1.	If A: B = 2:3, B: C = 4:5,		/) 0 15	(1) 15.0
	(a) 6:7	(b) 7: 6	(c) 8:15	(d) 15:8
2.	The inverse ratio of $1\frac{3}{5}$:	$2\frac{1}{4}$ is		
	(a) 32 : 45	(b) 45: 32	(c) 18:5	(d) 5: 18
3.	The ratio of 10 meters to (a)The ratio Cannot be Determined	₹ 15 (b) 2:3	(c) 3:2	(d)5:10
4.	If twice of money of A = (a) 2:5	5 times of money of B, the	en the ratio of money of A (c) 12:30	to that of B (d) 5: 2
5.	The ratio $\frac{5}{3}$: $2\frac{1}{4}$ is	. ,	. ,	
	(a) Ratio of lesser in equ (d) 5:27	ality (b) Ratio of gre	ater inequality	(c) 20:9
6.	The ratio of present a 30 years, then the prese		Madhu is 4 : 5. If the	present age of Madhu is
	(a) 20 years	(b) 25 years	(c) 24 years	(d) 35 years
7.	The ratio of 5 kg 55 gm t (a) 5:7	o 35 kg 50gm : (b) 1,011: 7,010	(c) 111 :710	(d) None of these
8.	The ratio 1 year 6 month (a) 3:4:5	: 2 years : 2 years 6 month (b) 2: 3:5	ths (c) 2:4:5	(d) None of these
9.	If $\frac{1}{2}$ of money of A = $\frac{1}{3}$ rd	money of B = $\frac{1}{4}$ of money of	of C, then the continued ratio	of money of A, B and C
	(a) 2:3:4	(b) 6: 4:3	(c) 4:3:2	(d) 3:2:1
10.	(a) ₹ 90	ed between A and B in th (b) ₹ 144	(c) ₹ 108	(d) None of these
11.	₹ 2530 is distributed betv	veen Ram and Hari such	that Ram gets $\frac{11}{12}$ part tha	ıt Hari gets. Then Hari gets :
	(a) ₹1320	(b) ₹1210	(c) ₹1230	(d) ₹1310
12.		amount of money that M		th that twice the money that amount of money that Shipra
13.	In a map 2 cm denotes	a distance of 3 km., then	the seale in the map is :	
	(a) 1:1,50,000	(b) 1:15,000	(c) 1:1,500	(d) 2:3
14.		rs is 2: 3. If 6 is subtracte number so that the new (b) 6		per then the number which is as that of the previous, is (a) 4
15.	The sub- duplicate ratio	of 49:81 is:		
	(a) 81 : 49	(b) 7:9	(c) 9:7	(d) $\sqrt{7}:3$

16.	$(\frac{1}{2} + \frac{1}{3}) : (\frac{1}{2} \times \frac{1}{3}) :$			
	(a) 2:3	(b) 3:2	(c) 5:1	(d) 1:5
17.	The compound ratio of 1.	2:2.5.2.1:3.2 and 5:3	is :	
	(a) 21 : 25	(b) 27:40	(c) 21 : 40	(d) None of these
18.	If A:B=3:4, B:C=2:5	. then A:B:C:		
	(a) 3:4:5	(b) 3: 4:10	(c) 4:3:10	(d) 3:4:8
19.	Two numbers are in the retheratio 1:2, then the nu		tracted from each of the	m then the remainders are in
	(a) 15, 12	(b) 12, 18	(c) 15, 24	(d) None of these
20.	If the price of a pair of per ratio of the price per piec		books of Mathematics is	₹ 197.50, then the continued
	(a) 19:25:2	(b) 21: 25 : 2	(c) 19:30:3	(d) None of these
21.	If $3x + 4y$: $5x - 3y = 5 : 3$, the second	nen v · v ·		
2	(a) 16:27	(b) 27:16	(c) 8:9	(d) None of these
22.	The ratio of two numbers	is 12 : 5. If the anteceden	t is 45, then the consequ	ent is :
	(a) 108	(b) 15	(c) 18.75	(d) 20
23.	If the ratio of two positive	numbers is 4 : 5 and thei	r L. C. M. is 140, then the	numbers are :
	(a) 28, 35	(b) 28, 40	(c) 35, 45	(d) none of these
24.	If the ratio of positive num	nbers is 5 : 9 and their H. (C. F. is 4, then the L. C. M.	of the number is
	(a) 90	(b) 180	(c) 45	(d) None of these
25.	If the ratio of two positive	numbers is 7 : 8 and thei	r L. C. M. is 224, then their	H. C. F. is :
	(a) 6	(b) 8	(c) 4	(d) None of these
26.	The compound ratio of su	ub-duplicate ratio and su	b-triplicate ratio of 729: 6	4 is
	(a) 81:8	(b) 81 : 16	(c) 729:16	(d) 243:32
27.	The ratio of two numbers 630. The H. C. F. of the nu		mes the first number and	twice the second number is
	(a) 10	(b) 12	(c) 15	(d) None of these
28.	The mean proportional o	F4X and 16X3 is:		
	(a) 10 X ²	(b) 12 X ²	(c) 8 X ²	(d) 64 X 4
29.	The third proportional of	I hour 20 minutes. 1 hour	40 minutes is:	
	(a) 1 hrs 50 minutes	(b) 2 hrs	(c) 2 hrs 5 minutes	(d) 2hrs 25 minutes
30.	The fourth proportional of	₹5, ₹3.50, 150 gm is:		
	(a) 100 gm	(b) 105 gm	(c) 125 gm	(d) None of these
31.	If A: B = B: C = C: D = 5:	6, then A : B : C : D		
•	(a) 125 : 150: 180 : 216		(c) 75:84:96:108	(d) None of these
32.	If the first and third numb	pers of four positive numb	pers in continued proport	ion be 3 and 12 respectively

(b) 36

(a) 27

33.	A purse contains 1 reratio of their values:	se contains 1 rupee coin, 50 paisa coin, 25 paisa coin. The ratio of their numbers are $x:y:z$. The of their values:				
	(a) 4x: 2y : z	(b) 2x : 3y : z	(c) 4x: 3y : z	(d)x : 2y : 4z		
34.	Of the four numbers a) 32,16	in proportion, if the produ (b) 18, 30	uct of two middle numbe (c) 3, 16	rs is 48, the other numbers are : (a) 6, 24		
35.	result of this addition	and B, C will be in contin	nued proportion, is :	ch is to be added to A so that the		
	(a) 1	(b) 2	(c) 3	(d) 4		
36.	The mean proportion	n of three numbers in con	tinued proportion is 16, t	hen the other numbers are :		
	(a) 12, 8	(b) 64, 2	(c) 80, 5	(d) $\sqrt{.01}$, 2560		
37.	If A: B = 5 : 8. A : C =	6:11, then A:B:C:				
	(a) 30: 36 : 55	(b) 24:30:55	(c) 30 : 48 : 55	(d) None of these		
38.	If X : Y = 2 : 3, X : Z =	5 : 7, then (3X + 2Y) : (5Y	– 2 Z) :			
	(a) 60:49	(b) 60:47	(c) 47:60	(d) None of these		
39.	The distance between the two pla		o of 1: 25,00,000 scale is	s 8 cm. Then the actual distance		
	(a) 200 km	(b) 300 km	(c) 100 km	(d) None of these		
40.	5 years ago, the ag		ere in the ratio 5 : 3. If th	e sum of their present ages is 90		
	(a) 50 years	(b) 60 years	(c) 55 years	(d) None of these		
41.	If A:B = 5:7 and B:C =	= 6:11, then A:B:C is:				
	(a) 55:77:66	(b) 30:42:77	(c) 35:49:42	(d) None of these		
42.	If p:q = 3:4 and q:r =	8:9, then p:r is:				
	(a)1:3	(b)3:2	(c) 2:3	(d) 1:2		
43.	If A:B = 8:15. B:C = 5:	:8 and C:D = 4:5, then A:D	is equal to:			
	(a) 2:7	(b) 4:15	(c) 8:15	(d)15:4		
44.				not wait more than 10 minutes for		
	each other. The prol (a) 10/36	bability that they actually (b)11/36	(c) 25/36	(d)26/36		
45 .	If 15% of x is the sam	ne as 20% of y, then x:y is	:			
	(a) 3: 4	(b) 4:3	(c)17:16	(d)16:17		
46.	If 7:x = 17.5 : 22.5, th (a) 9	en the value of x is: (b) 7.5	(c) 6	(d) 5.5		
47 .	If $\frac{1}{5}$: $\frac{1}{x} = \frac{1}{x}$: $\frac{1}{1.25}$	the value of x is :				
	(a) 1.5	(b) 2	(c) 2.5	(d) 3.5		
48.	If 0.4 : 1.4 :: 1.4 : x, th	ne value of x is:				
	(a) 49	(b) 4.9	(c) 0.49	(d) 0.4		

49.	The compounded ratio of (a) 1:2	f (2:3), 6:11) and (11:2) is: (b) 2:1	(c) 11:24	(d) 36:121
50.	If 2A = 3B = 4C, then A:B:0	C is:		
	(a) 2:3:4	(b) 4:3:2	(c) 6:4:3	(d) 3:4:6
	$\frac{1}{3}_{A} = \frac{1}{4}_{B} = \frac{1}{5}_{C, \text{ then }}$			
5 1.	If $3 A = 4 B = 5 C$, then	A:B:C is:		
	(a) 4:3:5	(b) 5:4:3	(c) 3:4:5	(d) 20:15:12
52.	If $A = 1/3 B$ and $B = \frac{1}{2} C$, to (a) 1:3:6	hen A:B:C is : (b) 3:1:2	(c) 2:3:6	(d) 3:2:6
53.	If 2A = 3B and 4B = 5C, the	en A:C is:		
	(a) 4:3	(b) 8:15	(c) 15:8	(d) 3:4
54.	If $x : y = 5:2$, then the value	e of (8x + 9y) : (8x + 2y) i	s	
	(a) 26:61	(b) 61:26	(c) 29:22	(d) 22:29
55.	If x:y = 2:1, then $(x^2 - y^2)$: (a) 3:5	$(x^2 + y^2)$ is: (b) 5:3	(c) 1:3	(d) 3:1
56.	If (4x ² - 3y ²): (2x ² + 5y ²) = (a) 2:3	12:19, then x:y is: (b) 1:2	(c) 3:2	(d) 2:1
57.	The fourth proportional of (a) 0.13	0.2, 0.12 and 0.3 is: (b) 0.15	(c) 0.18	(d) 0.8
58.	The third proportional to 0	0.36 and 0.48 is:		
	(a) 0.64	(b) 0.1728	(c) $24\sqrt{.0003}$	(d) None of these
59.	The mean proportion beta	ween 0.32 and 0.02 is: (b) 0.08	(c) 0.008	(d) 0.4
60.	The third proportional to (x2 – y2) and (x – y) is :		
	(a) $\frac{x+y}{x-y}$	(b) $\frac{X-Y}{X+Y}$	(c) x + y	(d) (x - y)
61.	The ratio of third proportion (a) 2:1	onal to 12 and 30 and the (b) 5:1	mean proportional of 9 c (c) 7:15	and 25 is: (d) 9:14
62.	In a ratio which is equal to (a) 9	o 3:4, if the antecedent is (b) 16	12, then consequent is: (c) 20	(d) 24
63.	If 0.4 of a number is equal (a) 2:3	l to 0.06 of another numb (b) 3:4	per, then the ratio of the n (c) 3:20	umbers is : (d) 20:3
	A friction which bears the	$\frac{1}{2}$	5	
64.	A friction which bears the	same ratio to 27 that 1	1	2
	(a) $\frac{1}{55}$	(b) 55	(c) $\frac{1}{11}$	(d) $\frac{3}{11}$

If a + b : b+c : c+a = 6 : 7 : 8 and a+b+c = 14, then the value of c is :

(b) 7

65.

(a) 6

(d) 14

- (c) $\frac{1}{2}$
- (d) $\frac{1}{7}$

67. If
$$a^x = b^y = c^z$$
 and $b^2 = ac$, then $xy + yz =$

- (b) Xz
- (c) 2xz
- (d) None of these

68. If
$$\frac{\left(p + \frac{1}{q}\right)^p \cdot \left(p - \frac{1}{q}\right)^p}{\left(q + \frac{1}{p}\right)^p \left(q - \frac{1}{p}\right)^q} = \left(\frac{p}{q}\right)^x$$
, then the value of x

- (c) q p
- (d) None of these

69. The digit in the unit place of
$$(2 \times 4^{x})^{2} + 1$$
 (where x is a positive integer) is:

(d) None of these

70. If
$$\frac{(2^{x+1})^y \cdot (2^{2x})_{2^x}}{(2^{y+1})^x \cdot 2^{2y}} = 1$$
, then the value of y is:

- (c) X
- (d) 2 X

- ₹ 150
- (c) ₹ 120
- (d) ₹ 10

72. If
$$3^{X} = 5^{y} = (225)^{z}$$
, then Z:

(a)
$$\frac{xy}{x+y}$$

(a)
$$\frac{xy}{x+y}$$
 (b) $_{2}\frac{xy}{(x+y)}$

- (c) 2(X + y)
- (d) None of these

73. If
$$x \neq 1$$
 and $x^{4\sqrt{x}} = \left(x - \sqrt[4]{x}\right)^{x}$, then $x : x \neq 1$

(a) -1

- (d) None of these

74. If
$$a^{\frac{1}{3}} + b^{\frac{1}{3}} + c^{\frac{1}{3}} = 0$$
, then $(a+b+c)^3$:

- (c) 27 abc
- (d) None of these

75. If
$$y = x^{\frac{1}{3}} - x^{\frac{1}{3}}$$
, then $Y^3 + 3y$:

(a) $x - \frac{1}{x}$ (b) $x + \frac{1}{x}$ (c) $\frac{1}{x} - x$

- (d) None of these

76. If
$$a = 2 + \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{4}}$$
, then $a^3 - 6a^2 + 6a$:

- (c) 2
- (d) None of these

77. If
$$3x = 9y$$
, then $\frac{1}{x} - 1$

(a) 1

(b) 2

- (c) $\frac{1}{2}$
- (d) 0

78. If
$$64 \times = 2\sqrt{2}$$
, then X

(a)
$$\frac{1}{6}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{1}{4}$$

(d) None of these

79. If
$$X = 8$$
, $Y = 27$, then the value of $\left(x^{\frac{4}{3}} + y^{\frac{2}{3}}\right)^{\frac{1}{2}}$ is

(a) 2

(d) 4

80. If 9 x 81^x =
$$\frac{1}{27^{x-3}}$$
, then the value of x is

(a) 2

(d) None of these

81. If
$$5^{4x} = 1$$
, 00,000, then 5^{-x} :

(a)
$$\frac{1}{10}$$

(b)
$$\frac{1}{5}$$

(c)
$$\frac{1}{2}$$

(d) 2

82. If
$$x = \sqrt[3]{\sqrt{2} + 1} - \sqrt[3]{\sqrt{2} - 1}$$
, then the value of $x^3 = 3x$ is:

(d) None of these

83. If
$$X = 5 + 2\sqrt{6}$$
 and $Xy = 1$, then $\frac{1}{x^2} + \frac{1}{y^2}$:

(a) 22

(d) None of these

(a) 2/7

(c)
$$3/7$$

(d) 4/7

85. If
$$x = 3 + 2\sqrt{2}$$
, then the value of $\left(x^3 + \frac{1}{x^3}\right) - 5\left(x^2 + \frac{1}{x^2}\right) - 5\left(x + \frac{1}{x}\right)$ is :

(a) 0

$$(c) - 2$$

(d) None of these

86.
$$\frac{\sqrt{3}}{\sqrt{7+\sqrt{11}}} - \frac{2\sqrt{7}}{\sqrt{11+\sqrt{3}}} - \frac{\sqrt{11}}{\sqrt{3+\sqrt{7}}}$$

(b)
$$2\sqrt{7} + \sqrt{3} - \sqrt{11}$$

(d) None of these

87. If
$$2^{x+2y} = 2^{2x-y} = \sqrt{8}$$
, then:

(a)
$$x = \frac{3}{10}$$
, $y = \frac{9}{10}$ (b) $x = \frac{9}{10}$, $y = \frac{3}{10}$ (c) $x = \frac{3}{5}$, $y = \frac{6}{5}$

(b)
$$x = \frac{9}{10}$$
, $y = \frac{3}{10}$

(c)
$$x = \frac{3}{5}$$
, $y = \frac{6}{5}$

The mean proportional between $\sqrt{11-}\sqrt{5}$ and $13\sqrt{11+}19\sqrt{5}$ is: 88.

(a) $\sqrt{33} - \sqrt{15}$

(b)
$$\sqrt{33} + \sqrt{15}$$

(c)
$$\sqrt{11} + \sqrt{5}$$

(d) None of these

Two coins are tossed five times, find the probability of getting an even number of heads 89.

