgeting [Study Material - Module 5]

ILLUSTRATION 1

A company is considering a new project for which the investment data are as follows:

Capital outlay ₹. 4,00,000

Depreciation 20% p.a.

Forecasted annual income before charging depreciation, but after all other charges are as follows:

Year	₹.
1	2,00,000
2	2,00,000
3	1,60,000
4	1,60,000
5	80,000

On the basis of the available data, set out calculations, illustrating and comparing the following methods of evaluating the return:

- (a) Payback method.
- (b) Rate of return on original investment.

Solution:

Since there is no tax, the annual income before depreciation and after other charges is equivalent to Cash flows (CF).

(a) Capital outlay of ₹. 2,00,000 is recovered in the first two years, (₹.2,00,000 (year 1) + ₹2,00,000 (year 2), therefore, the pay-back period is two years.

(b) Rate of return on original investment:

Year	Income (₹.)	Depreciation (₹.)	Net Income (₹.)
1	2,00,000	80,000	1,20,000
2	2,00,000	80,000	1,20,000
3	1,60,000	80,000	80,000
4	1,60,000	80,000	80,000
5	80,000	80,000	Nil
			4,00,000

Average Income = ₹. 4,00,000/5 = ₹. 80,000

Rate of Return = (Average income/ Original investment) × 100

 $=(80,000/4,00,000) \times 100$

= 20%

ILLUSTRATION 2

A Ltd. has decided to purchase a machine to augment the company's installed capacity to meet the growing demand for its products. There are three machines under consideration of the management The relevant details including estimated yearly expenditure and sales arc given below: All sales arc on cash. Corporate Income Tax rate is 30%.

	Machine A	Machine B	Machine C
Initial investment required	₹. 3,00,000	₹. 3,00,000	₹. 3,00,000
Estimated annual sales	5,00,000	4,00,000	4,50,000
Cost of Production (estimated):			
Direct Materials	40,000	50,000	48,000
Direct labour	50,000	30,000	36,000
Factory Overheads	60,000	50,000	58,000
Administration costs	20,000	10,000	15,000
Selling and distribution costs	10,000	10,000	10,000

The economic life of Machine A is 2 years, while it is 3 years for the other two. The scrap values arc ₹.40,000, ₹.25,000, and ₹. 30,000 respectively. You are required to find out the most profitable investment based on Pay Back Period Method.

Solution:

Calculation of Pay Back Period of Machines:

	Machine A	Machine B	Machine C
Initial investment (A)	6,00,000	6,00,000	6,00,000
Sales (B)	10,00,000	8,00,000	9,00,000
Costs:	0	0	0
Direct Material	80,000	1,00,000	96,000
Direct Labour	1,00,000	60,000	72,000
Factory Overhead	1,20,000	1,00,000	1,16,000
Depreciation	2,60,000	1,83,333	1,80,000
Administration Cost	40,000	20,000	30,000
Selling and Distribution costs.	20,000	20,000	20,000
Total Cost (C)	6,20,000	4,83,333	5,14,000
Profit before Tax (B - C)	3,80,000	3,16,667	3,86,000
Less: Tax @ 30%	1,14,000	95,000	1,15,800
Profit after Tax	2,66,000	2,21,667	2,70,200
Add: Depreciation	2,60,000	1,83,333	1,80,000
Net Cash Flow (D)	5,26,000	4,05,000	4,50,200
Payback period (years) (A ÷ D)	1.14	1.48	1.33

Machine A has lowest payback period, so it may be preferred over the other two Machines.

ILLUSTRATION 3

A firm whose cost of capital is 10% is considering two mutually exclusive projects A and B, the details of which are:

	Year	Project A (₹.)	Project B (₹.)
Initial Cost	0	₹.2,00,000	₹.2,00,000
Cash Inflows	1	20,000	1,00,000
	2	40,000	80,000

Work Book: Financial Management and Business Data Analytics

Year	Project A (₹.)	Project B (₹.)
3	60,000	40,000
4	90,000	20,000
5	1,20,000	20,000

Compute the Net Present Value and Profitability Index at 10% for the two projects.

Solution:

Calculation of NPV

Voor	CF (₹.)		DVIE @100/	Total 1	PV (₹.)
Year	A	В	PVIF @10%	A	В
1	20,000	1,00,000	0.909	18,180	90900
2	40,000	80,000	0.826	33,040	66080
3	60,000	40,000	0.751	45,060	30040
4	90,000	20,000	0.683	61,470	13660
5	1,20,000	20,000	0.621	74,520	12420
Total PV				2,32,270	2,13,100
Less cash outf	low	2,00,000	2,00,000		
NPV		32,270	13,100		
PI = (PV of Inf	lows/PV of Outfl	1.161	1.065		

Thus, under both NPV and PI method, project A is accepted.

ILLUSTRATION 4

M Ltd. has an investment budget of ₹.100 lakhs. It has short listed two projects A and B after completing the market and technical appraisals. The management wants to complete the financial appraisal before making the investment. Further particulars regarding the two projects are given below:

(₹. in lakhs)

Particulars	A	В
Investment required	100	90
Average annual cash inflow before depreciation and tax (estimate)	28	24

Salvage value: Nil for both projects. Estimate life – 10 years for both projects.

The company follows straight line method of charging depreciation. Its tax rate is 50%.

You are required to calculate the NPV for the 2 projects with a cost of Capital of 12%.

Note: P.V of an annuity of Re. 1 for ten years at different discount rate is given below:

Rate %	10	11	12	13	14	15
PVIFA	6.1446	5.8992	5.6502	5.4262	5.2161	5.0188

Solution:

Calculation of NPV

Particulars	Project A (₹.)	Project B (₹.)		
Av. Annual cash inflow before depreciation and tax	28	24		
Less: Depreciation	10	9		
EBT	18	15		
Less: Tax @ 50%	9	7.5		
PAT	9	7.5		
Add: Depreciation	10	9		
Cash inflow after tax	19	16.5		
NPV at 12% cost of capital	19 × 5.6502 = 107.3538	16.5 × 5.6502 = 93.2283		
Less: Initial investment	100.00	90.00		
Net present Value	7.3538	3.2283		
As Project A has more NPV than Project B, Project A should be accepted.				

ILLUSTRATION 5

From the particulars given below calculate the IRR of the project.

(i) Net cash flow after tax over the four years of the project life.

Year	1	2	3	4
CFAT (₹.)	5,000	8,000	10,000	4,000

- (ii) Initial outlay is ₹. 20,000, Salvage value at the end of the project life is Nil.
- (iii) Present value of Re. 1 receivable at the end of year 1, 2, 3 and 4

Rate	1	2	3	4	Total
12%	.892	.797	.712	.636	3.037
13%	.885	.783	.693	.613	2.974
14%	.877	.770	.675	.592	2.914
15%	.867	.756	.658	.572	2.853
16%	.862	.743	.641	.552	2.798

Solution:

We apply trial and error approach to calculate the IRR.

Fake Payback Period =
$$\frac{\text{Initial Investment}}{\text{Average Annual Cash inflow}}$$
$$= \frac{20000}{(5000 + 8000 + 10000 + 4000)/4}$$
$$= 2.963 \text{ years.}$$

From the 4th year row of the PVIFA table we find that the value nearest to the fake payback period is 2.963 and the corresponding rate is 13%. So 13% should be the first trial rate.

Calculation for NPV at alternative rates.

Year	CFAT	PVIF@ 13%	PV of CIAT	PVIF @14%	PV of CIAT
1	5,000	0.885	4,425	0.877	4,385
2	8,000	0.783	6,264	0.770	6,160
3	10,000	0.693	6,930	0.675	6,750
4	4,000	0.613	2,452	0.592	2,368
Total Present Value		20,071		19,663	
Less. Initial Investment		20,000		20,000	
NPV	NPV				(-) 337

From the above table it is evident that IRR lies between 13% and 14% (as NPV at IRR = 0).

Applying simple interpolation, we get,

$$\frac{IRR - 13}{14 - 13} = \frac{0 - 71}{-337 - 71}$$

Or,
$$IRR - 13 = 0.17$$

So, IRR of the project is 13.17%.

ILLUSTRATION 6

A Company can make either of two investments – Project E and Project F. Assuming a required rate of return of 10% p.a., evaluate the investment proposals under (i) Pay Back Profitability, (ii) Discounted Pay Back Period and (iii) Profitability Index. The particulars relating to the projects are given below:

	Project E	Project F
Initial outlay (₹.)	20,000	28,000
Estimated life (years)	5	5
Scrap value (₹.)	Nil	Nil
Net Cash Flow (₹.)		
End of Year 1	4,000	7,500
Year 2	5,000	8,750
Year 3	6,000	7,500
Year 4	9,000	7,500
Year 5	5,000	7,500

It is estimated that each of the alternative proposals will require an additional working capital of ₹. 2,000 which will be received back in full after the expiry of each project life. The present value of Re. 1, to be received at the end of each year, at 10% p.a. is given below:

Year	1	2	3	4	5
P.V. factor (Re.)	0.909	0.827	0.751	0.683	0.621

.Solution:

(i) Evaluation of Projects under Payback Profitability

Year	Project E NCF (₹.)	Project F NCF (₹.)
1	4,000	7,500
2	5,000	8,750
3	6,000	7,500
4	9,000	7,500
5	7,000 (5,000+2,000)	9,500 (7,500+2,000)
Total NCF	31,000	40,750
(-) Initial Investment	22,000 (20,000+2,000)	30,000 (28,000+2,000)
Payback Profitability	9,000	10,750

Under Payback Profitability method Project F with higher payback profit is acceptable.