(c) 0.4

(d) 0.25

90. If
$$x = 2 + \sqrt{5}$$
, then $x^3 + 3x^2 - 29x$:

(c) 0

91.	Mean of a Binomial o (a)72, 1/3, 2/3	distribution is 24, Standard (b) 60, 1/3, 2/3	d deviation = 4 , n, p, (c) 87, ½, 3/4	q respectively are : (d) 90, 1/5, 4/5
92.	If $a = \frac{1}{2\sqrt{a}}$ and $b = \frac{1}{2}$	$=\frac{1}{2-\sqrt{3}}$, then the value	of 2a² + 3ab – 2b² :	
	- · • •	$(b) 3+16\sqrt{3}$		(d) $2-8\sqrt{3}$
93.	If $x = 7 + 4\sqrt{3}$, then	$\sqrt{\mathbf{x}} + \frac{1}{\sqrt{\mathbf{x}}} =$		
	(a) 3	(b) 6	(c) 4	(d) 2
94.	The value of $\sqrt{6+\sqrt{6}}$ (a) 6	$6 + \sqrt{6 + \dots}$ to infinity is:	(c) -2	(d) 3
95.	If $\frac{(x-\sqrt{24})(\sqrt{75}+\sqrt{50})}{\sqrt{75}}$	$\sqrt{50)}$ = 1, then the value of	of X is:	
	(a) 6	(b) 5	(c) 8	(d) None of these
96.	If $x \propto \alpha^2$, then $\alpha \propto$			
	(a) x^4	(b) √x	(c) $\frac{1}{\sqrt{x}}$	(d) None of these
97.	If $x^2 + y^2 \propto x^2 - y^2$	2 , then x \propto	· ·	
	(a) y	(b) \sqrt{y}	(c) $\frac{1}{\sqrt{y}}$	(d) None of these
98.	If $\mathbf{x} \propto \frac{1}{\sqrt{\mathbf{a}}}$, then $\mathbf{a} \propto \frac{1}{\sqrt{\mathbf{a}}}$	······		
	(a) x^2		(c) $\frac{1}{x}$	(d) $\frac{1}{x^2}$
99.		then B = 4. When A= 3, th		4.0.34
		(b) 16	(c) 9	(d) None of these
100.	If X varies inversely (a) 24	with Y and if Y = 3, then) (b) 18	(= 8. The value of Y (c) 12	when X = 2 are: (d) None of these
101.		, $z^2 \propto xy$, then the produ		
	(a) 0	(b) 1	(c) 3	(d) xyz
102.		d at random, what is prob		read Financial Express, 15 read both. If s Economic Times, if it is known that he
	(a) 1/5	(b) 3/5	(c) 2/5	(d) 4/5
103.	If X is proportional dir	ectly to Y and inversely with	z; y = 5, z = 9 then $X =$	$=\frac{1}{6}$. The relation among x , y, z is:
	(a) $X = \frac{3y}{10z}$	$(b) x = \frac{10z}{3y}$	$(c) x = \frac{5y}{3z}$	(d) None of these
104.	If y varies inversely w	with the square x and $x = 2$	2 when y = 9, then t	he value of y when X = 3 is :

(b) 12

(a) 6

(d) 9

105.	If $x \propto yz^2$, $y \propto ab^2$ and $z \propto \frac{b}{a}$, then the relation of x with a and is:
------	--

(a)
$$x \propto \frac{a^4}{b}$$
 (b) $x \propto \frac{a}{b^4}$ (c) $x \propto \frac{b^2}{a}$ (d) $x \propto \frac{b^4}{a}$

(b)
$$x \propto \frac{a}{b^4}$$

(c)
$$x \propto \frac{b^2}{a}$$

(d)
$$x \propto \frac{b^4}{a}$$

If $b \propto a^3$ and a increases in the ratio 3: 2, then b increases in the ratio:

(d) None of these

107.
$$\frac{(1-i)^2}{(2-i)^2}$$
 can be expressed in the form A+iB, then

(a)
$$\frac{8}{25} - i \frac{6}{25}$$

(a)
$$\frac{8}{25} - i\frac{6}{25}$$
 (b) $-\frac{8}{25} + i\frac{6}{25}$ (c) $-\frac{8}{25} - i\frac{6}{25}$

(c)
$$-\frac{8}{25} - i\frac{6}{25}$$

(d) None of these

$$\frac{2+i}{2-3i} \text{ is :}$$

(a)
$$\frac{5}{13}$$

(b)
$$\sqrt{\frac{5}{13}}$$

(c)
$$\sqrt{\frac{13}{5}}$$

(d) None of these

109. The conjugate complex number of
$$\frac{(3+i)(2-3i)}{1+2i}$$
 is:

(d) None of these

(a)
$$\pm (4-3i)$$

(b)
$$\pm$$
 (3-4i)

(c)
$$\pm$$
 (4 +3i)

(d) None of these

111. If
$$z = \frac{1-i}{\sqrt{2}}$$
, then $z^2 + z^4 + z^6$:

$$(c) -1$$

(d) 2

112. The least positive integer n for which
$$\left(\frac{1+i}{1-i}\right)^n = -i$$
 is:

(d) None of these

113. If
$$x-2 + i3y = I(x-2i)$$
, then

(a)
$$x=4$$
, $Y=\frac{4}{3}$

(a)
$$x=4$$
, $Y=\frac{4}{3}$ (b) $x=3$, $y=4$ (c) $x=-4$, $y=-\frac{4}{3}$

(d) None of these

114. The least positive integer n, for which
$$\left(\frac{1+i}{1-i}\right)^n = -i$$
 is :

(d) 1

(a)
$$\pm$$
 (1-i)

(b)
$$\pm (\sqrt{2} + i)$$

(c)
$$\pm$$
 (1 + $\sqrt{2}$ i)

(d)
$$\pm$$
 (1 + i)

116. If
$$|x-1+3i| = 3\sqrt{2}$$
 then x:

(b)
$$-4.2$$

(d) None of these

117. If
$$Z = \frac{1+i}{1-i}$$
, then $z+z^2+z^3+z^4$:

If x=3+2i and y=3-2i, then x^2+xy+y^2 : 118.

(d) 13

119.	9. If $Z=x+iy$ and $ z-2 = 2z-1 $, then x^2+y^2 :					
	(a) 9	(b) 4	(c) 1	(d) 0		
120.	If A+iB = $\frac{2+i}{2-3i}$, then A ² +	⊦ B ²:				
	(a) $\frac{5}{13}$	(b) $\frac{13}{5}$	(c) 5	(d) 13		
121.	$\frac{1+6i}{7-5i}_{is:}$					
	(a) $\sqrt{2}$	(b) $\frac{1}{\sqrt{2}}$	(c) 1	(d) 2		
122.	If $iz^3+z^2-z+i=0$ then the v	value of z is:				
	(a) 1	(b) 2	(c) 3	(d) None of these		
123.	Let $z_1 = 2 + 3i$ and $z_2 = 3+$	·2i be two complex numb	ers, then			
	(a) $z_1 > z_2$	(b) $z_1 < z_2$	(c) z_1^2	(d) None of these		
	$\sqrt{3}$ i $\sqrt{2}$					
124.	$ \text{Modulus of } \frac{\sqrt{3} i\sqrt{2}}{\sqrt{2}+i\sqrt{3}} $					
	(a) 2	(b) 1	(c) $\frac{2}{3}$	(d) None of these		
125.	1 out of 10 electrical swi 900 electrical switches in		y to be defective. The me	an and standard deviation of		
	(a) 90,9	(b) 81,9	(c) 88,10	(d) 91,11		
126.	If (1+i) (2-i) = a+ib, then (a) 3	the value of $a^2 + b^2$ is: (b) 5	(c) 10	(d) None of these		
127.	If $z + \frac{1}{z} = 1$, then the value	of $z^{14} + \frac{1}{z^{14}}$ is:				
		_				
128.	(a) 0	(b) 2	(c) 1	(d) -1		
		(b) 2				
	If α , β are the complex α	ube roots of unity, then th	ne value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$	-1 is: (d) None of these		
129.	If α , β are the complex α	ube roots of unity, then th	ne value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$	-1 is: (d) None of these		
129. 130.	If α, β are the complex c (a) -1 In how many ways 1 boy (a) 120	(b) 0 y and 1 girl can be select (b) 84	the value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$ (C) 1 (ed out of 12 boys and 7 g (C) 19	-1 is: (d) None of these girls for a Kho Kho team		
	If α, β are the complex α (a) -1 In how many ways 1 boy (a) 120 How many numbers co	(b) 0 y and 1 girl can be select (b) 84	the value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$ (C) 1 (ed out of 12 boys and 7 g (C) 19	-1 is: (d) None of these girls for a Kho Kho team (d) 5		
	If α , β are the complex of (α) -1 In how many ways 1 boy (α) 120 How many numbers conumber (α) 60 How many numbers can	(b) 0 y and 1 girl can be select (b) 84 an be formed between 1	the value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$ (c) 1 (c) 19 (c) 19 (d) 100 out of 1,3,4, (c) 120	-1 is: (d) None of these girls for a Kho Kho team (d) 5 7,8 without repetition of any		
130.	If a, β are the complex comple	tube roots of unity, then the (b) 0 y and 1 girl can be select (b) 84 in be formed between 1 (b) 84 in be formed between 106 (b) 84	the value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$ (c) 1 (c) 19 (c) 19 (d) 100 out of 1,3,4, (c) 120	-1 is: (d) None of these girls for a Kho Kho team (d) 5 7,8 without repetition of any (d) 92		
130.	If α , β are the complex of (α) -1 In how many ways 1 boy (α) 120 How many numbers conumber (α) 60 How many numbers callabeted	tube roots of unity, then the (b) 0 y and 1 girl can be select (b) 84 in be formed between 1 (b) 84 in be formed between 106 (b) 84	the value of $\alpha^4 + \beta^4 + \alpha^{-1} \cdot \beta^{-1}$ (c) 1 (d) feed out of 12 boys and 7 g (c) 19 (c) 19 (d) 100 out of 1,3,4,7,8 (d) 120 0 to 1000 out of 1,3,4,7,8	-1 is: (d) None of these girls for a Kho Kho team (d) 5 7,8 without repetition of any (d) 92 if repetition of any number is		

134.	If ${}^{11}p_r = 110$, then the vo	alue of r is: (b) 10	(c) 4	(d) None of these	
		, ,	, ,	. ,	
135.	If ${}^{n}p_{5} = 20$. ${}^{n}p_{3}$, then the	he value of n is: (b) 8	(c) 7	(d) None of these	
136.	$_{\text{lf}}^{\text{n-1}}$ P3: $_{\text{n+1}}^{\text{n+1}}$ P3 = 28: 9	55, then n : (b) 8	(c) 10	(d) 12	
137.	If m+np2 = 42 and m-n	$p_2 = 6$, then the values of	m and n are:		
107.	(a) m=6, n=2	(b) m=5, n=2	(c) m=6, n=1	(d) None of these	
138.	2n+1 _{pn-1} : 2n-1 _{pn=}	3 : 5, then n : (b) 6	(0) 5	(d) None of these	
		. ,	(c) 5	(a) None of mese	
139.	$\int_{10}^{9} p_{5+5} \cdot {}^{9}p_{4} = {}^{10}p_{r}$, then the value of r is (b) 4	(c) 5	(d) None of these	
140.	The number of permuta	tions if the letters in the	word "BANANA" in whic	h two letters N do not come	
	together is: (a) 40	(b) 60	(c) 80	(d) 100	
141.	There are 11 distinct b		pooks can be arranged	l in a shelf. The number of	
	(a) 2,016	(b) 8,064	(c) 144	(d) None of these	
142.	The number of different num	nbers of 6 digits (without repe (b) 120	etition) can be formed from t (c) 720	he digits 3, 1, 7,0,9,5 is (d) None of these	
143.	tickets number bear the	multiple of 7 he wins a			
143.		e multiple of 7 he wins a goucher			
143. 144.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6	e multiple of 7 he wins a goucher	gift voucher of 1 10,000.	What is the probability that a (d) 5/625	
	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arra (a) 2520	e multiple of 7 he wins a goucher 25 ngements of the letters in (b) 1260	(c) 6/625 the expression x ³ y ² z ⁴ who (c) 610	What is the probability that a (d) 5/625 en written in full length is (d) None of these	
144.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arrange (a) 2520 The number of arrange adjacently is:	emultiple of 7 he wins a goucher 25 ngements of the letters in (b) 1260 ments of the letters of the	(c) 6/625 the expression x ³ y ² z ⁴ who (c) 610 word BANANA in which	What is the probability that a (d) 5/625 en written in full length is (d) None of these the two N's do not appear	
144. 145.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arranger (a) 2520 The number of arranger adjacently is: (a) 100	emultiple of 7 he wins a goucher 25 ngements of the letters in (b) 1260 ments of the letters of the (b) 80	(c) 6/625 the expression x³y²z⁴ who (c) 610 word BANANA in which (c) 40	What is the probability that a (d) 5/625 en written in full length is (d) None of these In the two N's do not appear (d) 60	
144.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arranger adjacently is: (a) 100 The number of different vowels are together is	emultiple of 7 he wins a goucher 25 ngements of the letters in (b) 1260 ments of the letters of the (b) 80 words that can be formed	(c) 6/625 the expression x³y²z⁴ who (c) 610 e word BANANA in which (c) 40 ed from the letters of the	What is the probability that a (d) 5/625 en written in full length is (d) None of these In the two N's do not appear (d) 60 word "TRIANGLE" so that no	
144. 145. 146.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arranger adjacently is: (a) 100 The number of different vowels are together is (a) 7200	emultiple of 7 he wins a goucher 25 Ingements of the letters in (b) 1260 Ingements of the letters of the (b) 80 Words that can be formed (b) 36000	(c) 6/625 the expression x³y²z⁴ who (c) 610 e word BANANA in which (c) 40 ed from the letters of the (c) 14400	What is the probability that a (d) 5/625 en written in full length is (d) None of these In the two N's do not appear (d) 60 word "TRIANGLE" so that no (d) 1240	
144. 145.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arranger adjacently is: (a) 100 The number of different vowels are together is (a) 7200	emultiple of 7 he wins a goucher 25 Ingements of the letters in (b) 1260 Ingements of the letters of the (b) 80 Words that can be formed (b) 36000	(c) 6/625 the expression x³y²z⁴ who (c) 610 e word BANANA in which (c) 40 ed from the letters of the (c) 14400	What is the probability that a (d) 5/625 en written in full length is (d) None of these In the two N's do not appear (d) 60 word "TRIANGLE" so that no	
144. 145. 146.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arranger adjacently is: (a) 100 The number of different vowels are together is (a) 7200 The number of ways in voccupy even places is: (a) 12	emultiple of 7 he wins a goucher 25 Ingements of the letters in (b) 1260 Ingements of the letters of the (b) 80 Ingements of the letters of the (b) 80 Ingements of the letters of the (b) 80 Ingements of the letters of the wind (b) 36000 Ingements of the letters of the wind (b) 18	(c) 6/625 the expression x³y²z⁴ who (c) 610 e word BANANA in which (c) 40 ed from the letters of the (c) 14400 rord "VOWEL" can be arr	what is the probability that a (d) 5/625 en written in full length is (d) None of these In the two N's do not appear (d) 60 word "TRIANGLE" so that no (d) 1240 anged so that the letters O,E	
144. 145. 146.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arranger adjacently is: (a) 100 The number of different vowels are together is (a) 7200 The number of ways in voccupy even places is:	emultiple of 7 he wins a goucher 25 Ingements of the letters in (b) 1260 Ingements of the letters of the (b) 80 Ingements of the letters of the (b) 80 Ingements of the letters of the (b) 80 Ingements of the letters of the wind (b) 36000 Ingements of the letters of the wind (b) 18	(c) 6/625 the expression x³y²z⁴ who (c) 610 e word BANANA in which (c) 40 ed from the letters of the (c) 14400 rord "VOWEL" can be arr	what is the probability that a (d) 5/625 en written in full length is (d) None of these In the two N's do not appear (d) 60 word "TRIANGLE" so that no (d) 1240 anged so that the letters O,E	
144. 145. 146.	tickets number bear the person will win two gift v (a) 1/625 (b) 3/6 The total number of arranger adjacently is: (a) 100 The number of different vowels are together is (a) 7200 The number of ways in voccupy even places is: (a) 12 5 letters can be posted in (a) 256 ways	emultiple of 7 he wins a goucher 25 Ingements of the letters in (b) 1260 Ingements of the letters of the (b) 80 Ingements of the letters of the (b) 80 Ingements of the letters of the (b) 80 Ingements of the letters of the wind (b) 36000 Ingements of the letters of the wind (b) 18 Ingements of the letters of the wind (b) 18 Ingements of the letters in:	(c) 6/625 the expression x³y²z⁴ who (c) 610 e word BANANA in which (c) 40 ed from the letters of the (c) 14400 rord "VOWEL" can be arr (c) 24 (c) 625 ways	What is the probability that a (d) 5/625 en written in full length is (d) None of these In the two N's do not appear (d) 60 word "TRIANGLE" so that no (d) 1240 anged so that the letters O,E (d) None of these (d) None of these	

may appear in the odd places is:

(d) None of these

(b) 1440

(a) 1370

151.	The number of six letter alternate with other lette		ed using the letters of the	ne word "assist" in which s's
	(a) 12	(b) 24	(c) 6	(d) 18
152.	$_{\text{If}}^{\text{n}}$ c _{12 =} $_{\text{n}}^{\text{c}}$ 8 , then n :	(b) 12	(c) 6	(d) None of these
153.	$_{\text{lf}}^{8}c_{\text{r}}{\text{c}_{3}}^{7}c_{3} = _{\text{c}_{2}, \text{th}}^{7}$	enr: (b) 4	(c) 2	(d) 6
154.	$_{\text{lf}}^{\text{n}} c_{\text{r}+}^{\text{n}} c_{\text{r}+1} = _{\text{c}_{\text{x}}}^{\text{n}+1} c_{\text{x}}$, then x : (b) r	(c) r+1	(d) None of these
155.	$^{n}_{lf}$ $^{c}_{6}$: $^{n-3}_{c_{3}}$ $^{c_{3}}$ $^{c_{3}}$ $^{c_{3}}$ $^{c_{3}}$	hen n : (b) 10	(c) 11	(d) None of these
156.	$\int_{\text{(a) }4}^{15} c_{r} \cdot \int_{\text{(a) }4}^{15} c_{r-1} = 11 : 5,$	then r: (b) 5	(c) 6	(d) 7
157.	If ${}^{\mathbf{n}}\mathbf{p_{r}} = 720$ ${}^{\mathbf{n}}\mathbf{c_{r}}$, then r	(b) 5	(c) 6	(d) 8
158.		e total number of ways so	that he can invite one	or more of his friends is equal
	to: (a) 64	(b) 60	(c) 720	(d) 63
159.	The total number of factor (a) 14	ors of 210 (excluding 1 and (b) 16	nd 210) is: (c) 18	(d) 20
160.	Everybody in a room sho number of persons in the		dy else. The total number	of handshakes is 66. The total
	(a) 11	(b) 12	(c) 10	(d) 14
161.	ways in which the hall co	an be illuminated is:		dependently. The number of
	(a) 100	(b) 10 24	(c) 1023	(d) 10!
162.				candidate has to answer 6 of selections of his answering
	(a) 462	(b) 252	(c) 210	(d) None of these.
163.				estions. A candidate has to of selections of 9 questions: (d) None of these
164.		andidates not more than		e selected. A voter can give ted. Then the total number of
	(a) 10	(b) 5	(c) 15	(d) None of these
165.	There are 10 points in a by joining them is: (a) 120	plane and among them (b) 60	4 are collinear. Then total (c) 116	al number of triangles formed (d) None of these
	(3) 120	(~) 00	(0) 110	(3) 11010 01 111030