(ii) Evaluation of projects under Discounted Payback Period (DPBP) method

Voor	N	CF	PVIF @	PVIF @ PV of CF		Cumulative CF	
Year	Project E	Project F	10%	Project E	Project F	Project E	Project F
1	4,000	7,500	0.909	3,636	6,817.5	3,636	6,817.5
2	5,000	8,750	0.826	4,130	7,227.5	7,766	14,045
3	6,000	7,500	0.751	4,506	5,632.5	12,272	19,677.5
4	9,000	7,500	0.683	6,147	5,122.5	18,419	24,800
5	7,000	9,500	0.621	4,347	5,899.5	22,766	30,699.5

We apply simple interpolation method to calculate DPBP as follows -

For Project E

$$\frac{PBP-4}{5-4} = \frac{22000-18419}{22766-18419}$$

Or, PBP = 4.82 years

Similarly, for Project F

$$\frac{PBP-4}{5-4} = \frac{30000 - 24800}{30699.5 - 24800}$$

Or, PBP = 4.88 years

Thus Project E with lower DPBP is acceptable.

(iii) Evaluation of projects under PI method.

PI for Project E =
$$\frac{\text{Total PV}}{\text{Initial Investment}} = \frac{22766}{22000} = 1.035$$

PI for Project F = $\frac{\text{Total PV}}{\text{Initial Investment}} = \frac{30699.5}{30000} = 1.023$

Since PI is higher for Project E, it is acceptable.

ILLUSTRATION 7

A machine costing ₹.12,00,000 is required to undertake a proposed project. The effective life of the machine is expected to be 5 years with residual value of ₹.2,00,000. The company follows SLM of charging depreciation. The estimated EBT of the project are as follows:

Year	1	2	3	4	5
EBIT (₹.)	4,80,000	5,60,000	6,40,000	4,00,000	32,000

If tax rate is 40% and cost of capital is 15%, calculate the NPV and suggest whether the machine should be acquired or not.

Given the PV of Re.1 at 15% discount rate:

Year	1	2	3	4	5
PVIF	0.8696	0.7561	0.6575	0.5718	0.4972

Solution:

Calculation of NPV

Year	EBIT	Tax @40%	EAT	Depreciation	CFAT	PVIF	PVCF
1	4,80,000	1,92,000	2,88,000	2,00,000	4,88,000	0.8696	4,24364.8
2	5,60,000	2,24,000	3,36,000	2,00,000	536,000	0.7561	4,05369.6
3	6,40,000	2,56,000	3,84,000	2,00,000	534,000	0.6575	3,83,980
1	4,00,000	1,60,000	2,40,000	2,00,000	4,40,000	0.5718	2,51392

Work Book: Financial Management and Business Data Analytics

Year	EBIT	Tax @40%	EAT	Depreciation	CFAT	PVIF	PVCF
5	3,20,000	1,28,000	1,92,000	2,00,000	5,92,000	0.4972	2,94342.4
Total l	Total PV						17,59,549
(-) Ini	tial Investme	ent					12,00,000
NPV							5,59348.8

Note: Depreciation = (12,00,000 - 2,00,000)/5 = ₹.2,00,000

Note: 5th year CFAT includes the scrap value of ₹.2,00,000.

Since NPV is positive, it is acceptable.

ILLUSTRATION 8

Following figures relate to a new project for which a machine is to be acquired at a cost of $\stackrel{?}{\sim}$ 2,50,000 and initially $\stackrel{?}{\sim}$ 60,000 is to be invested as working capital:

Year	1	2	3	4
EBDIT (₹.)	80,000	90,000	1,45,000	1,20,000
Depreciation (₹.)	75,000	62,000	48,000	25,000

At the beginning of 2nd year, an amount of ₹.10,000 is to be introduced as additional working capital.

On completion of the project i.e. at the end of the fourth year, it is expected that ₹.40,000 will be realized from sale of scrap and working capital will be recovered in full. Cost of capital is 12% and applicable tax rate is 30%.

Calculate NPV of the project and comment on its acceptability.

Solution:

Calculation for PV of Cash Inflow (Figures in ₹.)

Year	EBD1T	Depreciation	EBIT	Tax (30%)	EAT	CFAT	PVIF at 12%	PVCF
1	80,000	75,000	5,000	1,500	3,500	78,500	0.893	70,100.5
2	90,000	62,000	28,000	8,400	19,600	81,600	0.797	65,035.2

Year	EBD1T	Depreciation	EBIT	Tax (30%)	EAT	CFAT	PVIF at 12%	PVCF
3	1,45,000	48,000	97,000	29,100	67,900	1,15,900	0.712	82,520.8
4	1,20,000	25,000	95,000	28,500	66,500	2,01,500	0.636	1,28,154
Total								3,45,810.5

Note: Cash flow of 4th year includes ₹.70,000 working capital realized and ₹.40,000 scrap value realized.

Calculation for PV of Cash Outflows

Year	Cash outflows (₹.)	PVIF at 12%	PV of Cash outflows (₹.)
0	3,10,000	1	3,10,000
1	10,000	0.893	8,930
Total PV			3,18,930

Note: Cash flow for year o (i.e. initial cash flow includes ₹.60,000 working capital investment.

So, NPV = PV of cash inflow - PV of cash outflow = ₹.3,45,810.50 - ₹.3,18,930

=₹.26,880.50

ILLUSTRATION 9

X Ltd. has ₹.2000000 allocated for capital budgeting purposes. The following proposals are available:

Projects	Initial Outlay (₹.)	Total PV (₹.)
A	12,00,000	14,64,000
В	6,00,000	5,70,000
С	12,00,000	16,80,000
D	18,00,000	21,24,000
E	8,00,000	9,60,000
F	16,00,000	16,80,000

Which of the above investments should be undertaken? Assume that the projects are divisible.

Solution:

Calculation for NPV, Profitability Index and Ranking

Projects	Initial Outlay	Total PV	PI	Ranking	NPV
(1)	(2)	(3)	(4) = (3)/(2)	(5)	(6) = (3) - (2)
A	12,00,000	14,64,000	1.22	2	2,64,000
В	6,00,000	5,70,000	0.95	6	-30,000
С	12,00,000	16,80,000	1.4	1	4,80,000
D	18,00,000	21,24,000	1.18	4	3,24,000
Е	8,00,000	9,60,000	1.2	3	1,60,000
F	16,00,000	16,80,000	1.05	5	80,000

Selection of the projects based on PI ranking.

Ranking	Projects	Initial Outlay (₹.)	Cumulative Initial Outlay (₹.)	NPV (₹.)
1	С	12,00,000	12,00,000	4,80,000
2	A	12,00,000	24,00,000	2,64,000
3	Е	8,00,000	32,00,000	1,60,000
4	D	8,00,000	40,00,000	1,44,000*
				(3,24,000 × 8/18)
Total		40,00,000		10,48,000

ILLUSTRATION 10

From the following information, calculate Net Present Value of the following business proposal and suggest whether the proposal should be accepted or rejected:

Initial Investment in Fixed Assets	₹.	10,00,000
Initial Investment in Working Capital	₹.	2,00,000
Salvage Value of Fixed Assets after 3 years	₹.	4,00,000
Annual Cash inflows before tax	₹.	6,00,000
Income tax rate (on profit and capital gain)	30	%

Cost of capital 18%

Depreciation is to be charged on WDV method @40%.

Present Values of Re. 1.00 at 18% are as follows:

Year	1	2	3
PVIF	0.8475	0.7182	0.6086

Solution:

1. Initial Cash Out Flow

Particulars	Amount (₹.)
Fixed Assets	10,00,000
Working Capital	2,00,000
Total	12,00,000

2. Annual Cash Flows

Year	CFBT	Depreciation	Taxable Profit	Tax @ 30%	CFAT	PVIF	PV @ 18%
1	6,00,000	4,00,000	2,00,000	60,000	5,40,000*	0.8475	4,57,650
2	6,00,000	2,40,000	3,60,000	1,08,000	4,92,000	0.7182	3,53,354
3	6,00,000	1,44,000	4,56,000	1,36,800	4,63,200	0.6086	2,81,904
		7,84,000					10,92,908

3. Terminal Cash Flows

Particulars	₹.
Salvage Value	4,00,000
Tax on Capital Gain	(-)55,200
(4,00,000 – 2,16,000) × 30%	
Working Capital	2,00,000
Total	5,44,800
PVIF (18% 3rd Year)	0.6086
Present Value	3,31,565

WDV = 10,00,000 - 7,84,000 = 2,16,000

Net Present Value = (10,92,908 + 3,31,565) - 12,00,000 = ₹.2,24,473

Decision: NPV is positive and hence the proposal should be accepted.

ILLUSTRATION 11

A particular project has a four years life with yearly projected net profit of ₹. 10,000 after charging yearly depreciation of ₹. 8000 in order to write off the capital cost of ₹. 32,000. Out of the capital cost, ₹. 20,000 is payable immediately (year 0) and balance in next year (which will be needed for evaluation). Stock amounting to ₹. 6,000 (to be invested in year 0) will be required throughout the project and for debtors a further sum of ₹. 8,000 will have to be invested in year 1. The working capital will be recouped in year 5. It is expected that the machinery will fetch a residual value of ₹. 2,000 at the end of 4th year. Income tax is payable @ 40% and the Depreciation is charged on written down value @ 25% per annum. Income tax is payable next year. The residual value of the machine, ₹. 2,000 will also bear tax @ 40%. Although the profit is for 4 years, for computation of tax and realization of working capital, the computation will be required up to 5 years. Advise the firm.

PV of Cash Outflows:

Capital cost at T ₀	₹.	20,000
Capital cost at T₁ (₹. 12,000 × .909)	₹.	10,908
Working Capital (Stock) at T ₀	₹.	6,000
Working Capital (Debtors) at T₁ (₹.8,000×0.909)	₹.	7,272
	₹.	44,180

Calculation of NPV (figures in ₹.)

	1	2	3	4	5
Net profit	10,000	10,000	10,000	10,000	-
(+) Depreciation	8,000	8,000	8,000	8,000	-
(+) Residual value	-	-	-	2,000	-
(-) Tax @ 40% of preceding year's profit	-	4,000	4,000	4,000	4,800*
(+) Working Capital recovered	-	-	-	-	14,000
Cash inflow	18,000	14,000	14,000	16,000	9,200
PVIF (10%, n)	0.909	0.826	0.751	0.683	0.621

Work Book : Financial Management and Business Data Analytics

	1	2	3	4	5
Present Value	16362	11,564	10,514	10,928	5,713
Total PV of cash inflow					55081
(-) PV of cash outflow					44,180
NPV					10,901

^{*} 40% of (10,000 + 2,000) = ₹.4,800

Decision: As the NPV of the project is positive, the firm can take it up.

ILLUSTRATION 12

PLtd. is the manufacturer of a low-end consumer durable Q. In order to modernize the manufacturing facility, P Ltd. wants to buy a new machinery costing ₹. 20,00,000 at cash price. The annual cash flow before tax over the entire lifespan of the company is ₹. 6,00,000 p.a. The marginal rate of tax is 40% and cost of capital is 10% p.a. The scrap value at the end of the useful life of the machinery is negligible. The company is currently following a straight-line method of charging depreciation on machineries. Do you think the project is financially viable?

The company has an alternative to charge accelerated depreciation @ 30% of the depreciable amount each for the first three years and @ 10% for the fourth year. Does it change your suggestion?

Solution:

Computation of NPV (Under Straight Line Method of Depreciation).

Particulars	₹.
CFBT	3,00,000
(-) Depreciation	2,00,000
Taxable Profit	1,00,000
Tax @ 40%	40,000
PAT	60,000
(+) Depreciation	2,00,000
CFAT	2,60,000
PVIFA (10%, 5)	3.79
Total PV	9,85,400

Work Book: Financial Management and Business Data Analytics

Particulars	₹.	
(-) Initial Investment	10,00,000	
NPV	(14,600)	

Since the NPV is negative, the decision of buying the machine is not viable.

Computation of NPV (Under MACRS).

Year	CFBT	Depreciation	Taxable Profit	Tax	CFAT	PVIF @10%	PV
(1)	(2)	(3)	(4) = (2) - (3)	(5) = (4)×40%	(6) = (4)-(5) + (3)	(7)	(8) = (6) ×(7)
		3,00,000					
1	3,00,000		0	0	3,00,000	0.909	2,72,700
2	3,00,000	3,00,000	0	0	3,00,000	0.826	2,47,800
3	3,00,000	3,00,000	0	0	3,00,000	0.751	2,25,300
		1,00,000					
4	3,00,000		2,00,000	80,000	2,20,000	0.683	1,50,260
5	3,00,000	0	3,00,000	1,20,000	1,80,000	0.621	1,11,780
Total PV						10,07,840	
Less. Initial Investment						10,00,000	
NPV							7,840

Since the NPV is positive, the decision of buying the machine is viable. Thus, using MACRS the company finds the same project acceptable which was not acceptable under SLM.

Working Capital Management [Study Material - Module 6]

ILLUSTRATION 1

Find out the optimum cash balance as per Baumol's Model for the following:

Annual cash needed

₹. 4,80,000

Transaction cost

₹. 500 per conversion

Interest rate

₹. 12% p.a.

What are the opportunity costs of holding cash, the transaction cost and the total costs. What these would be if cash held is ₹. 30,000 or ₹. 40,000?

Solution:

Optimum cash balance as per Baumol Model is:

C = $\sqrt{\frac{2AF}{O}}$ Where A = Annual cash needed = ₹.4,80,000; F = Transaction cost per conversion = ₹.50;

O = Carrying cost or interest cost per rune per annum = 0.12

So, C =
$$\sqrt{\frac{2 \times 4,80,000 \times 50}{0.12}}$$
 = ₹.20,000

Average Cash balance = C/2 = ₹. 10,000 (i.e., 20,000 ÷ 2)

Interest Cost @ 12% = C/2 × O = ₹.10,000 × 12% = ₹. 1,200

No. of transactions = $A/C = 4,80,000 \div 20,000 = 24$

Transaction cost (24 × 500) = ₹. 1,200

Total cost = ₹. 1,200 + ₹.1,200 = ₹. 2,400

If the cash held is ₹. 30,000 or ₹. 40,000, the costs would be:

Particulars	Cash Balance ₹.30,000	Cash Balance ₹.40,000
Average cash	₹.15,000	₹.20,000
Interest cost @12%	₹.1,800	₹.2,400
No. of transaction	16	12
Transaction cost	₹.800	₹.600
Total cost	₹.2,600	₹.3,000

ILLUSTRATION 2

Simplex Ltd. has a standard deviation of monthly net cash flows of ₹. 300. It's transaction cost of converting cash into marketable securities is ₹. 10 and the interest is 1% per month. The minimum cash balance required is ₹. 200. Set out the Upper, Lower and Return limit for the firm as per Miller-Orr Model.

Solution:

As per Miller-Orr model,

$$Z = \sqrt[3]{\frac{3TV}{4i}}$$

Where, T = Transaction cost per conversion = ₹.10

V = Variance of daily cash requirement = $(300)^2 = 90000$

i = Monthly rate of interest = 1%

L = Minimum cash balance = ₹.200

So, Z =
$$\sqrt[3]{\frac{3 \times 10 \times 90000}{4 \times 0.01}}$$
 = ₹. 407

The relevant limits can be ascertained as follows:

Lower limit, L = ₹. 200

Return Level, R = Z + L = 407 + 200 = ₹.607

Upper Level, $U = 3Z + L = 3 \times 407 + 200 = ₹.1,421$

ILLUSTRATION 3

Cash flows of Travel Excel Ltd. behave in a random manner. Find out the 'Return Point' and 'Upper Limit', as per Miller-Orr Model, on the basis of the following information:

- (i) Cost of effecting a marketable securities transaction is ₹. 1500.
- (ii) Annual yield on marketable securities is 12%.
- (iii) Standard deviation of daily cash balance is ₹. 600.
- (iv) The minimum cash balance is ₹. 7,000.

Also find out average cash balance.

Solution:

As per Miller-Orr model,

$$Z = \sqrt[3]{\frac{3TV}{4i}}$$

Where, T = Transaction cost per conversion = ₹.1500

V = Variance of daily cash requirement = $(600)^2$ = 360000

i = Daily rate of interest = 12%/365 = 0.0328%

L = Minimum cash balance = ₹.7000

So, Z =
$$\sqrt[3]{\frac{3 \times 1500 \times 360000}{4 \times 0.000328}} = ₹.10,728$$

Return Level, R = Z + L = 10728 + 7000 = ₹.17,728

Upper Level, $U = 3Z + L = 3 \times 10728 + 7000 = ₹.39,184$

ILLUSTRATION 4

The annual cash requirement of N Ltd is ₹.10 lakh. The company has marketable securities in lot sizes of ₹. 50,000, ₹. 1,00,000, ₹. 2,00,000, ₹. 2,50,000 and ₹. 5,00,000. Cost of conversion of marketable securities per lot is ₹. 1,000. The company can earn 5 per cent yield on its securities.

You are required to prepare a table indicating which lot size will have to be sold by the company. Also, show that economic lot size can be obtained by the Baumol Model.

Solution:

Table showing cost under different lot sizes

	Particulars	1	2	3	4	5
1.	Annual cash required (₹.)	10,00,000	10,00,000	10,00,000	10,00,000	10,00,000
2.	Lot size (₹.)	50,000	1,00,000	2,00,000	2,50,000	5,00,000
3.	No. of transaction	20	10	5	4	2
4.	Transaction cost (₹.)	1,000	1,000	1,000	1,000	1,000
5.	Total transaction cost (₹.)	20,000	10,000	5,000	4,000	2,000
6.	Average cash (₹.) [(2) × ½]	25,000	50,000	1,00,000	1,25,000	2,50,000
7.	Interest cost @ 5% [(6) × 5%]	1,250	2,500	5,000	6,250	12,500
8.	Total cost (₹.) [5+7]	21,250	12,500	10,000	10,250	14,500

As per Baumol's Model,

$$Z = \sqrt{\frac{2AF}{O}}$$
 Where A = Annual cash needed = ₹.10,00,000; F = Transaction cost per conversion =

₹.1,000; O = Carrying cost or interest cost per rune per annum = 0.05

So, Z =
$$\sqrt{\frac{2 \times 1000000 \times 1000}{0.05}}$$
 = ₹. 2,00,000

ILLUSTRATION 5

A company believes that it is possible to increase sales if credit terms are relaxed. The profit plan, based on the old credit terms, envisages projected sales at ₹. 20,00,000, a 30 per cent profit-volume ratio, fixed cost at ₹. 1,00,000, bad debts of 1.00 per cent and an accounts receivable turnover ratio of 10 times.