166.		plane, no three are in traight lines obtained to (b) 142		xcept 5 points which are collinear. (d) 146
167.	The number of diago	nals that can be drawn (b) 28	by joining the vertices of (c) 20	f an octagon is: (d) None of these
168.	The number of ways youngest if it include			10 candidates so as to exclude the
	(a) 178	(b) 196	(c) 202	(d) None of these
169.	males and 4 females	is:		ember, that can be formed from 6
	(a) 246	(b) 252	(c) 6	(d) None of these
170.	A polygon has 44 did (a) 11	agonals, then the numb (b) 7	per of its sides are: (c) 8	(d) None of these
171.	ways in which a stud	ent can give his answe	er is :	has an alternative. The number of
	(a) 6561 (b)	256	(c) 6560	(d) None of these
172.	Total number of 9 dig (a) 10!	it numbers which have (b) 9!	e all different digit is: (c) 9 x 9!	(d) 10 × 10!
173.	The total number of sand same size of 3 m			of 5 apples, same size of 4 oranges
	(a) 120	(b) 119	(c) 60	(d) 59
174.	oranges and differen	t sizes of 3 mangoes is:		zes of 5 apples, different sizes of 4
	(a) 4095	(b) 4096	(c) 120	(d) 119
175.		selections of at least or d different sizes of 3 mo (b) 120		different sizes of 5 apples, different
				, ,
176.		etition, there were 153 ok part in the competition		urs between two teams. The total
	(a) 17	(b) 18	(c) 19	(d) None of these
177.	Total number of wore "JUNE" is:	ds formed by taking 3	letters from the word "M.	ARCH" and 2 letters from the word
178.	(a) 60 There are 5 points o	_		(d) 7,200 ht line and these two straight lines
	(a) 325	(b) 455	rmed by joining them is: (c) 120	(d) None of these
179.		arrangements in which negative signs never of (b) 20		negative signs can be placed in a (d) None of these
	(a) 13	(D) 20	(C) 720	(d) None of friese
180.		mittees formed of 4 me the same committee i		nen and 5 women so that Mr. X and
	(a) 350	(b) 120	(c) 230	(d) None of these
181.	the box so that each	sample contains 2 fau	Ity lamps is:	of samples of 6 lamps drawn from
	(a) 90	(b) 35	(c) 60	(d) None of these
182.	If f(x) = 5, then f(5): (a) 25	(b) 5	(c) 1	(d) None of these

- If $f(x) = 2^x$, then $f(\log_2^X)$: 183.
 - (a) Log2
- (b) 0

(d) x

- 2x + 3If $f(x) = \overline{4x-1}$, then $f(x) \cdot f(\overline{x})$: 184.
 - (a) 1

- (b) $\frac{6x^2 + 13x + 6}{17x 4 4x^2}$ (c) $\frac{6x^2 + 13x + 6}{4x^2 + 4 + 17x}$
- (d) None of these

- 185. If f(x-1) = 2x-3, then f(x):
 - (a) 2x 1
- (b) 2x + 1
- (c) x 2
- (d) 3x + 2

- If $f(x) = \frac{x^2}{x}$, then f (0): 186.

(b) 1

(c) x

(d) Does not exist

- If f(x) = |x-1| x, then f(-5): 187.

- (c) 11
- (d) None of these
- 188. If f(x) = x - [x] where [x] denotes the greatest integer contained in x but not greater than x, then f(2.9):
 - (a) 0.1
- (b) -0.1
- (c) 0.9
- (d) None of these

- If f(x) = x |x|, then f(-3): 189.

- (b) 6
- (c) 0

(d) None of these

- If $f(x) = \sqrt{x-4} + \sqrt{6-x}$, then the domain of f(x) is: 190.
 - (a) $-6 \le x \le 4$
- (b) $4 \le x \le 6$
- (c) $-4 \le x \le 6$
- (d) $-6 \le x \le -4$

- 191. If $f(x) = x^2$ and $g(x) = \log$, then $g\{f(e)\}$:
 - (a) e

- (c) e^{2}
- (d) None of these

- The domain of $f(x) = \frac{x^2 4}{x 2}$ is: 192.

- (c) ∞ < x < 2, 2 < x < ∞
- (d) -2 < x < 2

- 193. If 2f(x) + 3f(-x) = 5 - 6x, then f(x):
- (c) 6x 1
- (d) None of these

- If $f(x) = + \sqrt{x^2}$ and g(x) = x are identical then: 194.
 - (a) ∞ < x < ∞
- (c) ∞ < x \leq 0
- (d) $0 \le x < \infty$

- 195. If $f(x) = 2^{px+q}$, then $f(a) \cdot f(b) \cdot f(c)$:
 - (a) f (a+b+c) . 4a
- (b) f(a+b+c) . 2^q
- (c) f(a+b+c).4
- (d) None of these
- If x is a real number and $f(x) = \frac{x}{\log(2+x)}$, then the domain of f(x) is: 196.
 - (a) ∞ < x < 2
- (b) $\infty < x < -1$
- (c) $-2 < x < \infty$
- (d) None of these

- If $f(x) = x \frac{1}{x}$ and $f(\frac{1}{x}) = k$. f(x), then k:

- (b) -1
- (c) $\frac{1}{2}$
- (d) 2

If $f(x) = \frac{1+x}{1-x}$, then $f(f(\frac{1}{x}))$: 198.

	(a) x	(b) $\frac{1}{x}$	(c) $-\frac{1}{x}$	(d) - x
199.	If $f(x) = 2x^2 - 5x + 4$, and (a) 1	2f(x) = f(2x), then x :	(c) ± 1	(d) 2
	(0) 1	(6)	(C) ± 1	(d) Z
200.	If $f(x) = \sqrt{25 - x^2}$, $(-5 \le$	$x \le 5$), then the range of	f(x) is:	
	(a) $0 \le f(x) \le 5$	(b) $0 < f(x) < 5$	(c) $-5 \le f(x) \le 0$	(d) None of these
	3x – 5	1		
201.	If $f(x) = \frac{3x-5}{5x-3}$, then $f(x)$. f(x):		
	(a) x	(b) $\frac{1}{x}$	(c) 1	(d) - 1
		X		
202.			\boldsymbol{X} and \boldsymbol{Y} . \boldsymbol{X} and \boldsymbol{Y} can	be related by which of the
	following inequalities (a) (x+y=100)		(c) (x+y≥100)	(d) (x+y<100)
		, , , , ,	, , , ,	
203.		pieces of shirt and trouse , this can be expressed a		owroom. If X stands for shirts
	(a) (x+y≥200)	(b) (x+y≤200)		(d) (x+y≠100)
204.	raw material availability			terial and Y requires 25 kg. If orm of which of the following
	linear equation. (a) (20x+25y≤2000)	(b) (20x+25y=2000)	(c) (25x+20y>2000)	(d) (20x+25y≥2000)
205.		er piece and Y cost him		forage capacity of 300 items be expressed in the form of (d) $x+y \le 300$ $400x+250y \le 10000$ $x,y \ge 0$
206.	and 100 pieces of X & Y	' respectively per day. If		I he cannot sell more than 50 nvest and if the cost of each ation (d) x≤50,y≤100 150x+40y≤10000
207.				n two machines I and II. The roduct in each machine are
	MACHINE		TIME Available (Hours)	
		3 1 3 4	20 40	
	This situation can be exp	•		

(c) 2x+4≤20

3x+4y≥40

x≥0,y≥0

(b) x+y≤20

x+4y≤240

x≥0,y≥0

(a) 2x+y≤20

3x+4y≤40

x≥0, y≥0

(d) 2x+3y≥20

x+y≤40

x≥0,y≥0

208.	time available						vo names I and II. The total each machine are given
	below: MACHINE	Х	Υ	TIME AVAII	LABLE		
	I	1	2	24			
	II	2	3	36			
	This situation ca	n be expressed	d in the fol	lowing set of	linear equati	on:	
	(a) x+2y≤24		+2y≤24	-) x+24=24		d) x+2yy≤24
	3x+4y≤36	χ÷	-3y≤36	•	2x+3y=36	•	2x+3y≥36
	x≥0,y≥0	χ≥	≥0,y≥0		x,y≥0		x≥0,y≥0
209.	100 units of X are of the firm is to following set eq	nd 150 units of maximize the uation:	Y per day total profi	. If X & Y give it. This situati	e a profit of ₹ on can be e	20 and ₹25 xpressed i	d. The firm can sell at least per unit and the objective n the form of which of the
	(a) x≥0		naximize	(c) minimize	(0	d) minimize
	y≥0		0x+25y		20x+25y		20x+25y
	maximize		≥100		x≤100		x≥100
	20X+25y	y `	≥150		y≤150		y≥150
210.	sale. Each pack of Y. This can be	c must weigh at e expressed	t least 10k	g and should	l contain at le	east 2 kg o	ison in order to increase its X and not more than 6 kg
	(a) $x+y=10$	• •	+y≥10	(C) x+y≤10	(0	d) x+y ≤10
	x≥2		≥2		x≥0		x=2
	y≤6	•	≤6		y≥6		y=6
	x,y ≥0	X	,y≥0		x,y≥0		x,y≥0
211.	The standard we least 2 kg of X of (a) x+y=5 x≥2 y≤3 x,y≥0	ind not more th (b) x x y	an 3 kg of	Y. This situat		xpressed a	gift pack should contain at s d) x+y=0 x≥2 y≥6 x,y≥0
212.	₹175 per piece.	If Z is retail de ed to 500 piece	aler in tie	has only ₹30 nis situation c	0,000 to spen	nd on purcl ssed in the	r ₹120 per piece and Y for nase of tie and his storage following equation d) x+y≥500
	120x+175y≤3	0000 1	20x+175y≤		120x+175y =	30000	120x+175y≤30000
	x,y≥0	X	,y≥0		x,y≥0		x,y≥0
213.		ring creams at on can be expr (b) x 20000 2	most at a	time. Shaving e ne following e (C	ig cream X c	ost ₹240 p e	and has space to store 250 er box and Y cost ₹420 per d) x+y=200 240x+420y=20000 x,y≥0
214.	If 3X-5=4X-10, ti (a) 5	nen X is equal t (b) -5	o	(c) 6		(d) 4	
215.	If -3X+18=4X-3 , (a) 2	then X is equal (b) -5	to	(c) 3		(d) 1	
216.	Find the value of (a) 16	of K if 5X+37=K -3 (b) 15	3X, when 3	X is equal to (c) 21		(d) 10	

(a) (1,2)	(b) (-5,1)	(c) (6,2)	(d) (4,1)	
		=		
(a) (5,1)	(b) (2,1)	(c) (6,1)	(d) (1,4)	
For which val	lue of X,Y, 3X-2Y-6 = 2	2X+3Y-17 =0		
(a) (4,3)	(b) (2,3)	(c) (3,1)	(d) (1,2)	
For which val	lue of X,Y $\frac{4}{4} + \frac{y}{5}$ -6= $\frac{2}{2}$	$\frac{x^2}{2} + \frac{y}{3}$ -11 = 0 are equal to	•••••	
(a) (1,2)	(b) (2,3)	(c) (6,1)	(d) (12,15)	
If X/3+Y/2=7,	2X+Y=26 then X,Y are	e equal to		
(a) (1,5)	(b) (1,3)	(c) (9,8)	(d) (6,3)	
The point,	is on the	e line Y=X-3	•••••	
		(c) (0,1)	(d) (3,-1)	
The point,	is on the line	Y=2X-3	····	
		(c) (4,5)	(d) (3,-1)	
For the line 2	X-Y=5 if X=4 then Y= .	•••••		
(a) 2	(b) 3	(c) -1	(d) 0	
For the line 3	X-2y=5 if X=2 then Y=			
(a) 1/2	(b) 3/4	(c) 3/5	(d) 1	
The solution t	o 3X+2Y=-25, -2X-Y=1			
(a) 5,-20	(b) 2,9	(c) 5,8	(d) 4,9	
The solution t	o 3X-2Y=11, -2X-Y=8	is		
(a) (5,-2)	(b) 2,1	(c) 5,-2	(d) 4,9	
The solution t	o 5X+2Y=-16, -2X-2Y=	10 is		
(a) 5,-20	(b) 2,3	(c) 5,8	(d) 4,9	
2X+3Y-5=0 aı	nd KX-6Y-8=0 have u	nique solutions if K =		
(a) 4	(b) 3	(c) -2	(d) -4	
	s increased by 8	and denominator is	doubled we get 2/5, then	the fraction
(a) 13/25	(b) 20/21	(c) 12/25	(d) 11/19	
				btracted from
(a) 2/5	(b) 3/7	(c) 2/6	(d) 3/10	
A two digit N	o. is six times the sum	of its digits. The number	obtained by interchanging the	digit is less by
9. The origina	ıl number is	_		,
(a) 68	(b) /2	(C) 54	(a) 63	
			ed by interchanging the digit	exceeds the
			(d) 65	
	(a) (1,2) If 3X+Y=7, 2X (a) (5,1) For which val (a) (4,3) If 5X+Y=15, 2 (a) (5,2) For which val (a) (1,2) If X/3+Y/2=7, (a) (1,5) The point, (a) (2,-1) The point, (a) (2,-1) For the line 2: (a) 2 For the line 3: (a) 1/2 The solution the control of the contro	(a) (1,2) (b) (-5,1) If 3X+Y=7, 2X+3Y=7 then X, Y are et (a) (5,1) (b) (2,1) For which value of X,Y, 3X-2Y-6 = 2 (a) (4,3) (b) (2,3) If 5X+Y =15, 2X-2Y=-6 then X,Y are (a) (5,2) (b) (2,5) For which value of X,Y	If $3X+Y=7$, $2X+3Y=7$ then X, Y are equal to	(a) (1.2) (b) (-5.1) (c) (6.2) (d) (4.1) If 3X+Y=7, 2X+3Y=7 then X, Y are equal to (a) (5.1) (b) (2.1) (c) (6.1) (d) (1.4) For which value of X, Y, 3X-2Y-6 = 2X+3Y-17 = 0 (a) (4.3) (b) (2.3) (c) (3.1) (d) (1.2) If 5X+Y =15, 2X-2Y=.6 then X, Y are equal to (6.3) (d) (1.1) For which value of X, Y

235.	In the equation (a) 3	2x-y=5 if 2 (b) 4	x=4 then y=	(c) -2	(d) -5	
	(3) 3	(2)		(0) 2	(4)	
236.	Point = (a) (1,1)	(b) (-1,-		(c) (1,-1)	(d) (0,1)	
237.	If x+4=4, 2x-5y= (a) (1,0)	1 then x & (b) (0,-1		(c) 1,1/5	(d) 1/5,0	
238.	If 2x+3y=1, x+3y (a) (2,-1)	=- 1, then (b) (1,-2		(c) (-1,2)	(d) (0,2)	
239.	If 2x+3y=7, x+3y (a) (2,-1)	(b) (1,-2		(c) (-1,2)	(d) (2,1)	
240.	If 2x-3y=1, x-3y= (a) (2,1)	- 1, then 2 (b) (1,-2		(c) (-1,2)	(d) (0,2)	
241.	If x+3y=1, x+2y= (a) (2,-1)	2, then x (b) (4,-1		(c) (-1,2)	(d) (0,2)	
242.	If 3x-y=0, x+3y= (a) (2,-1)	10, then x (b) (1,3)		(c) (-1,2)	(d) (0,2)	
243.	If x-y=0, x+3y=4 (a) (2,-1)	, then x a (b) (1,1)	-	(c) (-1,2)	(d) (0,2)	
244.	What is the slope (a) -3	e of the lin (b) 3	ne passing thr	ough (4,2) and (3,5) (c) 2	(d) -2	
245.	What is the slope (a) -3/2	e of the li (b) 3/2	ne passing thr	ough (5,3) and (3,6) (c) 2	(d) -2	
246.	What is the slope (a) -3	e of the li ı (b) -5/2		ough (5,2) and (3,7) (c) 5/2	(d) -2	
247.	What is the slope (a) 3	e of the lin (b)8	ne passing thr	ough (4,3) and (3,-5 (c) 2) (d) -3	
248.	What is the slope	e of the li r (b) -3	ne passing thr	ough (- 4,2) and (3, -4)	(d) -2	
249.	What is the slope (a) -3	e of the lin (b) -9	ne passing thr	ough (4,-2) and (3,7 (c) 2) (d)-2	
250.	At the rate of 6 years? (a) ₹ 150	% p.a. si	mple interest,	a sum of ₹ 2,500 v	vill earn how much interest b (d) ₹ 3,250	y the end of 5
251.	A person borrow after 4 years? (a) ₹ 200	wed ₹ 500	at the rate of (b) ₹ 550	of 5% per annum S.I (c) ₹ 600	. What amount will he pay to (d) ₹ 700	clear the debt
252.		O to R at 1	•		m to C at 11.5% p.a., then the	agin of R (in 3)
LJL.	in a period of 3 (a) 107.50		(b) 115.50	(c) 157.	-	3411 OI D (III V)

In what time will ₹ 500 give ₹ 50 as interest at the rate of 5% p.a. S.I.?