The relaxed credit policy is expected to increase sales to ₹. 24,00,000. However, bad debts will rise to 2 per cent of sales, the accounts receivable turnover ratio will be decreased to 6 times. Should the company adopt new (relaxed) credit policy, assuming the company's target rate of return is 20 per cent.

Solution:

The two credit policies can be compared as follows:

Particulars	Existing Terms	Proposed Terms
Sales	₹. 20,00,000	₹. 24,00,000
Contribution @ 30%	6,00,000	7,20,000
Less: Fixed Cost	1,00,000	1,00,000
Net Income (A)	5,00,000	6,20,000
Total Debtors at Cost	15,00,000	17,80,000
Credit Period Turnover	10 times	6 times
Average Debtors	₹. 1,50,000	₹. 2,96,667
Average cost @ 20%	30,000	59,333
Bad Debt @ 1% and 2%	20,000	48,000
Total Cost (B)	50,000	1,07,333
Net Benefit (A-B)	4,50,000	5,12,667

As the benefits is higher in proposed case, it is better and may be adopted.

ILLUSTRATION 6

XYZ Ltd. is examining the question of relaxing its credit policy. It sells at present 40,000 units at a price of ₹. 100 per unit, the variable cost per unit is ₹. 88 and average cost per unit at the current sales volume is ₹. 92. All the sales are on credit, the average collection period being 36 days. A relaxed credit policy is expected to increase sales by 10% and the average age of receivables to 60 days. Assuming 15% return, should the firm relax its credit policy? Assume 360 days in a year.

Solution:

Evaluation of Proposals

	Present Plan (40,000 units)	Proposed Plan (44,000 units)
Sales @ ₹. 100 p.u	₹. 40,00,000	₹. 44,00,000
-Variable costs (₹. 88 per unit)	35,20,000	38,72,000

	Present Plan (40,000 units)	Proposed Plan (44,000 units)
-Fixed costs (40000 units × ₹. 4)	1,60,000	1,60,000
Net Profit	3,20,000	3,68,000
Investment cost	55,200	1,00,800
Income	2,64,800	2,67,200

The firm should relax its credit policy as it increases the profit by ₹. 2,400.

Working Notes:

The investment costs have been calculated as follows:

	Present Plan	Proposed Plan
Cost of sales (Variable + Fixed cost)	₹. 36,80,000	₹. 40,32,000
Average daily sale (360 days a year)	10,222	11,200
Credit period	36 days	60 days
Therefore, average debtors	3,68,000	6,72,000
Interest @ 15%	55,200	1,00,800

ILLUSTRATION 7

K Ltd. produces a product which has a monthly demand of 4,000 units. The product requires a component Harliv which is purchased at ₹.20. For every finished product, one unit of the component is required. The ordering cost is ₹.120 per order and the holding cost is 10% p.a.

As a Cost and Management Accountant you are required to calculate:

- (i) Economic order quantity.
- (ii) If the minimum lot size to be supplied is 4000 units, what is the extra cost, K Ltd. has to incur?

Solution:

Economic Order Quantity (EOQ) =
$$\sqrt{\frac{2AS}{I}}$$

A = Annual consumption in units = $4,000 \times 12 = 48,000$ units

S = Cost of placing an order = ₹. 120

I = Inventory carrying cost =
$$20 \times \frac{10}{100}$$
 = ₹. 2

EOQ =
$$\sqrt{\frac{2 \times 48000 \times 120}{2}}$$

= $\sqrt{\frac{1,15,20,000}{2}}$
= $\sqrt{57,60,000}$
= 2400 units

Statement Showing Comparative Inventory Cost

	Lot Size = 2400 Units (₹.)	Lot Size = 4,000 Units (₹.)
Ordering Cost $\left(\frac{48,000}{2,400} \times 120\right)$ and $\left(\frac{48,000}{4,000} \times 120\right)$	2,400	1,440
Carrying Cost $\left(2400 \times \frac{1}{2} \times 20 \times \frac{10}{100}\right)$ and $\left(4,000 \times \frac{1}{2} \times 20 \times \frac{10}{100}\right)$	2,400	4,000
Total Inventory Carrying Cost	4,800	5,440
Extra Cost if lot size of 4,000 units is supplied = $₹$. 5,440 – $₹$. 4,800 = $₹$. 640		

ILLUSTRATION 8

X Ltd. buys 1,00,000 units of material P every month to supply steady demand for the material in production. Order costs are ₹. 200 per order and the carrying costs are 10 paise per unit per month. Find out economic quantity. Should X Ltd. accept a quantity discount of 1 paise per unit for materials P if it buys in lots of 50,000 units?

Solution:

Economic Order Quantity (EOQ) =
$$\sqrt{\frac{2AS}{I}}$$

A = Annual consumption in units = $1,00,000 \times 12 = 12,00,000$ units

S = Cost of placing an order = ₹. 200

I = Inventory carrying cost = ₹. 0.10 × 12 = ₹. 1.20

EOQ =
$$\sqrt{\frac{2 \times 1200000 \times 200}{1.20}}$$

= 20,000 units

Calculation of comparative cost

	EOQ Offer	Discount Offer
Order Size (units)	20,000	50,000
No. of Orders = 12,00,000/Order size	60	24
Cost per order (₹.)	200	200
Total ordering cost (₹.)	12,000	4,800
Average inventory = Order size/2 (units)	10,000	25,000
Carrying cost per unit per annum (₹.)	1.20	1.20
Total carrying cost (₹.)	12,000	30,000
Total inventory cost (₹.)	24,000	34,800
(-) Discount (1200000 × 0.01) (₹.)	Nil	12,000
Net cost (₹.)	24,000	22,800

So, the firm can save in annual cost of maintaining inventory to the extent of (24,000 - 22,800) = ₹. 1,200 by accepting the discount offer.

ILLUSTRATION 9

A Ltd. has received an offer of quantity discounts on its order of materials as under:

Ordering quantities (Kgs)	Price per kg. (₹.)
Less than 500	24.00
500 but less than 1600	23.60
1,600 but less than 4000	23.20
4,000 but less than 8,000	22.80
8,000 and above	22.40

The annual requirement for the material is 8,000 kgs. The ordering cost per order is ₹. 13.00 and the stock holding cost is estimated at 20% of material cost per annum. As a Cost and Management Accountant you have to compute the most economical ordering quantity.

Solution:

Computation of most Economical ordering quantity

Ordering quantity Size (kg)	400	500	1600	4000	8000
Number of Orders (Annual Req./ Order Size)	20	16	5	2	1
Average inventory (Kg)	200	250	800	2000	4000
Value of average inventory (₹.)	4,800	5,900	18,560	45,600	89,600
Annual total cost:	₹.	₹.	₹.	₹.	₹.
(i) Cost of material	1,92,000	1,88,800	1,85,600	1,82,400	1,79,200
(ii) Ordering cost (No. of orders × 13)	260	208	65	26	13
(iii) Carrying cost (20% of value of average inventory)	960	1,180	3,712	9,120	17,920
Total annual cost (i + ii + iii)	193220	190188	189377	191546	197133

From the above calculations it is clear that the total annual cost of \mathbb{Z} . 1,89,377 is the lowest at on ordering quantity of 1,600 kgs; Hence, the most economical ordering quantity is 1,600 kgs.

ILLUSTRATION 10

EM Ltd. provides the following particulars relating to its working

(i) Cost/Profit per unit:	
Raw Material Cost	₹.84
Direct Labour Cost	36
Overheads (All Variable)	36
Total Cost	156
Profit	44
Selling Price	200
(ii) Average Amount of Back up Stock:	
Raw Material	2 months
Work-in-Progress (50% Complete)	½ month

Work Book: Financial Management and Business Data Analytics

Finished Goods	1 month
(iii) Credit allowed by Suppliers	2 months
(iv) Credit allowed to Customers	2 months
(v) Average time lag in the payment of:	
Wages	½ month
Overhead Expenses	1½ months

- (vi) Required Cash in hand and at Bank ₹. 6,00,000.
- (vii) 25% of the output is sold for cash.

For an expected annual sale of 1,00,000 units, work out the working capital requirement assuming that production is carried on evenly throughout the year and wages and overheads accrue similarly.

Solution:

Statement of Working Capital Requirement

	Particulars	₹.
I.	Current Assets:	
	Cash	₹. 6,00,000
	Raw Material (1,00,000 × 84) ÷ 6	14,00,000
	Work in Progress:	
	Raw Material (1,00,000 × 84) ÷ 24 ₹. 3,50,000	
	Labour [(1,00,000 × 36) ÷ 24)] 50% 75,000	
	Overhead $[(1,00,000 \times 36) \div 24)]$ 50% 75,000	5,00,000
	Finished Goods (1,00,000 × 156) ÷ 12	13,00,000
	Debtors (1,00,000 × 75% × 156) ÷ 6	19,50,000
	Total Current Assets (CA)	57,50,000
II	Current Liabilities:	
	Creditors (1,00,000 × 84) ÷ 6	14,00,000
	0/S Wages (1,00,000 × 36) ÷ 24	1,50,000
	0/S Overheads (1,00,000 × 36) ÷ 12] × 1.5	4,50,000
	Total Current Liabilities (CL)	20,00,000
Net	: Working Capital Requirement (CA - CL)	37,50,000

ILLUSTRATION 11

From the following information you are required to estimate the net working capital requirement:

	Cost per unit (₹.)
Raw Materials	40
Direct labour	15
Overheads (excluding depreciation)	30
Total Cost	85
Additional Information:	30
Selling-Price	₹. 100 per unit
Output	1,04,000 units per annum
Raw Material in stock	average 4 weeks
Work-in-process:	
(Assume 50% completion stage with	
full material consumption)	average 2 weeks
Finished goods in stock	average 4 weeks
Credit allowed by suppliers	average 4 weeks
Credit allowed to debtors	average 8 weeks
Cash at bank is expected to be	₹.1,00,000

Assume that production is sustained at an even pace during the 52 weeks of the year. All sales are on credit basis. State any other assumption that you might have made while computing.

Solution:

Statement Showing Net Working Capital Requirements

Particulars	₹.
Current Assets:	
Minimum cash balance	1,00,000
Stock of Raw Materials (4 weeks)	
1,04,000 × 40 5 (4/52)	3,20,000

Work Book: Financial Management and Business Data Analytics

Particulars		₹.
Stock of work-in-progress (2 weeks)		
Raw material 1,04,000 × 40 × (2/52)	1,60,000	
Direct labour (50% completion)		
1,04,000 × 15 × (2/52) × 50%	30,000	
Overheads (50% completion)		
1,04,000 × 30 × (2/52) × 50%	60,000	2,50,000
Stock of finished goods (4 weeks)		
1,04,000 × 85 × (4/52)		6,80,000
Amount blocked in Debtors at cost (8 weeks)		
1,04,000 × 85 × (8/52)		13,60,000
Total Current Assets		27,10,000
Less: Current Liabilities:		
Creditors for raw materials (4 weeks)		
1,04,000 × 40 × (4/52)		3,20,000
Net Working Capital Required		23,90,000

ILLUSTRATION 12

Prepare a working capital forecast from the following information:

Production during the previous year was 20,00,000 units. The same level of activity is intended to be maintained during the current year. The expected ratios of cost to selling price are:

Raw materials	40%
Direct Wages	20%
Overheads	20%

The raw materials ordinarily remain in stores for 3 months before production. Every unit of production remains in the process for 2 months and is assumed to be consisting of 100% raw material, wages and overheads. Finished goods remain in the warehouse for 3 months. Credit allowed by creditors is 4 months from the date of the delivery of raw material and credit given to debtors is 3 months from the date of dispatch.

The estimated balance of cash to be held ₹. 4,00,000

Lag in payment of wages ½ month

Lag in payment of expenses ½ month

Selling price is ₹. 8 per unit. You are required to make a provision of 10% for contingency (except cash). Relevant assumptions may be made.

Solution:

Total Sales = $20,00,000 \times 8 = ₹.1,60,00,000$

Statement of Working Capital Requirement

Particulars	₹.	₹.
A. Current Asset:		
Debtors (1,60,00,000 × 80% × 3/12)	₹. 32,00,000	
Finished Goods (1,60,00,000 × 80% × 3/12)	32,00,000	
Work-in-progress (1,60,00,000 × 80% × 2/12)	21,33,333	
Raw Materials (1,60,00,000 × 40% × 3/12)	16,00,000	
Total current assets		1,01,33,333
B. Current Liabilities:		
Creditors (1,60,00,000 × 40% × 4/12)	21,33,333	
Wages (1,60,00,000 × 20% × 1/24)	1,33,333	
Overheads (1,60,00,000 × 20% × 1/2 4)	1,33,334	24,00,000
Excess of CA over CL		77,33,333
+ 10% contingency		7,73,333
		85,06,666
Cash		4,00,000
Working Capital Requirement		89,06,666

Financing Decision of a Firm [Study Material - Module 7]

ILLUSTRATION 1

Two companies are identical except that A Ltd. has a debt of ₹. 10,00,000 at 10% whereas B Ltd. does not have debt in its capital structure. The total assets of both the companies A and B are same i.e. ₹. 20,00,000 on which each company earns 20% return. Find the value of each company and overall cost of capital using net operating income (NOI). Approach Equity capitalization rate for B Ltd. is 15%. The tax rate is 30%.

Solution:

Net Operating Income Approach (With Taxes):

Value of B Ltd. (Unlevered) =
$$\frac{\text{EBIT (1 - t)}}{\text{K}_{\text{e}}} = \frac{400000 (1 - 0.3)}{0.15} = ₹. 18,66,667$$

Value of A Ltd. (Levered) = $\text{V}_{\text{B}} + \text{D(t)}$

Calculation of Overall Cost of Capital:

$$K_0$$
 (B Ltd.) = K_e = 15%

$$K_0 \text{ (A Ltd.)} = \frac{\text{EBIT (1 - t)}}{V_A} = \frac{400000 \text{ (1 - 0.3)}}{21,66,667} = 12.92\%$$

ILLUSTRATION 2

The following estimates of the cost of debt and cost of equity capital have been made at various level of the debt-equity mix for ABC Ltd.

% of Debt	Cost of Debt	Cost of Equity
0	5.0%	12.0%

% of Debt	Cost of Debt	Cost of Equity
10	5.0%	12.0%
20	5.0%	12.5%
30	5.5%	13.0%
40	6.0%	14.0%
50	6.5%	16.0%
60	7.0%	20.0%

Assuming no tax, determine the optimal debt equity ratio for the company on the basis of the overall cost of capital, WACC.

Solution:

The overall cost of capital, WACC, may be defined as:

WACC =
$$K_d - \frac{D}{D + E} + Ke - \frac{E}{D + E}$$

The WACC for the firm may be calculated as follows:

K _d %	K _e %	D/(D + E)	E/(D + E)	K _o %
5.0	12.0	0.0	1.0	12.00
5.0	12.0	0.1	0.9	11.30
5.0	12.5	0.2	0.8	11.00
5.5	13.0	0.3	0.7	10.75
6.0	14.0	0.4	0.6	10.80
6.5	16.0	0.5	0.5	11.25
7.0	20.0	0.6	0.4	12.20

The optimal debt equity mix for the company occurs at a point when the overall cost of capital, K0 is minimum. The above calculations show that the Ko is minimum at a point when the debt is 30% of the total capital employed. Therefore, the firm should use 30% debt and 70% equity in its capital structure and its Ko would be 10.75%.

ILLUSTRATION 3

S. Ltd. and T. Ltd. are in the same risk class and are identical in all respects except that company S uses debt while company T does not use debt. The levered firm has ₹. 9,00,000 debentures carrying 10% rate of interest. Both the firms earn 20% operating profit on their total assets of ₹. 15 lakhs. The company is in the tax bracket of 35% and capitalisation rate of 15% on all equity shares.

You are required to compute the value of S Ltd. and T Ltd. using Net Income approach.

Solution:

Calculation of Value of S. Ltd. and T. Ltd. using Net Income Approach

Particulars	S. Ltd.	T. Ltd.
Total Assets	₹. 15,00,000	₹. 15,00,000
Operating Profits	20%	20%
EBIT	₹. 3,00,000	₹. 3,00,000
Less: Interest	₹. 90,000	
Profit before tax	₹. 2,10,000	₹. 3,00,000
Less: Tax @ 35%	₹. 73,500	₹. 1,05,000
Profit after tax	₹. 1,36,500	₹. 1,95,000
Equity Capitalization rate (ke)	15%	15%
Value of E (PAT/ke)	₹. 9,10,000	₹. 13,00,000
Value of D	₹. 9,00,000	_
Total Value of the firm	₹. 18,10,000	₹. 13,00,000

ILLUSTRATION 4

Compute the market value of the firm, value of shares and the average cost of capital from the following information.

Net operating income ₹. 1,00,000

Total investment ₹. 5,00,000

Equity capitalization Rate:

(a) If the firm uses no debt 10%

(b) If the firm uses ₹. 2,50,000 debentures 11%

(c) If the firm uses ₹. 4,00,000 debentures

13%

Assume that ₹. 5,00,000 debentures can be raised at 6% rate of interest whereas ₹. 4,00,000 debentures can be raised at 7% rate of interest.

SolutionComputation of market value of firm value of shares and the average cost of capital.