253.

	(a) 2 Years	(b) 2 $\frac{1}{2}$ Years	(c) 3 Years	(d) 4 Years
254.		000 from Sanjay at simple h. What was the rate of ir		ınjay got₹300 more than what
	(a) 2%	(b) 5%	(c) 8%	(d) 10%
255.	Ashok took a loan of ₹ rate of interest per annu		ole interest. If the total inte	erest paid is ₹ 2,700, what is the
	(a) 5.4%	(b) 6%	(c) 9%	(d) 18%
256.	principal was:	-	-	interest paid was ₹ 1,230, the
	(a) ₹ 4,100	(b) ₹ 4,920	(c) ₹ 5,000	(d) ₹ 5,300
257.	How much should a pe $\frac{1}{2}$ Years?	erson lend at simple rate	of interest of 15% in orde	r to have ₹ 784 at the end of 1
	(a) ₹ 640	(b) ₹ 620	(c) ₹ 610	(d) ₹ 680
258.		0% p.a. S.I. After 4 years aat is the principal amour	nt?	al along with the interest. If he
	(a) ₹ 3,250	(b) ₹ 2,500	(c) ₹ 3,150	(d) ₹ 2,100
259.		in 3 years at simple in	terest. If the interest rate	is increased by 3%, it would
	amount to how much? (a) ₹ 992	(b) ₹ 1,056	(c) ₹1,112	(d) ₹ 1,182
260.	The simple interest at v	7 for y vogre will be 7 V o	on a sum of:	. ,
200.	-	% for x years will be ₹ X o	, ,	(100)
	(a) ₹ x	(b) ₹ 100x	(c) ₹ $\left(\frac{100}{x}\right)$	$(d) ₹ \left(\frac{100}{x^2}\right)$
261.	If ₹ 64 amount to ₹ 83.2 annum?	20 in 2 years, what will ₹	86 amount to in 4 years	at the same rate percent per
	(a) ₹ 127.40	(b) ₹ 124.70	(c) ₹ 114.80	(d) ₹ 137.60
262.	The simple interest on o	sum of money at 5% is	₹ 48 for 4 years. The simp	le interest on the same sum for
	5 years at 4% will be:			
	(a) ₹ 40	(b) ₹ 48	(c) ₹ 50	(d) ₹ 60
263.	A certain sum of money (a) ₹ 400	y lent out at S.I. amounts (b) ₹ 450	to ₹ 690 in 3 years and ₹ 7 (c) ₹ 500	750 in 5 years. The sum lent is: (d) ₹ 600
264.	A certain sum of mone	y at simple interest amo	unts to ₹ 1,012 in 2 $\frac{1}{2}$ Yea	rs and to ₹ 1,067.20 in 4 years.
	The rate of interest per of (a) 2.5%	annum is: (b) 3%	(c) 4%	(d) 5%
265.		pple interest amounts to	₹ 2,240 in 2 years and to	₹ 2,600 in 5 years. What is the
	principal amount? (a) ₹ 1,520	(b) ₹ 1,880	(c) ₹ 2,120	(d) None
266.	earned by investing ₹8	00 at 12% p.a. for 5 years	s?	n the same simple interest as is
	(a) 6	(b) 8	(c) 12	(d) 16
267.	interest the same amou	int of interest can be rec	eived on the same sum a	
	(a) 6%	(b) 8%	(c) 9%	(d) 10%
268.	The simple interest on ₹ (a) ₹ 1.20	10 for 4 months at the ra (b) ₹ 12	te of 3 paise per rupee pe (c) ₹ 120	er month is (d) ₹ 1200

269.	A person takes a loan of clear his dues at the end	-	:	he end of 1 year. In order to	
	(a) ₹ 115.50	(b) ₹ 110	(c) ₹ 115	(d) ₹ 100	
270.	interest in one year be or	n the same deposit at 5%	p.a.?	ow much will the additional	
	(a) ₹ 22.5	(b) ₹ 20.25	(c) ₹ 225 1	(d) ₹ 427.50 1	
271.			-	$4\frac{1}{2}$ years respectively. If the	
	difference in interests for (a) ₹ 3,250	two periods was ₹ 412.50 (b) ₹ 3,500	, then the sum is: (c) ₹ 3,750	(d) ₹ 4,250	
272.				and on the condition that the n will have to be repaid after	
	(a) 2	(b) 3	(c) 4	(d) 5	
273.	amount to Ashish as a lo	an at the rate of 12% p.a		p.a. S.I. and gave the same s, he made a profit of ₹ 320 in	
	the deal, what was the or (a) $\stackrel{?}{\stackrel{?}{\sim}} 2,000$	(b) ₹ 3,000	(c) ₹ 4,000	(d) None of these	
274.	Vishal lent ₹ 150 to Sand	eep for 4 years and ₹ 60	0 to Deepak for 2 years.	If he receives ₹ 90 as simple	
	interest altogether, the ra (a) 12%	te of interest is: (b) 10%	(c) 5%	(d) 4%	
	. ,	•	•	,	
275.	A lent ₹ 1,200 to B for 3 yes same rate. If he gets ₹ 50			to C for the same time at the	
	(a) $8\frac{1}{3}$	(b) $6\frac{2}{3}$	(c) $10\frac{1}{3}$	(d) $9\frac{2}{3}$	
276.	borrowed sum and lent	it to Shobha for the sam	e period at 14% p.a. rat	ed some more money to the e of interest. If Rahul gains $\overline{\epsilon}$	
	93.90 in the whole transa (a) ₹ 35	(b) ₹ 55	(c) ₹ 80	(d) ₹ 105	
277.	The difference between The difference between t		om two different banks o	n ₹ 500 for 2 years, is ₹ 2.50.	
	(a) 1%	(b) 0.5%	(c) 0.25%	(d) 42.5%	
278.	8. The simple interest on ₹ 1,820 from March 9, 1994 to May 21, 1994 at $7\frac{1}{2}\%$ rate will be :				
	(a) ₹ 29	(b) ₹ 28.80	(c) ₹ 27.30	(d) ₹ 22.50	
270		. ,	for 2 years. Had it been r	, ,	
279.	have fetched ₹ 72 more.		ioi 2 years. naa ii been p	out at 3% higher rate, it would	
	(a) ₹ 1,200	(b) ₹ 1,500	(c) ₹ 1,600	(d) ₹ 1,800	
280.	The amount of ₹ 7,500 at (a) ₹ 7,800	compound interest at 4% (b) ₹ 8,100	per annum for 2 years, is (c) ₹ 8,112	s: (d) ₹ 8,082	
281.	If the simple interest on con the same sum for the			1,200, the compound interest	
	(a) ₹ 1,260	(b) ₹ 1,261	(c) ₹ 1,264	(d) ₹ 1,265	
282.	The difference between	the compound interest a	nd the simple interest or	a sum of money for 2 years	
	at $12\frac{1}{2}\%$ per annum is ₹	150. The sum is:			
	(a) ₹ 9,000	(b) ₹ 9,200	(c) ₹ 9,500	(d) ₹ 9,600	

283.		en the compound interest for one year is ₹ 25, the st (b) ₹ 9,500		y and the simple interest on a (d) ₹ 10,500
284.	end of the third year is ₹	620. What is the principo	ıl amount?	ount at 10% per annum at the (d) ₹ 20,000
	(a) ₹ 40,000	(b) ₹ 1,20,000	(c) ₹ 10,000	(d) ₹ 20,000
285.				ely lent the whole sum at 10%
	(a) ₹ 6	interest. What does he ga (b) ₹8	(c) ₹ 10	(d) ₹ 12
286.	interest on ₹ 400 for 2 ye	ears at 10% per annum?		num be half of the compound
	(a) ₹ 125	(b) ₹ 150	(c) ₹ 175	(d) ₹ 200
287.	If the compound intere	st on a certain sum at 1	$6\frac{2}{3}$ % for 3years is ₹ 1,2	70, the simple interest on the
	same sum at the same (a) ₹ 1,200	rate and for the same per (b) ₹ 1,165	riod is: (c) ₹ 1,080	(d) ₹ 1,220
288.	-		•	₹ 328. The simple interest for
	that sum at the same ra (a) ₹ 320	te and for the same perio		(d) ₹ 326
	(a) C 320	(b) ₹ 322	(c) ₹ 325	(a) C 326
289.	The compound interest	on ₹ 5,600 for 1 $\frac{1}{2}$ years a	t 10% per annum compo	unded annually is:
	(a) ₹ 882.70	(b) ₹ 873.50		(d) ₹ 840
290.	The compound interest	on₹20,480 at 6 <mark>1</mark> % per	annum for 2 years 73 day	/s, is:
	(a) ₹ 3,000	•	(c) ₹ 2,929	(d) ₹ 3,636
291.	What is the principal ar	nount which earns ₹ 132	as compound interest fo	r the second year at 10% per
	(a) ₹ 1,000	(b) ₹ 1,200	(c) ₹ 1,320	(d) ₹ 1,188
292.	A sum of money at corrate of interest per an	-	s to ₹ 578.40 in 2 years a	nd to ₹ 614.55 in 3 years. The
	(a) 4%	(b) 5%	(c) 6 \frac{1}{4}\%	(d) $8\frac{1}{3}\%$
293.	A sum of money at cor rate of interest per annu		s to ₹ 5,290 in 2 years an	d to ₹ 6,083.50 in 3 years. The
	(a) 12%	(b) 14%	(c) 15%	(d) $16\frac{2}{3}\%$
294.	If the amount is $2\frac{1}{4}$ time	es the sum after 2 years a	t compound interest, the	rate of interest per annum is:
	(a) 25%	(b) 30%	(c) 40%	(d) 50%
295.	A sum of money amour	nts to ₹ 4,624 in 2 years a	ınd to ₹ 4,913 in 3 years a	t compound interest. The sum
	(a) ₹ 4,096	(b) ₹ 4,260	(c) ₹ 4,335	(d) ₹ 4,360
296.	A sum of money placed in:	d at compound interest d	oubles itself in 5 years. It v	vill amount to eight times itself
	(a) 10 years	(b) 12 years	(c) 15 years	(d) 20 years
297.	A sum of money at com	npound interest amounts	to thrice itself in 3 years.	In how many years will it be 9
	(a) 12	(b) 9	(c) 6	(d) 8

In how many years will a sum of ₹ 800 at 10% per annum compounded semi-annually become ₹

298.

926.10?

	(a) $2\frac{1}{2}$	(b) $1\frac{1}{2}$	(c) $2\frac{1}{3}$	(d) $1\frac{1}{3}$	
299.	The present worth of ₹ 16 (a) ₹ 150.50	9 due in 2 years o (b) ₹ 154.75	at 4% per annum compound inte (c) ₹ 156.25	erest is: (d) ₹ 158	
200	•	. ,	, ,	,	
300.	information given in the	statements A and	crued on a sum of money after a B is/are sufficient?	5 years, which of the following	
	A: the rate of interest was		mount after 5 years at the same r	rate will be₹400	
	(a) Only A is sufficient		(b) Either A or B is sufficient		
	(c) Both A & B together (are needed	(d) Both A & B are not sufficient		
301.	To find out the total cominformation given in the : P: The sum was ₹ 20,000.		crued on a sum of money after Q will be sufficient?	5 years, which of the following	
	Q: The total amount of si	mple interest on t	he sum after 5 years was ₹ 4,000	•	
	(a) Only P is sufficient	ant.	(b) Only Q is sufficient		
	(c) Either P or Q is sufficie	er 11	(d) Both P& Q are needed		
302.	The difference between end of 4 years is ₹ 256.40		est and the simple interest earn	ed on a sum of money at the	
	To find out the sum, w		owing information given in the	statements P and Q is/are	
ne	ecessary? P: Amount of simple inte	est accrued after	r 4 years.		
	Q: Rate of interest per ar		•		
	(a) Only P is necessary(c) Either P or Q is necess	sarv	(b) Only Q is necessary(d) Neither P nor Q is necessary		
202	• •	•	. ,		
303.	on a sum of money at 10		nterest and simple interest earn £20. The sum is:	ed at the end of second year	
	(a) ₹ 4,000	(b) ₹ 2,000	(c) ₹ 1,500	(d) Data inadequate	
304.	A sum of ₹ 12,000 depos become:	sited at compour	nd interest becomes double afte	er 5 years. After 20 years it will	
	(a) ₹ 1,20,000	(b) ₹ 1,92,000	(c) ₹ 1,24,000	(d) ₹96,000	
305.	The least number of commore than doubled is:	plete years in wh	nich a sum of money put out at 2	20% compound interest will be	
	(a) 3	(b) 4	(c) 5	(d) 6	
306.	A troe increases annual	ly by — th of its l	height. By how much will it incr	oaso after 2 years if it stands	
300.		8 11 01 113 1	neight. By now moch will it men	ease aller 2 years, ir ir siarias	
	today 64 cm high? (a) 72 cm	(b) 74 cm	(c) 75 cm	(d) 81 cm	
307.	₹ 60. If the simple interest for 2 years be ₹ 1,440, the rate per cent is:				
	(a) $4\frac{1}{6}\%$	(b) $6\frac{1}{4}\%$	(c) 8%	(d) $8\frac{1}{3}\%$	
308.			ears is ₹ 832 and the simple interest and		
	(a) ₹ 48	(b) ₹ 66.56	(c) ₹ 98.56	(d) None of these	
309.		-	est and simple interest on a sum	for 2 years at 10% per annum,	

(b) ₹31.61

(c) ₹ 32.40

difference in two interests would be:

(a) ₹ 24.81

(d) ₹ 26.90

310.	The	value	of	log3/3	7	is:
J 1 U.	1116	V GIUC	O.	109343	•	13.

(a)
$$\frac{1}{3}$$

(c) -
$$\frac{1}{3}$$

311. The value of
$$log_5$$
 $\frac{1}{125}$ is:

(c)
$$\frac{1}{3}$$

(d) -
$$\frac{1}{3}$$

312. The value of $\log_{\sqrt{2}} 32$ is:

(a)
$$\frac{5}{2}$$

(d)
$$\frac{1}{10}$$

313. The value of
$$log_{10}$$
 (.0001) is :

(a)
$$\frac{1}{4}$$

(b) -
$$\frac{1}{4}$$

314. The value of
$$log_{(.01)}$$
 (.0001) is:

(a)
$$\frac{1}{3}$$

(b) -
$$\frac{1}{3}$$

(c)
$$\frac{3}{2}$$

(d)
$$-\frac{3}{2}$$

315. If
$$log_3 x = -2$$
, then x is equal to:

(d)
$$-\frac{1}{9}$$

316. If
$$\log_8 x = \frac{2}{3}$$
, then the value of x is:

(a)
$$\frac{3}{4}$$

(b)
$$\frac{4}{3}$$

317. If
$$\log_x \frac{1}{125} = -\frac{1}{2}$$
, the x is equal to:

(a)
$$\frac{3}{4}$$

(b) -
$$\frac{4}{3}$$

(c)
$$\frac{81}{256}$$

(d)
$$\frac{256}{81}$$

318. If
$$\log_{10000} x = -\frac{1}{4}$$
, then, x is equal to:

(a)
$$\frac{1}{10}$$

(b)
$$\frac{1}{100}$$

(c)
$$\frac{1}{1000}$$

(d)
$$\frac{1}{10000}$$

319. If
$$\log_x 4 = \frac{1}{4}$$
, then x is equal to:

320. If
$$\log_x (0.1) = -\frac{1}{3}$$
, then the value of x is:

(d)
$$\frac{1}{1000}$$

321. If
$$log_{32} x = 0.8$$
, then x is equal to:

322. If
$$log_4 x + log_2 x = 6$$
, then x is equal to:

323. If
$$\log_8 x + \log_8 \frac{1}{6} = \frac{1}{3}$$
, then the value of x is:

(a)
$$12$$

324.	If log 2 = 0.30103, then the	e number of digits in 4 ⁵⁰ is (b) 31	s: (c) 100	(d) 20
325.	If log 2 = 0.30103, then the	e number of digits in 5 ²⁰ is (b) 16	s: (c) 18	(d) 25
326.	The value of $log_{(-1/3)}$ 81 is (a) - 27	equal to: (b) - 4	(c) 4	(d) 27
327.	The value of $\log_{2\sqrt{3}}$ (172	8) is equal to:		
	(a) 3	(b) 5	(c) 6	(d) 9
328.	The value of log_2 (log_5 62 (a) 2	5) is: (b) 5	(c) 10	(d) 15
329.	The value of ($\frac{1}{3}\log_{10} 125$	- 2 log ₁₀ 4 + log ₁₀ 32) is:		
	(a) 0	(b) $\frac{4}{5}$	(c) 2	(d) 1
330.	$\left[\log\left(\frac{a^2}{bc}\right) + \log\left(\frac{b^2}{ac}\right) + \log\left(b^2$	$g\left(\frac{c^2}{ab}\right)$ is equal to :		
	(a) 0	(b) 1	(c) 2	(d) abc
331.	$(\log_{b^a} x \log_{c^b} x \log_{a^c})$ is e	qual to:		
	(a) 0	(b) 1	(c) abc	(d) a+b+c
332.	$\left[\frac{1}{\log_{XY}(xyz)} + \frac{1}{\log_{YZ}(xyz)}\right]$	$\left[+ \frac{1}{\log_{ZX}(xyz)} \right]$ is equal to	o:	
	(a) 1	(b) 2	(c) 3	(d) 4
333.	$\left[\frac{1}{(\log_{\mathbf{a}}bc)+1}+\frac{1}{(\log_{\mathbf{b}}ca)+}\right]$	$\frac{1}{1} + \frac{1}{(\log_{\mathbf{C}} ab) + 1}$ is equal	to:	
	(a) 1	(b) 2	(c) 3	(d) $\frac{3}{2}$
334.	If log ₂ [log ₃ (log ₂ x)] = 1, to (a) 512	hen x is equal to: (b) 128	(c) 12	(d) 0
335.	(log₅ 3) x (log₃ 625) equa (a) 1	ls: (b) 2	(c) 3	(d) 4
336.	(log ₅ 5) (log ₄ 9) (log ₃ 2) is	equal to :		
	(a) 2	(b) 1	(c) 5	(d) $\frac{3}{2}$
337.	If log ₁₀ 2 = 0.3010 and log (a) 0.7161	(b) 0.1761	lue of log ₁₀ 1.5 is (c) 0.7116	(d) 0.7611
338.	If $log_{10} 2 = 0.3010$, then lo	g ₂ 10 is:		

(c) 3.3222

(d) 5

(b) 3.2320

(a) 0.3322

339.	The value of $\left(\frac{1}{\log_3 60} + \right)$	$\frac{1}{\log_4 60} + \frac{1}{\log_5 60}$ is:		
	(a) 0	(b) 1	(c) 5	(d) 60
340.	Two numbers are in th numbers are (a) 15 and 20	e ratio 3:4. If 10 is subtr	acted from both of them (c) 30 and 40	the ratio will be 1:2. So the
341.			of them are of some age the excluded person in ye (c) 40	and they are excluded. The ars is: (d) None of them
342.			price of the mixture per kg (c) 400	g. Rs. 390, Rs. 375 and Rs. 450 g. in Rs. is: (d) None of them
343.		and Hari repays ₹1,300 to srged to Hari per annum to (b)12%	=	ars in simple interest fully. The
344.	A Bill of ₹ 1,020 is due in (a) 25	6 months. True discount (b) 20	in rupees at interest rate 4 (c) 20.4	% per annum is (d) None of them
345.	After arranging 5, $3\sqrt{3}$	$2\sqrt{6}$ in descending ord	er they are	
	(a) $3\sqrt{3}$, 5, $2\sqrt{6}$	(b) $2\sqrt{6}$, $3\sqrt{3}$, 5	er they are (c) $3\sqrt{3}$, $2\sqrt{6}$, 5	(d) None of them
346.	If $y \propto \frac{1}{x^3}$ and $x = 2$ when	en y = 3, then for x = 3 the	value of y is:	
	(a) $\frac{4}{3}$	(b) $\frac{8}{9}$	(c) $\frac{4}{9}$	(d) None of them
347.	The number of ways in v	which the letters of word to (b) 2,520	the COLLEGE can be arrai (c) 5,040	nged is : (d) None of them
348.	The number of digits in i	(b) 11	(c) 13	(d) None of them
349.		ng 1⊂{1,3,4},{1,3} ∈{1,3,		
	(a) 1⊂{1,3,4}	(b) {1,4}⊂{1,3,4}	(c) $\{1,3\} \in \{1,3,4\}$	(d) None of them
350.	What is the slope of the (a) -3	line passing through (-4,-(b) 5	(c) 2	(d) -2
351.	What is the slope of the (a) 12	line passing through (2,-3) (b) 10/3	5) and (5,5) (c) 5	(d) 3
352.	What is the slope of the (a) -12/7	line passing through (3,-5 (b) 7	5) and (-4,7) (c) 5	(d) 4
353.	What is the slope and Y (a) (-3/5,9/5)	intersect of line 3X+5Y=9 (b) (9,-3/5)	(c) (3/5,-9)	(d) (-3/5,-9)
354.	What is the slope and Y (a) (-6/5,12)	intersect of line 6x+5y=12 (b) (12,-6/5)	2 (c) (12/5,-12)	(d) (-6/5,-12)
355.	What is the slope and Y (a) (-3/5,9)	intersect of line 3x-5y=9 (b) (9,-3/5)	(c) (3/5,-9/5)	(d) (-3/5,-9)

356.	What is the slope and Y (a) (-3/5,9)	intersect of line 7x+5y=10 (b) (9,-3/10)	(c) (7/5,-10)	(d) (-7/5,2)
357.	What is the slope and Y (a) (-3/7,11)	intersect of line 3x+7y=11 (b) (9,-3/5)	(c) (3/7,11/7)	(d) (-7/5, -11)
358.	What is the slope and Y (a) (-6/5,9)	intersect of line 4x+5y=7 (b) (7,-4/5)	(c) (4/5,7/5)	(d) (-3/5,-9)
359.	What is the slope and Y (a) (-3/4,-9/4)	intersect of line 3x+4y=9 (b) (9/4,-3/5)	(c) (3/5,-9/4)	(d) (-5/7,-9)
360.	If $f(X) = e^{2x-3}$: then $\frac{f(x + f(x))f(x)}{f(x)f(x)}$	<u>y)</u> is		
	(a) e ³	(b) e ⁻³	(c) 1	(d) None of them
	lim 3 ^X -	2 ^X		
361.	The value of $x \to 0$	is:		
	The value of $x \to 0$ $\frac{3^{x} - x}{x}$ (a) $\log_{e} \left(\frac{3}{2}\right)$	(b) $\log_{10} \frac{3}{2}$	(c) 1	(d) None of them
362.	If y = 4^x then, $\frac{d^2y}{dx^2}$ is:			
	(a) 4 ^x	(b) 4 ^x log _e 4	(c) log _e 4	(d) None of them
363.	The value of x for which (a) 0	x(12-x²) is maximum is (b) -2	(c) 2	(d) None of them
364.	The value of $\int_{0}^{1} e^{x} dx$ is:			
	(a) log _e (1+e)	(b) $log_e \left(\frac{1+e}{2}\right)$	(c) 2	(d) None of them
365.	If the total cost function (a) $x^2 - 4x + 5$	C = $x^3 - 2x^2 + 5x$, then the (b) $3x^2 - 4x + 5$	marginal cost is equal to (c) $3x^2 - 4x$: (d) None of them
366.	The arithmetic mean of (a) 45	first 9 counting numbers o (b) 190	ccurring with same frequency (c) 5	ency has its value: (d) None of them
367.		ccurs 3 times, 8 occurs tw	rice and 16 occurs once	then the geometric mean of
	them is (a) 4	(b) 8	(c) 2	(d) None of them
368.	If a person travels first 2 speed during this journe	y is:		5 km @ 5km/hr, his average
	(a) 3 km/hr	(b) $\frac{38}{10}$ km/hr	(c) $\frac{10}{3}$ km/hr	(d) None of them
369.		,60,50,40,57,45,58,65,57,48		7 N M
370.	(a) 55 If the relation between t (a) 5	(b) 57 wo variables x and y is 3x (b) 7.5	(c) 52.5 c - 2y = 5 and mode of x is (c) 10	(d) None of them s 5 then mode of y is: (d) None of them
1. W	/hat is the slope and Y inte	,	• •	
*	(a) (1/2,-11/6)	(b) (9/4,-11/6)	(c) (1/5,-11/7)	(d) (-4/7,-9)

37

3	72.	i=1 i=	$(x_i - 3)^2 = 100$ then star	ndard deviation of 10 o	bservations x ₁ ,x ₂ ,,x ₁₀
		is: (a) 9	(b) 3	(c) 10	(d) None of them
3	73.	If the relation between to standard deviation of x		2x + 3y = 5 and standard	deviation of y is 10 then the
		(a) 15	(b) 10	(c) $\frac{25}{2}$	(d) None of them
3	74.		ndard deviation of 10 obs	servations are 65, 80 and	25 respectively then type of
		skewness of the data is (a) Symmetric	(b) Positively skewed	(c) Negatively Skewed	(d) None of them
3	75.	If the mean of 50 obse	rvations is 50 and one o	observation 94 is wrongly	recorded there as 49 then
		(a) 49.1	(b) 50	(c) 50.9	(d) None of them
3	76.	If for two observations at (a) 20	rithmetic mean is 80 and 1 (b) 400	harmonic mean is 5 then (c) 16	geometric mean of them is (d) None of them
377.	Fo	r moderately skewed dis (a) 112	tribution A.M. = 110, Mode (b) 108	e = 104, then median is: (c) 104	(d) None of them
378.	If t		um values of 10 observati	ons are 40 and 10 then co	pefficient of range is:
		(a) $\frac{5}{3}$	(b) $\frac{3}{5}$	(c) 30	(d) None of them
3	79.	The standard deviation (a) 10	(b) - 10	hen the SD of the variable	2x + 10 is: (d) None of them
3	80.	The number to be added (a) 2	d to each term of the ratio	3:7 to make it 1:2 is: (c) 3	(d) None of these
381.	Wi	nat is the slope and Y inte (a) (-3/4,-9/4)	ersect of line 5x+7y=11 (b) (-5/7,-11/7)	(c) (3/5,-9/4)	(d) (-5/11,-11)
382.	The		money becomes double		
		(a) 8 years	(b) 10 years	(c) 12 years	(d) None of these
3	83.	If $x = 2 + \sqrt{3}$ then the vo	alue of $x^4 + \frac{1}{x^4}$ is:		
		(a) 98	(b) 196	(c) 194	(d) None of these
3	84.	$^{n}c_{r}$ + $^{n}c_{r}$ $_{1}$ is equal to			
		(a) ⁿ⁻¹ C _r	(b) ⁿ⁺¹ C _r	(c) ⁿ C _{r+1}	(d) None of these
3	85.	of ₹ 600 p.m., standard	deviation of ₹50. 228 wo	rkers have monthly inco	n pattern with a mean wages me more than ₹700 p.m. The
		(a) 5,000	I workers in the city are (b) 10,000	(c) 8,750	(d) 7,500
3	86.	In question no. 385, how (a) 6,828	many workers have inco	me between ₹ 550 to ₹ 65 (c) 6,598	50 p.m. (d) 6,902
3	87.	If $\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$ th	en the value of xyz is:		
		y-2 2-x x-y (a) 1	(b) 0	(c) -1	(d) None of these

388.	What is the slope and (a) (-5/4,-11/4)	Y intersect of line 7x+4y=1 (b) (7/4,-11/5)	(c) (11/5,-9/4)	(d) (-7/4,-11/4)
389.	Find the value of X if 12 (a) 1 or 2	(+11 =3X-5 (b) 3 or 1	(c) 1 or 2	(d) 2 or 3
390.	If $X^2+6X = -9$, then the (a) $(-3,-3)$	roots of the equations are. (b) (-3,3)	(c) (2,4)	(d)(4.2)
391.	X ² +X=12, then the root (a) (3,4)	ts of the equations are (b) (-4,3)	 (c) 2,3)	(d)(4.3)
392.	3X²+6X+3 =0 , then the (a) (3,3)	roots of the equations are (b) (-1,-1)	(c) (2,4)	(d)(4.1)
393.	(a) (3)	(=1/2Y, find the value of Y. (b) (-1)	(c) (3/2)	(d) (2)
394.	16X ² -8X+1= 0, when X	= $\frac{1}{4}$ Y. Find the value of Y	•••••	
	(a) (1/4)	(b) (1)	(c) (2)	(d) (-1/4)
395.	If the roots of the equal (a) (8)	(b) (6)	qual then C is equal to (c) (5)	(d) (4)
396.	If the roots of the equal (a) (7)	tion X2+6X+C = 0, are equ (b) (6)	al then C is equal to (c) 9	 (d) (3)
397.	If $h = g(x) = \frac{px + q}{rx - p}$ the	en g(h) is equal to		
	(a) q	(b) x	(c) p	(d) None of these
	lim e ^{px} - e ^{qx}			
398.	v → 0	aluated as		
376.	(a) q - p	(b) $\frac{p}{q}$	(c) p - q	(d) None of these
399.	If $y = x\sqrt{1+x^2}$ then	$\frac{dy}{dx} \text{ is } x = \sqrt{3}$		
	(a) $\frac{1}{2}$	(b) $\frac{7}{2}$	(c) 5	(d) None of these
400.	$\int_{0}^{1} \frac{dx}{\sqrt{x+1} - \sqrt{x}}$ is evaluating	ated as		
	(a) $\frac{2\sqrt{2}}{3}$	(b) $\frac{4\sqrt{2}}{3}$	(c) $\frac{2}{3}(2\sqrt{2}+1)$	(d) None of these
40 1.	$f f(x, y) = 3x^3 - 5x^2y + 2$	∂y^3 then $\times \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$ is		
401.	f f(x, y) = $3x^3 - 5x^2y + 2$ (a) f(x,y)	$\frac{\partial \mathbf{y}^3}{\partial \mathbf{x}} + \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \text{ is}$ (b) 3	(c) 3f(x,y)	(d) None of these

Geometric mean (G.M.) of six numbers is 16. If G.M. of first four of them is 8 then G.M. of other two is

(b) 10

(a) 40

403.

	(a) 8	(b) 16	(c) 32	(d) None of these
404.	multiplied by 2 then ha	rmonic mean will be	an 3 and geometric mea	n 2 $\sqrt{2}$. If each observation is
	(a) $\frac{16}{3}$	(b) $\frac{8}{3}$	(c) 12	(d) None of these
405.		ons of a number of ob metic mean of the obser (b) 6		that about 3 are 40 and 50 (d) None of these
406.				mean of variable x is 10, then
	harmonic mean of vari	able y is		
	(a) $\frac{1}{5}$	(b) $\frac{1}{10}$	(c) $\frac{2}{5}$	(d) None of these
407.	(a) (0.25+0.75)	al distribution having me (b) (0.75+0.25) ¹⁶	ean of 4 and variance of 3 (c) (0.4+0.6) ¹⁸	(d) (0.4+0.6) ¹⁰
408.			3y = 5 and mean deviati tions of corresponding 10 (C) 6	on of x values about mean is 9 y-values about mean is (d) None of these
409.	If for 10 values of x sum variance of x is	of deviations about 5 is	s 10 and sum of squares o	of deviations about 4 is 100 then
	(a) 4	(b) 6	(c) 10	(d) None of these
410.		ation of the combined so		deviations 1 and 3 respectively
	(a) $\sqrt{5}$	(b) $\frac{\sqrt{51}}{3}$	(c) $\frac{7}{3}$	(d) None of these
411.	respectively then mear	n of the distribution is		distribution are 100, 16 and 6
	(a) 124	(b) 76	(c) 108	(d) None of these
412.	If P = $\frac{4}{5}$ and Q = $2\frac{1}{2}$ R,	then P · R is		
412.	(a) 1:2	(b) 2:1	(c) 4:5	(d) None of these
413.	If the roots of the equat	ion 3/4X²+9X+C³=0, are (b) (3)	equal then C is equal to . (C) (8)	(d) (5)
414.	Time in which ₹5000 wi (a) 2 years	Il be the amount ₹6000 c (b) 5 years	at simple interest @5% p.a (c) 4 years	. is (d) None of these
415.		which letters of the word	d 'ALGEBRA' can be arrar	nged so that the two A's will not
	remain together is (a) 1600	(b) 1800	(c) 2000	(d) None of these
416.	Let p be 'It is hot' and o symbolic form as	q be 'It is dry'. Then the s	statement 'It is not hot an	d it is not dry' can be written in
	(a) ~ p v q	(b) ~ p^ ~ q	(c) ~ p v q	(d) pvq
417.	The number of zeros between (a) 8	een decimal point and the (b) 7	first significant digit in (0.5) ²⁰ (C) 5	given log ₁₀ 2 – 0.30103, is (d) none of these

Find the number of terms in the expansion of $(1-5x)^7 + (1+5x)^7$

418.