Particulars	(a) No Debt	(b) ₹. 2,50,000, 6% debentures	(c) ₹. 4,00,000, 7% debentures
Net operating income (₹.)	1,00,000	1,00,000	1,00,000
(-) Interest (₹.)		15,000	28,000
Earnings available to Equity shareholders (₹.)	1,00,000	85,000	72,000
Equity Capitalization Rate	10%	11%	13%
Market value of shares (₹.)	100000/10% = 10,00,000	85,000/ 11% = 7,72,727	72,000/ 13% = 5,53,846
Value of Debt (₹.)	Nil	2,50,000	4,00,000
Market Value of firm (₹.)	10,00,000	10,22,727	9,53,846
$K_o = \frac{EBIT}{V}$	= 10%	= 9.78%	= 10.48%

ILLUSTRATION 5

A company had the following balance sheet as on 31 March 2023:

Liabilities	₹.	Assets	₹.
Equity Share Capital of ₹. 10 each	40,00,000	Fixed assets (net)	1,28,00,000
Reserves and Surplus	8,00,000	Current assets	32,00,000
15% Debentures	80,00,000		
Current liabilities	32,00,000		
	1,60,00,000		1,60,00,000

Additional information:

Fixed costs per annum (excluding Interest) ₹. 32,00,000

Variable operating costs ratio 70%

Total assets turnover ratio 2.5

Income tax rate 40%

Required:

Calculate the following and comment:

(a) Operating Leverage

(b) Financial Leverage

(c) Combined Leverage

(d) Earnings Per Share

Solution:

A. Preparation of Income Statement

Problem states that Total Assets Turnover Ratio is 2.5

In other words, Turnover/Total Assets = 2.5

Given, Total Assets = ₹. 1,60,00,000

Turnover = $1,60,00,000 \times 2.5$

Or, Turnover = ₹. 4,00,00,000

Income Statement

Particulars	₹.
Sales	4,00,00,000
Less: Variable Cost (70% of Sales)	2,80,00,000
Contribution	1,20,00,000
Less: Fixed Cost	32,00,000
Earnings before Interest and lax	88,00,000
Less: Interest on Debi (15% of ₹. 80 Lakhs)	12,00,000
Earnings before lax	76,00,000

Work Book: Financial Management and Business Data Analytics

Particulars	₹.
Less: Tax @ 40%	30,40,000
Earnings after Tax	45,60,000
Number of Equity Shares (40,00,000/10)	4,00,000
Earnings per Share	₹.11.40
(Earnings after Tax /Number of Shares)	\.11.40

B. Calculation of Leverages

Degree of Operating Leverage =
$$\frac{\text{Contribution}}{\text{EBIT}}$$
 = 1,20,00,000/88,00,000 = 1.36

Degree of Financial Leverage =
$$\frac{EBIT}{EBIT} = 88,00,000/76,00,000 = 1.16$$

Degree of Combined Leverage =
$$\frac{\text{Contribution}}{\text{EBT}}$$
 = 1,20,00,000/76,00,000 = 1.58

ILLUSTRATION 6

A firm sells its only product at \mathbb{Z} . 10 per unit. Its variable cost is 70%, while fixed costs are \mathbb{Z} .1,000. Present Sales are 1000 units.

Required:

- (a) Find out:
- (i) DOL
- (ii) EBIT if Sales increase by 40% and
- (iii) EBIT if Sales fall by 40%
- (b) By what percentage should sales fall before the firm starts incurring losses?

Solution:

A. Calculation of DOL Change in EBIT

Income Statement

	(₹.)
Sales (1000 units × ₹. 10 per unit)	10,000

Work Book: Financial Management and Business Data Analytics

Less: Variable Cost (70% of Sales)	7,000
Contribution	3,000
Less: Fixed Cost	1,000
Earnings before Interest and lax	2,000

Degree of Operating Leverage

Degree of Operating Leverage = Contribution/EBIT = 3000/2000 = 1.5

Calculation of EBIT when Sales increases by 40%

DOL = Change in EBIT/Change in Sales

DOL = 1.5

That is, for any change in sales, the change in EBIT will be 1.5 times.

So, when Sales increase by 40%, EBIT will increase by 60% (i.e., $40\% \times 1.5$)

So. EBIT will be ₹.2.000 + 60% of ₹.2,000 = ₹. 3.200

Calculation of EBIT when Sales fall by 40%

DOL = Change in EBIT/Change in Sales

DOL = 1.5

That is, for any change in Sales, the change in EBIT will be 1.5 times

So, when Sales fall by 40%, EBIT will fall by 60% (i.e., $40\% \times 1.5$)

So, EBIT will be ₹.2,000 - 60% of ₹.2.000 = ₹.800

B. Calculation of change in Sales for the firm to incur losses

The Present EBIT is ₹.2,000.

f the firm has to incur losses, its EBIT has to fall by 100%.

DOL = Change in EBIT/ Change in Sales

DOL = 1.5

Change in EBIT/Change in Sales = 1.5

That is, Change in Sales = Change in EBIT/1.5 = 100%/1.5 = 66.67% (i.e., 2/3rd)

So, when Sales fall by 66.67% (i.e., by ₹.6,667), EBIT will fall by 100% (i.e., the firm will not make any profits). Any fall beyond this will result in losses.

ILLUSTRATION 7

Calculate operating leverage and financial leverage under situations A, B and C and plans I, II and Ill respectively, from the following information relating to operation of Capital Structure of XYZ Co. Ltd. Also find out the combinations of operating and financial leverage, which give the highest value and the least values. How are these calculations useful to the financial manager?

Installed capacity	1,200 units
Actual production and sales	800 units
Selling price per unit	₹.15
Variable cost per unit	₹.10

Fixed Cost

Situation A: ₹. 1,000

Situation B: $\overline{\xi}$. 2,000

Situation C: $\overline{\xi}$. 3,000

Capital Structure

	Plan I (₹.)	Plan II (₹.)	Plan III (₹.)
Equity	5,000	7,500	2,500
12% debt	5,000	2500	7,500

Solution:

Preparation of Income Statement and calculation of Leverages (for 800 Units)

	Plan 1			Plan 2		Plan 3			
	Situation			Situation			Situation		
	A	В	С	A	В	С	A	В	С
Sales (@ ₹.15)	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000
Variable Cost (@ ₹. 10)	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
Contribution	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Fixed Cost	1000	2,000	3,000	1,000	2,000	3,000	1,000	2,000	3,000
EBIT	3,000	2,000	1,000	3,000	2,000	1,000	3,000	2,000	1,000

Work Book: Financial Management and Business Data Analytics

	Plan 1			Plan 2			Plan 3		
	Situation			Situation			Situation		
	A	В	С	A	В	С	A	В	С
Less: Interest	600	600	600	300	300	300	900	100	100
EBI	2,400	1,400	400	2,700	1,700	700	2,100	1,100	100
DOL (Contribution/ EBIT)	1.33	2.00	4.00	1.33	2.00	4.00	1.33	2.00	4.00
DFL (EBIT/EBT)	1.25	1.43	2.5	1.11	1.18	1.43	1.43	1.82	10
DCL (Contribution/ EBIT)	1.67	2.86	10	1.48	2.35	5.71	1.90	3.64	40

Plan 1 under Situation A gives the lowest combination of operating and financial leverages, and Plan 3 under Situation C gives the highest combination of operating and financial leverages. These leverages, being a measure of risk, can help a finance manager to decide on the Capital Structure that matches with the risk profile of the company and the situation in which operations are to be carried out that can help in minimizing operating risk.

ILLUSTRATION 8

N Ltd. provides you the following information:

- (i) Capital Gearing Ratio: 3
- (ii) Fixed Cost: 1/3rd to total operating cost
- (iii) Dividend Yield: 6%
- (iv) Operating Ratio: 75%
- (v) Ratio of 18% Preference Shares to 15% Debentures: 12.5%
- (vi) Dividend Payout Ratio: 30%
- (vii) Accumulated Reserves: ₹.4,00,000
- (viii) Capital Employed: ₹.24,00,000
- (ix) Market Price of an Equity Share of ₹.10: ₹.135
- (x) Tax Rate: 40%

Prepare an Income Statement and calculate the degree of operating leverage, financial leverage

and combined leverage.

Solution:

Capital Gearing Ratio = 3 Fixed income bearing instruments / Equity shareholder's fund = 3 18% Preference Shares + 15% Debentures / Equity shareholder's fund = 3 18% Preference Shares + 15% Debentures = 3 Equity shareholder's fund(1) Again, Capital Employed = ₹.24,00,000 Equity shareholder's fund + 18% Preference Shares + 15% Debentures = ₹.24,00,000 Equity shareholder's fund + 3 Equity shareholder's fund = ₹.24,00,000 Equity shareholder's fund = ₹.24,00,000 / 4 = ₹.6,00,000Equity share capital + Reserves & Surplus = ₹.6,00,000 Equity share capital + ₹.4,00,000 = ₹.6,00,000Equity share capital = ₹.2,00,000 So, 18% Preference Shares + 15% Debentures = 3 × ₹.6,00,000 = ₹.18,00,000 Further, 18% Preference Shares / 15% Debentures = 12.5% 18% Preference Shares / 15% Debentures = 1 / 8 15% Debentures = 8 × 18% Preference Shares.....(3) 18% Preference Shares + 8 × 18% Preference Shares = ₹.18,00,000 18% Preference Shares = ₹.18,00,000 / 9 = ₹.2,00,000 15% Debentures = 8 × 18% Preference Shares = 8 × ₹.2,00,000 = ₹.16,00,000 Dividend Yield = 6% DPS / MPPS = 6% [DPS = Dividend per equity share, MPPS = Market Price per equity share] DPS / 135 = 6% DPS = $135 \times 6\% = 8.1$ Dividend Payout Ratio = 30% DPS / EPS = 30% [EPS = Earnings per equity share]

8.1 / EPS = 30%

EPS = 8.1 / 30% = 27

Number of equity shares = Equity share capital / Face value per equity share

= ₹.2,00,000 / ₹.10 = 20,000

Operating Ratio = 75%

So, Operating Profit Ratio = (100 - 75) % = 25%

Operating Profit / Sales = 25%

EBIT / Sales = 25%.....(4)

Computation of EBIT

Particulars	Amount (₹.)
EAES (EPS X Number of equity shares)	5,40,000 (₹.27 × 20,000)
Add: Preference dividend	36,000 (18% of ₹.2,00,000)
EAT	5,76,000
Add: Tax	3,84,000 (5,76,000 × 0.4 / 0.6)
EBT	9,60,000
Add: Interest on debentures	2,40,000 (15% of ₹. 16,00,000)
EBIT	12,00,000

Putting EBIT = ₹.12,00,000 in equation (4) we get,

₹. 12,00,000 / Sales = 25%

Sales = ₹.12,00,000 / 25% = ₹.48,00,000

Operating Ratio = 75%

Operating Expenses (or cost) / Sales = 75%

Operating Expenses (or cost) = ₹.48,00,000 × 75% = ₹.36,00,000

Fixed Cost = 1/3rd to total operating cost = 1/3rd × ₹. 36,00,000 = ₹.12,00,000

Variable Cost = 2/3rd to total operating cost = 2/3rd × ₹.36,00,000 = ₹.24,00,000

Income Statement N Ltd.