	(a){ 1}	(b) { 5 }	(c) {1, 5}	(d) none of these	
419.	If $X^a = Y^b = Z^c$ and $xyz = 1$ then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ is				
	(a)8	(b) 4	(c) 5	(d) 9	
420.	If (1- $\sqrt{2}$) is one of the (a) $X^2-2X-X=0$	roots of an equation, the (b) $X^2-2X-1=0$		 (d) X ² -3X-X=0	
421.	If (2 + $\sqrt{3}$) is one of the (a) $X^2-2X-3=0$			(d) X ² -3X-5=0	
422.	If (3- $\sqrt{3}$) is one of the ro (a) $X^2-2X-3=0$			(d) X ²⁻ 6X+6=0	
423 .	If (1- $\sqrt{5}$) is one of the re(a) $X^2-2X-4=0$		equation is (c) X ² -4X-1 = 0		
424.	The g.c.d of the equation (a) $(2x+1)$	n =2X ² -X-1 and 4X ² +8X+3 (b) (2x-1)	is (c) (3x+1)	(d) (2x-2)	
425.	If $A = (x+1)/(x-1)$, then $A = (x-3)$	-1/A is equal to (b) 4x/(x²-1)		(d) X/3+3	
426.	(a) X ² -4X-1=0		whose roots are 2+5 and (c) $X^2-2X-1=0$	2- $\sqrt{5}$ (d) 2X ² -2X-1=0	
427 .	If the mean of a binom distribution (a) 20	ial distribution is 5 and s (b) 25	standard deviation 2 find	I the number of items in the	
428.	The method of the prime (a) 32	numbers between 20-50 (b) 35) is (c) 37	(d) 39	
429.	If f (x) = $\frac{1 \times 1}{x}$ then for c \neq	0, f(c) -f(-c) will be			
	(a)1	(b) 2	(c) 0	(d) None of these	
430.	The value of $\frac{\lim_{x\to 0} \frac{1-}{x}}{x}$	$\frac{\sqrt{1-x^2}}{x^2}$			
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) 0	(d) None of these	
431.	When $x = 4t - t^2$, $y = t^2 + 3t^2$	3, $\frac{dy}{dx}$ at t = 1 is (b) -1	(c) 2	(d) None of these	
432.	The value of $\int_{0}^{1} \frac{dx}{\sqrt{x+1-\sqrt{x}}}$				
	$0\sqrt{x+1}-\sqrt{x}$ (a) $\frac{4\sqrt{2}}{3}$		(c) $\frac{2\sqrt{2}}{2}$	(d) None of these	

433.	Find the co-efficient (a) 51624	of x ⁷ in the expansion of (b) 52720	of (x - 2x²) ⁻³ (c) 67584	(d) None		
434.	If the relation between (a) 20	en x and y is x = 2y + 5 (b) 10	and the median of x is 25 to (c) 12.5	then the median of y is (d) None of these		
435.	Geometric mean of is mean of last four o		geometric mean of first six	observations is 4 then geometric		
	(a) $16\sqrt{2}$	(b) 8	(c) 16	(d) None of these		
436.	If harmonic mean of a		5/2 and harmonic mean	of another 5 observations is the		
	(a) 7	(b) $\frac{45}{14}$	(c) $\frac{101}{36}$	(d) None of these		
437.	Out of 100 observati standard deviation o		ave the value 1 and rest (of the observations are zero. The		
	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{3}{2}$	(c) $\frac{\sqrt{3}}{4}$	(d) None of these		
438.		ons of a number of observations is	ervations about 4 is 30 and	I that about 3 is 40. Then mean of		
	(a) 7	(b) 10	(c) 11	(d) None of these		
439.	Variance of first 5 po	sitive integers is (b) 2	(c) 1	(d) None of these		
440.	Mean deviation of fir (a) 0	st 5 positive integers al (b) 1.7	oout median is: (c) 1.2	(d) None of these		
441.	The mean and variance of n values of a variable x are σ^2 and respectively. If the variable y = x^2 , the mean of y is					
	(a) o	(b) σ^2	(c) 1	(d) None of these		
442.	For 5 values of a variable x, $\sum_{x_1}^{5} (x_1 - 5)^2 = 30$, the variance of x is 1-1					
	(a) 2	(b) 4	(c) 6	(d) None of these		
443.	If group G ₁ has a.m = (a) G ₁ is more skewed (c) G ₁ and G ₂ are ed	d than G2	(b) G ₁ is less skewe (d) None of these	18, median = 18, s.d = 9 then d than G_2		
444.	If 2 – x, 3 – x, 5 – x an (a) 1	d 7 – x are proportion, (b) -1	then the value of x is (c) 2	(d) None of these		
445.	If $\sqrt{X}_{+1}/\sqrt{X}_{-1+}\sqrt{X}$ (a) (1,2/3)	-1 / \sqrt{X} +1=1/3, then t (b) (5/3,-1)	he value of X is(c) (2/3,-2)	(d) (2/5,-1/3)		
446.	True discount of a bil (a) ₹ 540	l value due in 2 years o (b) ₹ 500	at 4% per annum. Simple ir (c) ₹ 460	nterest is ₹ 40. Then bill value is (d) None of these		
447.			nt things can be divided in	nto 3 groups containing 2,3 and 4		
	things respectively is (a) 15120	(b) 1260	(c) 630	(d) None of these		
448.	If $x + iy = \frac{1}{3+2i}$ the	value of x - y is				

	(a) $\frac{1}{3}$	(b) $\frac{1}{\sqrt{14}}$	(c) $\frac{1}{5}$	(d) None of these
449.	The maximum value of (a) 10	13C r is equal to (b) 8	(c) 4	(d) 5
450 .	The logarithm of 324 to t	the based $\frac{1}{2\sqrt{2}}$ is		
	(a) -4	(b) -2	(c) 4	(d) None of these
451 .	-	is a girl" and q be "the is a boy but he is not stud (b) $\sim p \land q$		en the symbolic form of the (d) None of these
			. , , ,	(a) None of mose
452.	If $\sqrt{X}/X-1+\sqrt{X}+1/X=7$ (a) $(4/3,3/2)$	7/ 5, then X is equal to (b) (1/3,2/3)	(c) (3/5,2/5)	(d) (3/5,5/7)
453 .	If one root of the equ	ation X^2 -8X+M=0, excee	ds the other by 2, then	the value of M is equal to
	(a) 12	(b) 15	(c) 10	(d) 16
454 .	If one root of the equ	vation X^2 -9X+M=0, excee	eds the other by3, then	the value of M is equal to
	(a) 8	(b) 10	(c) 12	(d) 18
4 55.	If one root of the equation (a)8	on X²-3X-M=0, exceeds t (b) 11	he other by 7, then the vo	alue of M is equal to (d) 10
456 .	If one root of the equa	ation X ^{2—} 7X+M=o, excee	eds the other by 1, then	the value of M is equal to
	(a) 9	(b) 10	(c)12	(d) 18
457 .		•	(x + a)n are 240, 720 and	1080 the value of x, a and n
	respectively are (a) (2, 3, 5)	(b) (3, 2, 5)	(c) (5, 2, 3)	(d) (3, 5, 2)
458 .	If one root of the equation (a) -6	on X²+9X+M=0 , is double (b) 7	the other, then the value (c) 12	of M is equal to(d) 18
459.	If the equations X ² +7X+ (a) (21/4,14/3)	12=0 and X²+MX+5=0 hav (b) (21,15/4)	ve common roots, the val (c) 18/7,13/5	ue of M is equal to
460.	If the equations X ² +2X-3 (a) (1/4,4/3)	3=0 and X ² +MX+2=0 have (b) (11/3,15/4)	common roots, the value (c) 7/3,-3	e of M is equal to
461.	If $y = f(x) = \frac{ax + b}{cx a}$ then	$nfor \ x \neq \frac{a}{c}, f(y) \ \mathrm{is}$		
	(a) x	(b) - x	(c) $\frac{1}{x}$	(d) None of these
462.	The value $\frac{\lim_{x \to \infty} \frac{4x^2 + 1}{2x^2 + 1}}{x^2 + 1}$	$\frac{+3x-1}{-7x+5}$ is		
	(a) 2	(b) $\frac{1}{2}$	(c) Does not exist	(d) None of these
463.	If $y = x^x$ then $\frac{dy}{dx}$ is			

(c) $x^x (1 + \log x)$

(b) $x (1 + \log x)$

(a) x log x

464.	The value of $\int_0^1 \frac{dx}{x + \sqrt{x}}$ is			
	(a) log _e 2	(b)2 log _e 2	(c) - log _e 2	(d) None of these
465.	If $u = x^2y + y^2z + z^2x$ ther (a) $(x+y+z)$	$u_x + u_y + u_z$ is (b) $(x+y+z)^2$	(c) $(x^2+y^2+z^2)$	(d) None of these
466.	If 1, 2, 3, 4 occur with res	spective frequencies 1,2, (b) 2.5	3,4 then their arithmetic r	nean is (d) None of these
467.		vations the arithmetic me arithmetic mean of the re (b) 60		mean of first 100 observations the group is (d) None of these
468.	price index was 150 in	1995, in 2006 the Consur		in 1995 when the consumer 195. The additional DA to be
	paid to the Banks office (a) ₹12,000	(b) ₹13,200	(c) ₹11,850	(d) ₹ 10,000
469.	If the arithmetic mean o	f 10 observations x1, x2,	, x10 is 20 harmonic	mean of 10 observations $\frac{10}{x_1}$
	$\frac{10}{x_2}$,, $\frac{10}{x_{10}}$ is			
	(a) 2	(b) $\frac{1}{2}$	(c) $\frac{1}{20}$	(d) None of these
470.	If the variables x and y (a) 18	are related by 3x – 2y + 6 (b) 15	= 0 and the range of x is (c) 12	10 then range of y is (d) None of these
471 .	squares of the 4 observe	ations is		ose 4 values is 2 then sum of
	(a) 52	(b) 40	(c) 20	(d) None of these
472.	the prices of the item respectively, the wholes	_	categories have gone	%, 50% & 30% respectively. If up by 25%, 15% and 20%
	(a) 18.55%	(b)21.50%	(c) 16.60%	(d) 15.40%
473.	The media of the followi X : 1	ng distribution 2 3 4		
	Frequency : 7 (a) 2	12 18 4 (b) 3	(c) 4	(d) None of these
474.		ient of valuation of x are	10 and 50% respectively	, then the standard deviation
	of 3 – 2x is (a) 100	(b) 50	(c) 10	(d) None of these
475.	If the coefficient of skew media of the values is	vness, mean and varianc	e of a set of values are -	3, 40 and 4 respectively then
	(a) 46	(b) 42	(c) 41	(d) None of these
476.	If $X^2+6X = -9$, then the ro (a) $(-3,-3)$	oots of the equations are (b) (-3,3)	(c) (2,4)	(d)(4.2)
477.	$X^2+X=12$, then the roots (a) (3,4)	of the equations are (b) (-4,3)	(c) 2,3)	(d)(4.3)

478.	3X²+6X+3 =0, then the (a) (3,3)	roots of the equations are (b) (-1,-1)	(c) (2,4)	(d)(4.1)
479.	(a) (3)	=1/2Y, find the value of Y. (b) (-1)	(c) (3/2)	(d) (2)
480.	16X ² -8X+1= 0, when X=	$=\frac{1}{4}$ Y. Find the value of Y.	•••••	
	(a) (1/4)	(b) (1)	(c) (2)	(d) (-1/4)
48 1.	If the roots of the equal (a) (8)	tions 2X²+8X+C = 0, are e	equal then C is equal to (c) (5)	(d) (4)
482.	If the roots of the equation (a) (7)	(b) (6)	al then C is equal to (c) 9	 (d) (3)
483.	If the roots of the equation (a) (5)	tion 3/4X²+9X+C³=0, are 6 (b) (3)	equal then C is equal to (C) (8)	(d) (5)
484.	If (1- $\sqrt{2}$) is one of the	e roots of an equation, t	he equation is	
	(a) $X^2-2X-X=0$	(b) $X^2-2X-1=0$	(c) $X^2-4X-2=0$	
485.	If $(2 + \sqrt{3})$ is one of the	e roots of an equation, th	e equation is	
400.	(a) $X^2-2X-3=0$	(b) X ² -2X-2=0		(d) X ² -3X-5=0
407	K(2 /2):			
486.	(a) $X^2-2X-3=0$	roots of an equation, the (b) $X^2-3X-1=0$	(c) X ² -4X+2=0	(d) X ² -6X+6=0
487.	the price relative of pu	lses is		g. Taking 1995 as a base year
	(a) 225	(b) 350	(c) 315	(d) 280
488.	The g.c.d of the equation $(2x+1)$	on =2X²-X-1 and 4X²+8X+ (b) (2x-1)	3 is	(d) (2x-2)
489.	If $A = (x+1)/(x-1)$, then (a) (2x-3)	A-1/A is equal to (b) 4x/(x²-1)	 (c) 2x/3-5	(d) X/3+3
490.		- is the quadratic equatio	n whose roots are 2+5 an	d 2- √5
	(a) $X^2-4X-1=0$	(b) $2X^2-4X=1$	(c) X ² -2X-1=0	(d) $2X^2-2X-1=0$
49 1.	If 3X+2Y=6; (k+1)x+4y= (a) 3	(2k+2),if k is (b) 5	the equation will have	infinite solution (d) 6
492.	The method of the prim	ne numbers between 20-5 (b) 35	50 is	(d) 39
493.	If \sqrt{X} +1/ \sqrt{X} -1+ \sqrt{X} - (a) (1,2/3)	1 / \sqrt{X} +1=1/3, then the vo	alue of X is (c) (2/3,-2)	(d) (2/5,-1/3)
494.	If $\sqrt{X} / X - 1 + \sqrt{X} + 1 / X = 0$ (a) $(4/3, 3/2)$	7/5, then X is equal to (b) (1/3,2/3)	 (c) (3/5,2/5)	(d) (3/5,5/7)
495.	If one root of the equ	uation X²-8X+M=0, excee	eds the other by 2, then	the value of M is equal to
	(a) 12	(b) 15	(c) 10	(d) 16
496.	If one root of the equ	uation X²-9X+M=0, exce	eds the other by3, then	the value of M is equal to
	(a) 8	(b) 10	(c) 12	(d) 18

497 .	If one root of the eq (a)8	uation X²-3X-M=0, excee (b) 11	eds the other by 7, then the (c) 12	ne value of M is equal to
498.	If one root of the	equation X ^{2—} 7X+M=o, ex	cceeds the other by 1,	then the value of M is equal to
	(a) 9	(b) 10	(c) 12	(d) 18
499.	If one root of the eq	uation X²-3X+M=0, excee (b) -4	eds the other by 5, then t	he value of M is equal to (d) 18
500.	If one root of the eq	uation X²+9X+M=0, is dou (b) 7	uble the other, then the v	alue of M is equal to(d) 18
501.	If the equations X ² + (a) (21/4,14/3)	7X+12=0 and X²+MX+5=0 (b) (21,15/4)	have common roots, the	e value of M is equal to
502.			times in comparison to th	ne base period, the present index
	of wheat is (a) 235	(b) 135	(c) 210	(d) 321
503.	If the equations X ² -5 (a) (1/4,4/3)	5X+6=0 and X²+mX+3=0 h (b) (7/3,1/4)	nave common roots, the (c) (7/4,-3/5)	value of m is equal to (a) (-7/2,-4)
504.	The roots of the equ (a) (3,-2)	ation X²-X-6=0,are (b) (-3,2)	(c) (1,5)	(d) (5,-1)
505.	The roots of the equ (a) (3,-6)	ation X2+X-20=0, are (b) (-4,-5)	(c) (2,5)	(d) (4,-5)
506.	The roots of the equ (a) (-1,2,-4)	ation (x+1)(x-2)(x+4) are (b) (1,-2,-4)	(c) (-1,-2,-4)	(d) (2,-3,-4)
507.	The roots of the equ (a) (-2,2,4)	ation (x+2)(-2)(x-4) are (b) (1,-2,-4)	(c) (-1,-2,-4)	(d) (2,-3,-4)
508.	The roots of the equ (a) (-2,-2,2,4)	ation (x+2)²(x-2)(x-4) are	(c) (-1,-2,-2,-4)	(d) (2,2,-3,-4)
509.	Find the least +iv va (a) (4)	lue of M for which the eq (b) (5)	uation X²+MX+9 has real (c) (3)	(d) (6)
510.	_	of silver in 2005 is 415 wit	h base year 1995, the pr	ices of silver must have increased
	by (a) 415%	(b) 315%	(c) 224.5%	(d) 120.5%
511.	The roots of the equ (a) (-2,2,2,4)	ation (x-4)²(x-2)(x+4) are (b) (1,-2,4,-4)	(c) (4,4,2,-4)	d) (2,-3,1,-4)
512.	The roots of the equ (a) (-2,2,4)	ation (x-3)(x-2)(x-4) are (b) (3,2,4)	(c) (-1,-0,-4)	(d) (2,-1,-3)
513.	Find the value of M	if one root of the equation (b) -1/4	n F(x) = mx²+2x-3=0, is 2- (C) -1	(d) ¹ / ₄
514.	Find the value of M,	if one root is 2, $F(x) = 2x^2$ (b) -1	+mx-6=0 (c) 2	(d) -2
515.	The roots of the equ (a) (3,2,2,4)	ation (x-3)(x-2) ² (x-4) are (b) (1,-2,2,-4)	(c) (-1,-2,2,-4)	(d) (2,-3,2,-4)
516.	The value of M for w	which the difference betw (b)±5	een the roots of the equal (c) ± 6	ation x²+mx+8=0, is 2 are (a)±3

517.	Find the degree of the (a) 2	equation 3x+yz²+3Y³ (b) 3	(c) 4	(d) 5
518.	Find the degree of the (a) 2	equation 3x5+xyz2+y3 (b) 3	(c) 4	(d) 5
519.	Find the zero's x ² + 7x + (a) (4,-3)	- 12=0 (b) (-4,3)	(c) (-4,-3)	(d) (4,3)
520.	Find the zero's of = x^2 -8 (a) (-2,6)	6x-12=0 (b) (-6,2)	(c) (2,6)	(d) (-2,-6)
52 1.	Find the degree of the (a) 2	equation $4x^2 + xyz^2 + xy^3 - (b)3$	+ yz ⁵ (c) 4	(d) 6
522.	If P,Q are the roots of to (a) 1/25	he equation $F(x) = 6x^2 + x$ (b) 25/16	- 2, find the value of P/Q (c) 16/25	-Q/P (d) -7/25
523.	If P and Q are the roots (a) -1	s of equation F(x) = 6x² + x (b) 25/16	c - 2, Find the value of p/o (c) -25/16	q+q/p (d) 16/25
524.	Find the degree of the (a) 2	equation $x^2 + xyz^2 + xy^3 +$ (b) 3	zy ⁵ (C) 4	(d) 6
525.	If p,q are zero of the e (a) 2	quation F(x)= x²+x+1 then (b) -1	1/p+1/q=0 (c) 1	(d) -2
526.	the denominator and is	1 added to the numer	ator, the number beco	however if 2 is deducted from mes equal to 1. The number
	(a) 6/9	(b) 3/10	(c) 5/8	(d) 11/15
527.		n the numerator of a fracti it becomes equal to 1. The (b) 7/9		2/3, however if 2 is deducted (d) 3/5
528.	hand if 3 is added to a			omes equal to 1, on the other mes equal to 1/3. The number
	is (a) 4/9	(b) 7/10	(c) 8/12	(d) 9/15
529.		tiplied by 3 it becomes ed		deducted from denominator it
	(a) 5/7	(b) 3/7	(c) 5/8	(d) 1/3
530.	•	of two friends X and Y is in re ₹100 PM, their monthly i		ir expenses are in the ratio of
531.		(b) (700, 600) of two workers X and Y i il). Their monthly earning v	vill be	(d) (750, 960) their savings in the ratio of 8:5
	(a) (₹900,700)	(b) (750,580)	(c) (₹1,000 , ₹1,200)	(d) (750,960)
532.	the ratio of 5:8. If both	makes an operating profit	t of ₹10,000 PM, their sale	
	(a) (₹69,000 , 70,000)	(b) (75,000, 65,800)	(c) (₹60,000, ₹90,000)	, , ,
533.		3 years ago was 2.5 times sent age of the father and (b) 50,27		iter 7 years it will be twice the

534.	years ago his age wo	as twice the age of his so	_	e age of his son and grandson. 10 present age of the father and sum
	of age of son and gra (a) 93,63	nd-son are (b) 85,57	(c) 88,64	(d) 90,60
535.		years ago was twice the his son. The present age		ears from today his age will be 25
	(a) 55,30	(b) 54,27	(c) 58,30	(d) 60,30
536.	The age of X is 1.5 tim of his wife. Their prese	_	10 years before his ag	e would have been twice the age
	(a) 53,43	(b) 50,37	(c) 30,20	(d) 45,30
537.	A two digit number in reversed. The number		digit, however if 27 i	s deducted from it the digits are
	(a) 63	(b) 65	(c) 75	(d) 69
538.	A two digit number is of digits. The number	_	git, however if 9 is adde	ed to it becomes 10 times the sum
	(a) 68	(b) 55	(c) 81	(d) 59
539.	In 2005 the index wit	-	and 1995 index with	base year 1990 is 120, then 2005
	(a) 150	(b) 210	(c) 310	(d) 305
540.	A two digit number is sum of the digits. The	_	git, however if 9 is ded	ucted from it becomes 8 times the
	(a) 63	(b) 69	(c) 77	(d) 81
541.	number. If 1/5 of the s (a) (55,64)	smaller is added to 1/8 of (b) (76,57)	the greater it added u (c) (55,44)	8 from the double of the another up to 19. The numbers are (d) (65,87)
542.		ch that 1/4 th of the small 2 less than the double of to (b) (76,50)		the greater and on doubling the ers are (d) (65,80)
543.		uch that twice the big	ger is equal to 2.5	times the smaller. The numbers
	are (a) (20,35)	(b) (36,57)	(c) (50,40)	(d) (62,83)
544.		ch that if the smaller is d smaller is equal to 1/5 of t (b) (46,57)		2 from the double of the another the numbers are
545.	Two numbers are suc (a) (2,4)	h that if the smaller is dou (b) (2,6)	(c) (3,8)	er one. The numbers are(d) (5,12)
546.	A two digit number is The number is	_	e reversed, the greater	r is ¾ times more than the smaller.
	(a) (12)	(b) (32)	(c) (41)	(d) (23)
547.	If the sum of two natu (a) (2,7)	ral number is 9 and sum (b) (3,6)	of their square is 53. Th	e numbers are (d) (4,5)
548.	If the difference of two (a) (13,8)	o numbers is 5 and difference (b) (12,7)	ence of their square is (c) (2,7)	45. The numbers are (d) (14,9)
549.		oral numbers is 9 and sur	n of their square is 5 ti	mes their sum less 4. The numbers
	are (a) (2,7)	(b) (1,9)	(c) (3,6)	(d) (4,5)
550.	Two numbers are su	ch that their sum is 19	and their product is	8 times the greater number. The

numbers are.....

	(a) (12,7)	(b) (11,8)	(c) (13,6)	(d) (14,5)
55 1.		ch that their difference is	s 5 and their product is 100	times difference. The numbers
	are (a) (12,7)	(b) (11,6)	(c) (13,18)	(d) (20,25)
552 .		uch that their sum is 15	5 and their difference is 1,	/5 of their total. The numbers
	are (a) (12,3)	(b) (11,4)	(c) (9,6)	(d) (14,1)
553.	Two numbers are sud (a) (30,6)	ch that their difference is (b) (4,30)	24 and product is 180. The (C) (15,39)	numbers are(d) (1,25)
554.	3 times of a number	is equal to 3/5 of its squa (b) (7)	are. The number is(c) (9)	 (d) (5)
555.	5 times of a number (a) (7) (b)		The number is (13) (d) (18	
556.	The number are		_	nber equals 1/2of the smaller.
	(a) (40,10)	(b) (30,20)	(c) (32,18)	(d) (33,17)
557.	If 60 is divided into to (a) (30,30)	vo parts such that their p (b) (20,40)	roduct is 15 times their sum. (c) (10,50)	The numbers are(d) (25,35)
558.	X is older than Y by s (a) 10 years	5 years 10 years ago, ho (b) 15 years	w much older X will be than (c) 5 years	Y after 15 years. (d) 20 years
559.	If in Question No.33 i (a) 40	f present age of Y is 55 y (b) 50	rears, what was the age of X (c) 45	(10 years ago (d) 35
560.	4 T shirts and 3 Trous shirt and one Trouser (a) (₹150, ₹500)		5 T shirts and 2 Trousers cos (c) (₹175, ₹625)	st ₹1 750. Find the cost of one T (d) (₹125, ₹525)
F./ 1	, , ,	, , ,	. , .	, , ,
561.		and 50 paise coins in and 50 paise coins he ho (b) (40,10)		al 50coins valued ₹15, find the (d) (20,30)
562.		72 new currency notes ir each denomination.	n his pocket totaling 20 note	es valued ₹70. Find the number
	(a) (5,15)	(b) (15,5)	(c) (10,10)	(d) none.
563.				e the amount you are left with. with. Find the amount each is
	(a) (₹140, ₹100)	(b) (₹100,₹140)	(c) (₹80, ₹120)	(d) (₹120, ₹80)
564.	In NCR area a Radio the charges for a dis (a) ₹230		distance of 12 Km and ₹18 (c) ₹300	0 for a distance of 15 Km. Find (d) ₹200
			. ,	(d) 1 200
565.	(a) ₹230	what will be the charges (b) ₹250	(c) ₹300	(d) ₹280
566.	In Question Nos. 564 (a) ₹30	and 565 what is the fixed (b) ₹200	d charges. (c) ₹50	(d) ₹40
567.		what is per Km. charges fixed charges. (b) ₹10 p		(d) ₹12 per Km

300.	The combined ratio		u be A, B and C respectiv	rely. Given A : B - 1: 2, B:C = 3:4.
	(a) 1:2:4	(b) 3:6:8	(c) 1:6:8	(d) none of them
569.	If $\frac{\sqrt{a+\sqrt{b}}}{\sqrt{a-\sqrt{b}}} = \frac{2}{1}$ then	a+b		
567.	$\sqrt{a} \sqrt{b} = - \text{ mer}$	a - b		
	•	(b) 4/5	(0) 2	(d) none of them
	(a) 5/4	(D) 4/5	(c) 3	(d) none of them
570 .			unt ₹550 due is ₹50 at 4%	
	(a) 2 years	(b) 3 years	(c) 2.5 years	(d) none of them
57 1.	After rationalization	$\frac{\sqrt{3+\sqrt{2i}}}{\sqrt{3-\sqrt{2i}}} \text{ will be}$		
	(a) 1+2√6i	(b) $\frac{5+2\sqrt{6i}}{5}$	(c) 1−2√6i	(d) $\frac{1+2\sqrt{6i}}{5}$
572.	$\frac{\left(2^{n+1}\right)+\left(2^{n+2}\right)}{\left(2^{n+2}\right)-2\left(\frac{1}{2}\right)}$) —— simplifies to		
	$\left(2^{n+2}\right) - 2\left(\frac{1}{2}\right)$	1-n		
	(a) 4	(b) 2	(c) 8	(d) 20
573.	The value of log 2 log (a) 1	g 2 log 3 81 is (b) 4	(c) 3	(d) 2
574.	The value of x satisfic	es the equation $\sqrt{\frac{x}{1-x}}$ +	$\sqrt{\frac{1-x}{x}} = \frac{13}{6}$	
	(a) $\left(\frac{2}{3}, \frac{3}{2}\right)$	(b) $\left(\frac{4}{9}, \frac{9}{4}\right)$	(c) (4,9)	(d) None of these
575 .	If mc,: m-3 c2 = 9	1: 4 , then the value of n	n is	
	(a) 13	(b) 15	(c) 14	(d) none of these
		, ,		, ,
576.	(a) $(1/4,4/3)$	(b) (7/3,1/4)	(c) (7/4,-3/5)	value of m is equal to (d) (-7/2,-4)
577 .	The roots of the equa	ation X²-X-6=0,are	•••••	
	(a) (3,-2)	(b) (-3,2)	(c) (1,5)	(d) (5,-1)
578 .	The roots of the equa	ation X²+X-20=0, are		
070 .	(a) (3,-6)	(b) (-4,-5)	(c) (2,5)	(d) (4,-5)
579.	In 2005 the consume		which was 240 in 2000, th	ne purchasing power of money i
	(a) 1.21 times	(b) (1,-2,-4)	(c) (-1,-2,-4)	(d) (2,-3,-4)
580.	The roots of the equa	ation (x+2)(-2)(x-4) are-		
550 .	(a) (-2,2,4)	(b) 0.85 times	(c) 1.33 times	(d) 1.05 times
58 1.	The roots of the equa	ation (x+2)²(x-2)(x-4) are	e	
551.	(a) (-2,-2,2,4)		(c) (-1,-2,-2,-4)	(d) (2,2,-3,-4)

582.	Find the least +iv value of (a) (4)	of M for which the equation (b) (5)	on X ² +MX+9 has real root (C) (3)	(d) (6)
583.	Find the least +iv value (a) (2)	of M for which the equation (b) (3)	on X²+MX+4 has real root (c) (4)	(d) (-4)
584.	If $f(x) = \frac{x+1}{x-1}$, $f(f(x))$ for $f(x) = \frac{x+1}{x-1}$	x≠1 is		
	(a) 1	(b) 2	(c) x	(d) $\frac{x+1}{x-1}$
585.	$\lim \frac{(x^2-1)2^X}{x \to 12x^2-3x+1}$ is	evaluated as		
	(a) 1	(b) 2	(c) 3	(d) 4
586.	If $y = (x^2 + 5)^2$ then $\frac{dy}{dx}$, - , at x = 2 is		
	(a) 18	(b) 72	(c) 81	(d) 36
587.	If $f(x, y) = x^3 + y^3$ then X	$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \mathbf{i} \mathbf{s}$		
	(a) f (x, y)	(b) 3 f(x, y),	(c) 3	(d) none of these
588.	$\int_{1}^{2} \frac{dx}{\sqrt{x-1}}$ is evaluated as	(b) 2√2	(c) - 2	(d) - 2√2
589.	(a) 2	. ,	. ,	ney in 2005 was 1.4 times of
307.		e index in 2000 will be (b) 175		(d) 145
590.	Two groups of 10 and 15 (a) 15	observations have mean (b) 16	ns 10 and 20 respectively (c) 14	. Then grouped mean is (d) none of these
591.	128 $\sqrt{2}$. Then grouped ge	ometric mean is		group of 4 observations is
592.	(a) 64	(b) 32√2,3 observations have harm	(c) 32 2 1	(d) None of these
372.	combined harmonic me		fionic means —, and — 5 5	, respectively men
	(a) $\frac{1}{2}$,	(b) $\frac{1}{4}$,	(c) $\frac{1}{3}$,	(d) none of these
593.		nave harmonic mean and	d geometric mean 9 and	15 respectively, then
	arithmetic mean of the t (a)12	(b) 25	(c) √135	(d) none of these
594.	If the two variables x an deviation of y is	nd y are related by 2x + 3	By = 12 and standard dev	riation of x is 6 then standard
	(a) 2	(b) 10	(c) 4	(d) none of these
595.	For 10 values of variable	\mathbf{x} x it is given that $\sum \mathbf{x} = 13$	$x = \frac{x^2}{2} = 400$ and $u = \frac{x^2}{2}$	$\frac{5}{2}$. Then $\sum v^2$ is
	(a) 100	(b) 520	(c) 260	(d) none of these

596.	Mean deviation abo (a) 1.16	ut mean is 5.8. Co-effic (b) 2.9	cient of mean deviation (c) 29	n about mean is 0.2. Then mean is (d) none of these
597.	For a group of 10 obs	servations, $\sum \mathbf{x} = 452$, (b) 0.08	$\sum \mathbf{x^2} = 24270$ and mod (c) 8	e 43.7 the coefficient of skewness is (d) none of these
598.	. ,			in 10 innings are 40 and 125%
		d. of the runs made by		-
	(a) 50	(b) 40	(c) 20	(d) none of these
599.		nt of regression of X on	=	formation
	~	25, $r = 0.6$. Standard d		
	(a) 0.48	(b) 0.75	(c) 0.90	(d) 0.58
600.		nt of regression of X on		
	$\sigma_x = 8$ $Y = 36$	$\overline{X} = 30$, r = 0.7 . S	tandard deviation of Y	= 6
	(a) 0.40	(b) 0.75	(c) 0.93	(d) 0.65
601.	What is the coefficien	nt of regression of X on	Y from the following in	formation
	$\sigma_{x} = 36$ $\overline{Y} = 30$	$\overline{X} = 36, r = 0.8.$	Standard deviation of	Y = 32
	(a) 0.48	(b) 0.55	(c) 0.40	(d) 0.90
602.	What is the coefficien	nt of regression of X on	Y from the following in	formation
	$\sigma_x = 5$ $\overline{Y} = 32$	_	Standard deviation of	
	(a) 0.50	(b)0.70	(c) 0.618	(d) 0.65
603.	What is the regressio	n coefficient b _{xy} from t	he following details	
000.	X = 0.64y + 19.10; Y		ne ronowing defans	
	(a) 0.85	(b) 0.64	(c) 0.98	(d) 1
604.	In guestion No. 603 tl	he coefficient of regres	sion byx is equal to	
	(a) 1.0	(b) 2.20	(c) 0.87	(d) .65
605.		n coefficient bxy from	the following details	
	13X = 7Y + 9.10; Y = 2 (a) 7/13	(b) 13/7	(c) 1.09	(d) 2.9
				•
606.		n coefficient byx in que (b) 2		(d) 1.05
				(-)
607.	What is the regressio X = 7/3Y + 28.10; Y =	n coefficient bxy from to 1.5x + 10	the following details	
	(a) 7/3	(b) 3/77	(c) 1.5	(d) 2.9
608.	What is regression co	pefficient byx in question	on No. 607	
000.	(a) 2.01	(b) 1.09	(c) 1.5	(d) 0.87
609.	If the regression coef	fficient bxv is 2.5 what	is the value of a in the	given equation 2X = aY + 12.6
007.	(a) 4	(b) 2.5	(c) 5.0	(d) 3.32
/10	If the regression coef	fficient by vie 2.0 whet	is the value of a in the	given equation 2.0V = gV + 15
610.	(a) 5.8	(b) 2.9	(c) 6.18	given equation 2.9X = aY + 15 (d) 4.32
611.		_		given equation $2Y = \alpha X - 16.80$
	(a) 4	(b) 0.5	(c) 1.0	(d) 3.32
612.	_			given equation 2Y = aX + 18
	(a) 2.5	(b) 1.5	(c) 4.0	(d) 6.00
613.		obtained from the fo		under Y = $2x+5$, $3X = 2y - 18$. If the

	(a) 16	(b) 81	(c) 36	(d) 75
614.	In question No. 613 the	e covariance of xy is (b) 50	(c) 99	(d) $66\sigma_x = 4$
615.	_	quations 8x – 10y + 66 = 0	, 40x - 18y - 214 = 0, the	value of Mean X, Mean Y, bxy,
	byx are (a) (19,21,9/20,4/5)	(b)(13,17,9/20,4,/5)	(c) (11,15,8/20,4/5)	(d) (16,19,19/20,4/5)
616.	_		40x - 18y - 220 = 0, the	value of Mean X, Mean Y, bxy,
	byx are (a) (10,10,9/20,1,/4)	(b) (11,18,19/20,2/5)	(c) 10,13,8/20,4/5)	(d) (10,17,15/20,1/5)
617.	From the regression e		0, 8x - 18y + 60 = 0, the	value of Mean X, Mean Y, bxy,
	(a) (11,20,9/20,4/5)	(b) (15.71,8.42)	(c) $\frac{5}{3}$	(d) $\frac{4}{9}$
618.	What is co-efficient of (a) 0.33	correlation in question No. (b) 1.76	o. 616 (c) 2.21	(d) 154
619.	What is co-efficient of (a) 0.90	correlation in question No.86	o. 617 (c) 0.98	(d) 2.22
620.	_	nt between x and y is 1/3	B, y on x is – $\frac{3}{4}$, the coef	ficient of correlation between x
	and y is (a) -3	(b) 2	(c) -1/2	(d) 1/3
621.	If regression coefficie	nt between x and y is – 2,	/3, y on x is – 1/6, the co	efficient of correlation between
	x and y is (a) - 3	(b) 1	(c) - 1/2	(d) - 1/3
622.	If regression coefficie	Int between x and y is $1/2$	$^{\prime}$ 6, y on x is 6, the coeff	icient of correlation between x
	and y is (a) - 1	(b) 1	(c) 4	(d) 1/3
623.		nt between x and y is -2/s	5, y on x is -5/2, the coe	fficient of correlation between x
	and y is (a) - 3	(b) 2	(c) -1/5	(d) -1
624.		ation between x and y is 0, and Mean of Y = 8, the (b) x=0.56Y + 9		of x is 1.5, standard deviation of is (d) $x = 0.3Y - 8$
625.	In question No. 624 the (a) y=1.5x-6	e regression line of y on x (b) y=x-2	is (c) y=0.9x+8	(d) y=2.1x+12
626.		ation between x and y is 0 5, and Mean of Y = 10, the (b) x=0.125Y + 10		of x is 4, standard deviation of y is(d) x=0.3Y-8
627.	In question No. 626 the (a) y=0.2x+7	e regression line of y on x (b) y=1.5x-10	is (c) y=01.878x-15	(d) y=2.6x-14
628.	below: Mean marks in Accou Mean marks in Maths Co-efficient of correlo Standard deviation of Standard deviation of		() and Maths(Y) paper = 2	