Particulars	Amount (₹.)
Sales	18,00,000
Less: Variable Cost	2 1,00,000
Contribution	24,00,000
Less: Fixed Cost	12,00,000
EBIT	12,00,000
Less: Interest on debentures	2,40,000
EBT	9,60,000
Less: Tax @ 40%	3,84,000
EAT	5,76,000
Preference dividend	36,000
EAES	5,40,000
DOL (Contribution / EBIT)	2
DFL (EBIT/[EBT-(Pd/1-t)]	1.33
DCL (DOL × DFL)	2.67

ILLUSTRATION 9

The following data are available for XY Ltd -

Earnings per share ₹. 3.00

Internal rate of return 15%

Cost of capital 12%

If Walter's valuation formula holds, what will be the price per share when the dividend pay-out ratio is 50%, 75% and 100%?

Solution:

As per Walter's model, value per share is given by –

$$P = \frac{D + \frac{r}{k}(E - D)}{k}$$
 where P = Market price per share, D = Dividend per share, E = Earnings per share,

r = rate of return on investment, k = cost of capital.

Statement Showing Computation of Market Price of Share						
Dividend Payout Ratio = 50%	Dividend Payout Ratio = 75%	Dividend Payout Ratio = 100%				
Here, E = 3, D = $3 \times 0.5 = 1.5$ k = 0.12 and r = 0.15	Here, E = 3, D = $3 \times 0.75 = 2.25$ k = 0.12 and r = 0.15	Here, E = 3, D = $3 \times 1 = 3$ k = 0.12 and r = 0.15				
So, P = $\frac{1.5 + \frac{0.15}{0.12}(3 - 1.5)}{0.12}$	So, P = $\frac{2.25 + \frac{0.15}{0.12}(3 - 2.25)}{0.12}$	$P = \frac{3 + \frac{0.15}{0.12}(3 - 3)}{0.12}$				
$= \frac{3.375}{0.12}$ = 28.125	$= \frac{3.1875}{0.12}$ $= 26.5625$	$=\frac{3}{0.12}$ $=25$				

ILLUSTRATION 10

ABC Ltd. has 500000 outstanding shares of ₹. 10 each. The company earns a rate of 24% on its investments and retains 50% of earnings as a policy. If cost of capital is 18%, calculate price of the share according to Gordon's Model. The company has total investment of around ₹.50,00,000 in assets. If payout ratio changes to 10%, 90% how will share price change? Also comment on the optimal dividend policy for ABC Ltd as per Gordon's model.

Solution:

Given, Cost of capital (k) = 18% = 0.18

Return on investment (r) = 24% = 0.24

Earnings per share (E) =
$$\frac{5000000 \times 0.24}{500000}$$
 = ₹ 2.40

Retention ratio (b) = 50% = 0.50

As per Gordon's model, value per share = P =
$$\frac{E(1-b)}{k-b\times r}$$
 = $\frac{24(1-0.5)}{0.18-0.5\times0.24}$ = $\frac{1.25}{0.06}$ = ₹. 20

If payout ratio (1-b) = 10% i.e. 0.10, then, retention ratio (b) = 90% = 0.90

Value per share = P =
$$\frac{E(1-b)}{k-b\times r}$$
 = $\frac{24(1-0.9)}{0.18-0.9\times0.24}$ = $\frac{0.24}{-0.036}$ = -6.67 (₹.)

Now, if payout ratio (1-b) = 90% i.e. 0.90, then, retention ratio (b) = 10% = 0.10

Value per share = P =
$$\frac{E(1-b)}{k-b\times r}$$
 = $\frac{24(1-0.1)}{0.18-0.1\times0.24}$ = $\frac{2.16}{0.156}$ = ₹. 13.85

In this case r > k, so the firm is a growth firm. Hence, according to Gordon model as the retention ratio increases the value per share also increases. Therefore, the optimal policy for the firm is to retain as much as possible. However, according to Gordon, maximum retention ratio should be lower than k/r i.e. 0.18/0.24 = 2/3.

ILLUSTRATION 11

D Ltd. has 10 lakhs equity shares outstanding at the beginning of the accounting year 2005. The current market price of the shares is \mathbb{Z} . 150 each. The BOD of the company has recommended \mathbb{Z} . 8 per share as dividend. The rate of capitalization, appropriate to the risk class to which the company belongs, is 12%.

- (i) Based on M-M approach, calculate the market price of the shares of the company when the recommended dividend is (a) declared and (b) not declared.
- (ii) How many new shares are to be issued by the company at the end of the accounting year on the assumption that the net income for the year is ₹. 2 crores and the investment budget is ₹. 4 crores when (a) the above dividends are distributed and (b) dividends are not declared?
- (iii) Show that the market value of the shares of the company at the end of the accounting year will remain the same whether dividends are declared or not.

Solution:

Given, cost of capital (K) = 12% i.e.0.12

Current market price per share (P_0) = ₹. 150

We know that, as per M-M, current market price per share (P0) = $\frac{D_1 + P_1}{1 + K}$ where D_1 = Dividend

per share at the end of the year, P_1 = Price (Terminal value) per share at the end of the year

(i) (a) Price per share at the end of the year when dividend is declared (i.e. $D_1 = 8$):

Conditionally,
$$150 = \frac{8 + P_1}{1 + 0.12}$$

or,
$$8 + P_1 = 150 \times 1.12$$

or,
$$P_1 = 160$$

(b) Price per share at the end of the year when dividend is declared (i.e. $D_1 = \mathbb{7}$. 0):

Conditionally,
$$150 = \frac{0 + P_1}{1 + 0.10}$$

or,
$$P_1 = 150 \times 1.12$$

or, $P_1 = 168$

(ii) (a) New shares to be issued when dividend is declared:

Given, I = amount of investment required = ₹. 40000000

E = Earnings i.e. net profit available = ₹. 20000000

 D_1 = Dividend per share at the end of the year = \mathbb{Z} . 8

 P_1 = Price per share at the end of the year = $\stackrel{?}{\sim}$. 160

n = existing number of shares = 1000000

m = Number of new shares to be issued

Conditionally, $mP_1 = I - (E - nD_1)$

or,
$$m \times 160 = 40000000 - (20000000 - 10000000 \times 8)$$

or, $m \times 160 = 28000000$

or, m =
$$\frac{28000000}{160}$$
 = 175000

(b) New shares to be issued when dividend is not declared:

Here,
$$D_1 = 0$$

Conditionally,
$$mP_1 = I - (E - nD_1)$$

or,
$$m \times 168 = 40000000 - (20000000 - 10000000 \times 0)$$

or,
$$m \times 168 = 20000000$$

or, m =
$$\frac{20000000}{168}$$
 = 119048

(iii) Verification of M-M Dividend Irrelevance Theory.

Value of the firm at the end of the year if dividend is declared = $(n + m) \times P_1$

 $=(1000000+175000)\times160$

= ₹. 1880 lakhs

Value of the firm at the end of the year if dividend is declared = $(n + m) \times P_1$

 $=(1000000+119048)\times168$

= ₹. 1880 lakhs

So, the value of the firm remains the same at the end of the year in both the cases.

ILLUSTRATION 12

The following figures are collected from the annual report of PQR Ltd.:

Net profit ₹. 60 Lakhs

Outstanding 12% Preference shares ₹. 200 Lakhs

Number of Equity shares 6 Lakhs

Return on Investment 20%

Cost of capital 16%

What should be the approximate dividend payout ratio so as to keep the share price at ₹.42 by using Walter's model?

Solution:

As per Walter's model, value per share is given by -

$$P = \frac{D + \frac{r}{k}(E - D)}{k}$$
 where P = Current Market price per share, D = Dividend per share, E = Earnings

per share, r = rate of return on investment, k = cost of capital.

Here, r = 20% i.e. 0.20, k = 16% i.e. 0.16

$$E = \frac{60 - (200 \times 12\%)}{6} = ₹.6$$

Let D/P ratio is y

Conditionally, P =
$$\frac{D + \frac{r}{k}(E - D)}{k}$$

or, 42 =
$$\frac{6y + \frac{0.20}{0.16}(6 - 6y)}{0.16}$$

or,
$$6.72 = 6y + 7.50 - 7.50y$$

or,
$$1.5y = 0.78$$

or,
$$y = 0.52$$

So the required dividend payout ratio is 52%.

Business Data Analytics

CASE 1:

Mr. A is the owner of M & M Manufacturers Ltd. The company produces auto parts and supply to various leading automobile companies in India. Till date the company keeps most of its records in physical form. However, Mr. B, a friend of Mr. A has suggested him that he should switch to maintaining digital records instead of physical records as the former offers manifold advantages. Mr. A has approached you to suggestion. You, as a CMA, suggest him the appropriate steps to be followed in this process of transformation.

Answer:

The entire process of digitization may be executed in the following six phases:

Phase 1: Justification of the proposed digitization project

At the very initiation of the digitization project, the accrual benefit of the project needs to be identified. Also need to compute the cost aspect of the project and the assessment of availability of resources. Risk assessment is an important part project assessment. For the resources that may be facing quick destruction may be required an early digitization.

Most importantly, the expected value generation through digitization should be expressed in clear terms.

Phase 2: Assessment

In any institutions, all records are never digitized. The data that requires digitization is to be decided on the basis of content and context. Some data may be digitized in a consolidated format, and some in detailed format. The files, tables, documents, expected future use etc. are to be accessed and evaluated for the assessment.

The hardware and software requirements for digitization is also assessed at this stage. The human resource requirement for executing the digitization project is also planned. The risk assessment at this level e.g. possibilities of natural disasters, and/or cyber-attacks etc. also need to be completed.

Phase 3: Planning

Successful execution of digitization project needs meticulous planning. There are several stages for planning e.g. selection of digitization approach, Project documentation, Resources management, technical specifications, and Risk management.

The institution may decide to complete the digitization in-house or alternatively by an outsourced agency. It may also be done on-demand or in batches.

Phase 4: Digitization activities

Upon the completion of assessment and planning phase, the digitization activities start. The Wisconsin Historical Society developed a six-phase process viz. Planning, Capture, Primary quality control, Editing, Secondary quality control, and storage and management.

The planning schedule is prepared at the fist stage, calibration of hardware/software and scanning etc is done next. A primary quality check is done on the output to check the reliability. Cropping, colour correction, assigning Metadata etc. is done at the editing stage. A final check of quality is done on randomly selected samples. And finally, user copies are created, and uploaded to dedicated storage space, after doing file validation.

Phase 5: Processes in the care of records

Once the digitization of records is complete, there are few additional requirements arise which may be linked to administration of records. The permission for accession of data, intellectual control (over data), classification (if necessary), and upkeeping and maintenance of data are few additional requirements for data management.

Phase 6: Evaluation

Once the digitization project is updated and implemented, the final phase should be a systematic determination of the project's merit, worth and significant using objective criteria. The primary purpose is to enable reflection and assist identify changes that would improve future digitization processes.

CASE 2:

Excel Fintech is a database provider which compiles and provides various data regarding start-ups. The data are collected from the start-up firms directly as well as some secondary sources. The database is updated every week. Excel's clients include various high net-worth individuals as well as some premier research institutes of the country. Recently one of the Board members of Excel has expressed concern over ethical use of data in the company as it may pose a serious threat for its reputation. Excel has decided to conduct a workshop for its employees on data ethics. Excel

has requested you to deliver a session on data ethics in the workshop. Prepare a brief note on principles of data ethics that you want to deliver to the participants of the workshop.

Answer:

The five basic principles of data ethics that a business organization should follow are:

- (i) Regarding ownership: The first principle is that ownership of any personal information belongs to the person. It is unlawful and unethical to collect someone's personal data without their consent. The consent may be obtained through digital privacy policies or signed agreements or by asking the users to agree with terms and conditions. It is always advisable to ask for permission beforehand to avoid future legal and ethical complications. In case of financial data, some data may be sensitive in nature. Prior permission must be obtained before using the financial data for further analysis.
- (ii) Regarding transparency: Maintaining transparency is important while gathering data. The objective with which the company is collecting user's data should be known to the user. For example, if the company is using cookies to track the online behaviour of the user, it should be mentioned to the user through a written policy that cookies would be used for tracking user's online behaviour and the collected data will be stored in a secure database to train an algorithm to enhance user experience. After reading the policy, the user may decide to accept or not to accept the policy. Similarly, while collecting the financial data from clients, it should be clearly mentioned that for which purpose the data should be used.
- (iii) **Regarding privacy:** As the user may allow to collect, store and analyze the personally identifiable information (PII), that does not imply it should be made publicly available. For companies, it is mandatory to publish some financial information to public e.g. through annual reports. However, there may be many confidential information, which if falls on a wrong hand may create problems and financial loss. To protect privacy of data, a data security process should be in place. This may include file encryption and dual authentication password etc. The possibility of breach of data privacy may also be done through de-identifying a dataset.
- **(iv) Regarding intention:** The intension of data analysis should never be making profits out of others weaknesses or for hurting others. Collecting data which is unnecessary for analysis should be avoided and it's unethical.
- **(v) Regarding outcomes:** In some cases, even if the intentions are good, the result of data analysis may inadvertently hurt the clients and data providers. This is called disparate impact, which is unethical.

CASE 3:

Mr. P is a management trainee appointed recently in your organization. The Deputy Manager, Finance, is his immediate reporting authority. Recently, the Deputy Manager has asked Mr. P to

explore the possibility of including data visualization in report design for the Board meeting to be held in next week. Being new to this filed, Mr. P has approached you to guide him and suggest certain strategic steps to include data visualization in report design. Suggest a few critical steps in this regard.

Answer:

There are few strategic steps to include data Visualisation in report design, as mentioned below:

(a) Find a story in the data

Data-driven storytelling is a powerful tool. Finding a story that connects with the reader can help to create an effective report. It's also not that hard as it looks. In order to locate the story, one must arrange the data, identify any missing numbers, and then check for outliers. One may then view the data and examine the link between factors.

(b) Create a narrative

When some individuals hear the term "data storytelling," they believe that it consists of a few statistics and that the task is complete. This is a frequent misconception that is false. Strong data storytelling comprises an engaging narrative that takes the audience through the facts and aids in their comprehension. Moreover, an explanation of the significance of these ideas is essential. To compose an excellent story, one must:

- (i) Engage the viewer with a catchy title and subheadings.
- (ii) Incorporate context into the data.
- (iii) Create a consistent and logical flow.
- (iv) Highlight significant discoveries and insights from the data.

(c) Choose the most suitable data Visualisation

Data Visualisation is not limited to the creation of charts and graphs. It involves presenting the facts in the most comprehensible chart possible. Applying basic design principles and utilising features like as form, size, colour, and labelling may have a significant impact on how people comprehend the data. For instance, deciding the optimal number of slices for a pie chart or the space between bars in a bar graph. Knowing these tips may greatly improve the data visualisations.

(d) Follow the visual language

The report design may be for internal or external consumption. Despite this, one should develop material consistent with the company's style guide. It is essential to adhere to data visualisation principles in order to achieve both uniformity and comprehension. A strategic methodology assists in implementation.

(e) Publicize the report

Some reports are not intended for public consumption. However, since they include so much essential information, they may contain knowledge that is of interest to individuals or media outside of the business.

CASE 4:

Primex Fintech is a start-up in BFSI sector. Currently it offers micro insurance products in various categories. However, it has plans to digital lending in future also. The firm wants to leverage data analytics to expand its business. For this purpose, Primex has approached your company, a leading data analytics solution provider. Your manager, Mr. P has asked to arrange for a client meet with Primex to explain the benefits of implementing data mining in finance and management and thereby persuade them to appoint your company to offer data mining and analytics services. Prepare a brief note on the benefits of implementing data mining in finance and management.

Answer:

The widespread use of data mining techniques by business intelligence and data analytics teams enables them to harvest insights for their organisations and industries.

Utilizing data mining techniques, hidden patterns and future trends and behaviours in financial markets may be predicted. Typically, sophisticated statistical, mathematical, and artificial intelligence approaches are necessary for data mining, particularly for high-frequency financial data. Among the data mining applications are:

(i) Detecting money laundering and other financial crimes:

Money laundering is the illegal conversion of black money to white money. In today's society, data mining techniques have advanced to the point where they are deemed suitable for detecting money laundering. The data mining methodology provides a mechanism for bank customers to detect or verify the detection of the anti-money laundering impact.

(ii) Prediction of loan repayment and customer credit policy analysis:

Loan Distribution is the core business function of every bank. The loan Prediction system automatically computes the size of the characteristics it employs and examines data pertaining to its size. Consequently, data mining aids in the management of all critical data and massive databases by utilising its models.

(iii) Target marketing:

Together, data mining and marketing work to target a certain market, and they also assist and determine market decisions. With data mining, it is possible to keep earnings, margins, etc. and determine which product is optimal for various types of customers.

(iv) Design and construction of data warehouses:

The business is able to retrieve or move the data into several huge data warehouses, allowing a vast volume of data to be correctly and reliably evaluated with the aid of various data mining methodologies and techniques. It also examines a vast number of transactions.

The Institute of Cost Accountants of India

Statutory Body under an Act of Parliament

www.icmai.in

Headquarters:

CMA Bhawan; 3, Institutional Area; Lodhi Road; New Delhi - 110003 Ph: +91-11-2462-2156/2157/2158; 24666124

Kolkata Office:

CMA Bhawan; 12, Sudder Street; Kolkata - 700016 Ph: +91-33-4036-4779/4721/4726/4777

E-mail: studies@icmai.in