629.	In question No. 628, th (a) y=1.2x+12	e regression line of Mat (b) y=x+15	hs on Accounts is (c) y=1.33x - 10	(d) 0.25x + 45
630.	In question No. 628 es (a) 90	timate of Marks in Math (b) 88	s if marks in Accounts p (c) 79	aper is 75 is (d) 74
631.	In question NO. 628 th (a) 80	e estimate of marks in A (b) 72	Accounts paper if marks (c) 68.92	in Maths paper are 84 (d) 75
632.		ation of two variables a fon between X and Y are (b) (6,7,0.3)		2x + 4.6, the mean value of X, Y, (d) 6,8,0.45)
633.	Bombay on the eve of	f New Year, if mean pric		estimated price of ₹120 per kg. in nd Bombay is ₹ 98 per kg. and Rs. if correlation of 0.75 (d) 119
634.	-		umbai will be – corresp	onding to the price of Rs. 110 per
	Kg. prevailing in Delhi (a) 122	(b) 130	(c) 121.20	(d) 119.24
635.	_	the prevailing price in D	elhi is Rs. 125 per kg. th	e corresponding price in Mumbai
	will be (a) 169.82	(b) 134.65	(c) 139.25	(d) 151.61
636.	In question No. 633 if t (a) 122	he prevailing price in M (b) 103.25	umbai is Rs. 130 per kg. (c) 128.01	the price in Delhi will be (d) 148.20
	Standard deviation of second=0.6	score in first inning = 4 r of score in second in		on of score in inning first and uns in second inning (a) 76
638.		ne score 79 runs in seco	nd inning how many rur	ns he is likely o score in first inning
639.	Standard deviation of		3 qt. correlation = 0.6, th	(d) 66.4 Mean of Sugar crop = 508.4qt, te estimate of production of sugar
	$\sigma_{x} = 4$ $\dot{\overline{Y}} = 20$		ndard deviation of Y = 5	5
	(a) 520qt	(b) 533.84 qt	(c) 541.90qt	(d) 521qt
640.	In question No. 639, th (a) 33.57 cm	e estimate of rainfall co (b) 31.6cm	rresponding to estimate (c) 29.5cm	ed production of 600 Qt is (d) 35cm
641.	In question No. 639, th (a) 469.5	e estimate of productio (b) 498.90	n corresponding to estir (c) 509.26	mated rainfall of 20 cm is (d) 419.06
642.	In question No. 639, th (a) 33.57cm	e estimate of rainfall co (b)36.6cm	rresponding to estimate (c) 20.5cm	ed production of 480 Qt is(d) 24.57cm
643.	If r=0.8, N = 100, the pr (a) 0.021	robable error of coeffici (b) 0.024	ent of correlation is (c) 0.29	 (d) 0.031
644.	In question No. 643, th (a) 0.776 to 0.824	e limit of coefficient of (b) 0.74 to 0.810	correlation of population (c) 0.72 to 0.79	n is (d) 0.70 to 0.76

645.	If r=0.8, N=81, the prob (a) 0.0321	(b) 0.044	of correlation is	(d) 0.041
646.	In question No. 645, th (a) 0.776 to 0.824	ne limit of coefficient of co (b) 0.551 to 0.648	orrelation of population is (c) 0.70 to 0.77	(d) 0.74 to 0.79
647.				tween them from the following andard deviation of x=2.72 (d) 5/8,9/8,2.04)
648.	800qt, standard device		n = 10qt, correlation = 0.6	3.0cm, Mean of Paddy yield = 5, the estimate of production of (d) 978
649.	If 3X-5=4X-10 , then X (a) 5	is equal to (b) -5	(c) 6	(d) 4
650 .	If -3X+18=4X-3, then X (a) 2	(is equal to (b) -5	(c) 3	(d) 1
651.	Find the value of K if 5	(X +37=K-3X, when X is eq (b) 15	ual to (c) 21	(d) 10
652.	If X+Y=3, 3X+4Y=11, th (a) (1,2)	nen (x,y) are equal to (b) (-5,1)	 (c) (6,2)	(d) (4,1)
653.	If 3X+Y=7, 2X+3Y=7 the (a) (5,1)	en X, Y are equal to (b) (2,1)	(c) (6,1)	(d) (1,4)
654.	For which value of X,Y (a) (4,3)	7, 3X-2Y-6 = 2X+3Y-17 =0 (b) (2,3)	(c) (3,1)	(d) (1,2)
655.	(a) (5,2)	then X,Y are equal to (b) (2,5)	(c) (6,3)	(d) (1,1)
656.	For which value of X,Y (a) (1,2)	$\frac{x}{4} + \frac{y}{5} - 6 = \frac{x}{2} + \frac{y}{3} - 11 = 0$ (b) (2,3)	(c) (6,1)	 (d) (12,15)
657.	If X/3+Y/2=7, 2X+Y=26 (a) (1,5)	6 then X,Y are equal to (b) (1,3)	(c) (9,8)	(d) (6,3)
658.	The point,(a) (2,-1)	is on the line Y=X-3 (b) (4,3)	(c) (0,1)	(d) (3,-1)
659.	The point,(a) (2,-1)	is on the line Y=2X-3 (b) (4,3)	(c) (4,5)	(d) (3,-1)
660.	For the line 2X-Y=5 if X	(=4 then Y= (b) 3	 (c) -1	(d) 0
661.	For the line 3X-2y=5 if (a) 1/2	X=2 then Y= (b) 3/4	(c) 3/5	(d) 1
662.	The solution to 3X+2Y=(a) 5,-20	25, -2X-Y=10 is (b) 2,9	(c) 5,8	(d) 4,9
663.	The solution to 3X-2Y= (a) (5,-2)	11, -2X-Y=8 is (b) 2,1	 (c) 5,-2	(d) 4,9

664.	The solution to 5X (a) 5,-20	+2Y=-16, -2X-2Y=-10 is (b) 2,3	(c) 5,8	(d) 4,9
665.	2X+3Y-5=0 and K X (a) 4	X-6Y-8=0 have unique sol (b) 3	lutions if K = (c) -2	(d) -4
666.	the numerator is	increased by 8 and		is reduced by 3 we get 18/11. But it ed we get 2/5, then the fraction
	(a) 13/25	(b) 20/21	(c) 12/25	(d) 11/19
667.		the denominator to a co ecomes ½, then the fraction (b) 3/7		nes 1/3 and if 1 is subtracted from (a) 3/10
668.	A two digit No. is by 9. The original		igits. The number obtain	ned by interchanging the digit is less
	(a) 68	(b) 72	(c) 54	(d) 63
669.			ne digits obtained by ir	nterchanging the digits exceeds the
	given number by (a) 36	27, then the number is (b) 45	(c) 23	(d) 65
670.	In the equation 2x (a) 3	(c-y=5 if x=4 then y= (b) 4	(c) -2	(d) -5
671.	Point =(a) (1,1)	are on 3X+2Y=1 (b) (-1,-1)	(c) (1,-1)	(d) (0,1)
672.	If x+4=4, 2x-5y=1 (a) (1,0)	then x & y are(b) (0,-1/5)	(c) 1,1/5	(d) 1/5,0
673.	If 2x+3y=1, x+3y=- (a) (2,-1)	-1, then x and y are (b) (1,-2)	(c) (-1,2)	(d) (0,2) (e) 1/5,0
674.	If 2x+3y=7, x+3y=5 (a) (2,-1)	5, then x and y are (b) (1,-2)	(c) (-1,2)	(d) (2,1)
675.	If 2x-3y=1, x-3y=- (a) (2,1)	1, then x and y are (b) (1,-2)	(c) (-1,2)	(d) (0,2)
676.	If x+3y=1, x+2y=2, (a) (2,-1)	then x and y are(b) (4,-1)	 (c) (-1,2)	(d) (0,2)
677.	If 3x-y=0, x+3y=10 (a) (2,-1)), then x and y are (b) (1,3)	(c) (-1,2)	(d) (0,2)
678.	If x-y=0, x+3y=4, t (a) (2,-1)	hen x and y are(b) (1,1)	(c) (-1,2)	(d) (0,2)
679.	What is the slope (a) -3	of the line passing throug (b) 3	h (4,2) and (3,5) (c) 2	(d) -2
680.	What is the slope (a) -3/2	of the line passing throug (b) 3/2	h (5,3) and (3,6) (c) 2	(d) -2

What is the slope of the line passing through (5,2) and (3,7)

681.

	(a) -3	(b) -5/2	(c) 5/2	(d) -2
682.	What is the slope of the	ne line passing through (4, (b)8	3) and (3,-5) (c) 2	(d) -3
683.	What is the slope of th	ne line passing through (-4 (b) -3	1,2) and (3,-5) (c) 2	(d) -2
684.	What is the slope of the	ne line passing through (4, (b) -9	- 2) and (3,7) (c) 2	(d)-2
685.	What is the slope of th	ne line passing through (-4 (b) 5	1,-2) and (-5,-7) (c) 2	(d) -2
686.	What is the slope of the	ne line passing through (2, (b) 10/3	- 5) and (5,5) (c) 5	(d) 3
687.	What is the slope of the	ne line passing through (3, (b) 7	- 5) and (-4,7) (c) 5	(d) 4
688.	What is the slope and (a) (-3/5,9/5)	Y intersect of line 3X+5Y= (b) (9,-3/5)	(c) (3/5,-9)	(d) (-3/5,-9)
689.	What is the slope and (a) (-6/5,12)	Y intersect of line 6x+5y= (b) (12,-6/5)	12 (c) (12/5,-12)	(d) (-6/5,-12)
690.	What is the slope and (a) (-3/5,9)	Y intersect of line 3x-5y=9 (b) (9,-3/5)	(c) (3/5,-9/5)	(d) (-3/5,-9)
691.	What is the slope and (a) (-3/5,9)	Y intersect of line 7x+5y= (b) (9,-3/10)	(c) (7/5,-10)	(d) (-7/5,2)
692.	What is the slope and (a) (-3/7,11)	Y intersect of line 3x+7y= (b) (9,-3/5)	(c) (3/7,11/7)	(d) (-7/5, -11)
693.	What is the slope and (a) (-6/5,9)	Y intersect of line 4x+5y= (b) (7,-4/5)	(c) (4/5,7/5)	(d) (-3/5,-9)
694.	What is the slope and (a) (-3/4,-9/4)	Y intersect of line 3x+4y= (b) (9/4,-3/5)	9 (c) (3/5,-9/4)	(d) (-5/7,-9)
695.	What is the slope and (a) (1/2,-11/6)	Y intersect of line 3x+6y= (b) (9/4,-11/6)	(c) (1/5,-11/7)	(d) (-4/7,-9)
696.	What is the slope and (a) (-3/4,-9/4)	Y intersect of line 5x+7y= (b) (-5/7,-11/7)	(c) (3/5,-9/4)	(d) (-5/11,-11)
697.	What is the slope and (a) (-5/4,-11/4)	Y intersect of line 7x+4y= (b) (7/4,-11/5)	(c) (11/5,-9/4)	(d) (-7/4,-11/4)
698.	Find the value of X if I (a) 1 or 2	X+11 =3X-5 (b) 3 or 1	(c) 1 or 2	(d) 2 or 3
699.	A can't buy more the following inequalities. (a) (x+y=100)		al X and Y. X and Y (c) (x+y≥100)	can be related by which of the

700.	A requires at least 200 pieces of shirt and trouser for his newly opened showroom. If X stands for shirts
	and Y stands for trousers, this can be expressed as

(a) $(x+y\geq 200)$

(b) $(x+y \le 200)$

(c) (x+y=200)

(d) $(x+y\neq 100)$

701. A manufacturer produces two items X and Y. X requires 20kg of raw material and Y requires 25 kg. If raw material availability with him is 2 tons. This can be expressed in the form of which of the following linear equation.

(a) $(20x+25y\leq2000)$

(b) (20x+25y=2000)

(c) (25x+20y>2000)

(d) (20x+25y≥2000)

702. A,B & C produces two items X and Y. He has only ₹25,000 to invest and storage capacity of 300 items only. X cost him ₹400 per piece and Y cost him ₹250 per piece. This can be expressed in the form of which of the following set equation

(a) x+y≤300 400x+250y≥25000 (b) $x+y \le 300$

(c) x+y = 300

(d) $x+y \le 300$

400x+250y≤25000

400x+250y≥25000

400x+250y≤10000

x≥0,y≤0

x≥0, y≥0

x=0,y≤0

x,y ≥0

703. A wholesale dealer deals in only two items X & Y. Due to sluggish demand he cannot sell more than 50 and 100 pieces of X & Y respectively per day. If he has only ₹10,000 to invest and if the cost of each item is ₹50 and 40 respectively, this can be expressed in the following equation

(a) x≤50

(b) x≤50 v≥100

(c) x+y≤50

50x+40v≤10000

(d) $x \le 50, y \le 100$

150x+40v≤10000

v≤100 50x+40y≥10000

50x+40y≤10000

A company produces two items X and Y. Both the items are produced in two machines I and II. The 704. total time available in each machine and the time required for each product in each machine are given below:

MACHINE	X	Y	TIME
Available (Hours)			
1	3	1	20
II	3	4	40

This situation can be expressed in the following set of linear equation:

(a) 2x+y≤20	(b) x+y≤20	(c) 2x+4≤20	(d) 2x+3y≥20
3x+4y≤40	x+4y≤240	3x+4y≥40	x+y≤40
x≥0, y≥0	x≥0,y≥0	x≥0,y≥0	x≥0,y≥0

705. A company produces two items X and Y. Bothe the items are produced in two names I and II. The total time available in each machine and the time required for each product in each machine are given below:

MACHINE	Χ	Υ	TIME AVAILABLE
I	1	2	24
II	2	3	36

This situation can be expressed in the following set of linear equation:

(a) x+2y≤24	(b) x+2y≤24	(c) x+24=24	(d) x+2yy≤24
3x+4y≤36	x+3y≤36	2x+3y=36	2x+3y≥36
x≥0,y≥0	x≥0,y≥0	x,y≥0	x≥0,y≥0

706. ABC Ltd. deals in the products X and Y. Both the products are in great demand. The firm can sell at least 100 units of X and 150 units of Y per day. If X & Y give a profit of ₹20 and ₹25 per unit and the objective of the firm is to maximize the total profit. This situation can be expressed in the form of which of the following set equation:

of the following set equation.									
(a) x≥0	(b) maximize	(c) minimize	(d) minimize						
y≥0	20x+25y	20x+25y	20x+25y						
maximize	x≥100	x≤100	x≥100						
20X+25y	y≥150	y≤150	y≥150						

ABC Ltd. combines two products X and Y to form a gift during the Dewali season in order to increase its 707. sale. Each pack must weigh at least 10kg and should contain at least 2 kg of X and not more than 6 kg of Y. This can be expressed

	(m) v1v=10	(b) v1v210	/al v/v//10	(a) v. v. < 10
	(a) x+y=10 x≥2	(b) x+y≥10	(c) x+y≤10	(d) x+y ≤10
		x≥2	x≥0	x=2
	y≤6	y≤6	y≥6	y=6
	x,y ≥0	x,y≥0	x,y≥0	x,y≥0
708.	at least 2 kg of X and	not more than 3 kg of Y.	This situation can be exp	
	(a) x+y=5	(b) x+y≤5	(c) x+y≥5	(d) $x+y=0$
	x≥2	x≥2	x≥2	x≥2
	y≤3	y≤3	y≤3	y≥6
	x,y≥0	x,y≥0	x,y≥0	x,y≥0
709.	₹175 per piece. If Z is	retail dealer in tie has o		ole for ₹120 per piece and Y for purchase of tie and his storage in the following equation (d) x+y≥500 120x+175y≤30000 x,y≥0
710.	250 packets of shavir per box. This situation	ng creams at most at a til can be expressed in the	me. Shaving cream X cost following equation	o spent and has space to store st ₹240 per box and Y cost ₹420
	(a) x+y≤200	(b) x+y ≤200	(c) x+y≥200	(d) x+y=200
	240x+420y≤20000	240x+420y ≤20000	240x+420y≤20000	240x+420y=20000
	x≥0,y≥0	x,y≥0	x,y≥0	x,y≥0
711.	At what point the give	en function is discontinuo	us $f(x) = (x^2 + 6x + 9) / (x^2)$	-9)
	(a) (3)	(b) (2)	(c) (+ 1)	(d) (-1)
			. 5	2 _
712.	At what point the give	en function is discontinuo	us If $f(x) = \frac{x-4}{x^2-16} \cdot \frac{x^5-2}{x^3-x}$	$\frac{2^2 + 5x}{2^2 + x - 1}$
	(a) (3)	(b) (2)	(c) (1)	(d) (-1)
			2	
713.	At what point the give	en function is discontinuo	us if $f(x) = \frac{x^2 - 25 + 10x}{2}$	
	(a) (3)	(b) (5)	(c) (1)	(d) (- 1)
714.	At what point the give	en function is discontinuo	us If $f(x) = \frac{x^2}{x^2}$	
				(d) (1)
	(a) (3)	(b) (5)	(c) (1)	(d) (-1)
715.	At what point the give	en function is discontinuo	us if $f(x) = \frac{x^2 + 1}{x + 3}$	
	(a) (3)	(b) (5)	(c) (1)	(d) (-3)
			2	
716.	At what point the aive	en function is discontinuo	us If $f(x) = \frac{3x^2 + 5x + 1}{}$	=
	,		us If $f(x) = \frac{3x^2 + 5x + 1}{x^3 + x^2 + x + 1}$	
	(a) (3)	(b) (5)	(c) (1)	(d) (-1)

(c) (1, 4)

At what point the given functions discontinuous If f(x) $\frac{x^2 + 3x - 5}{x^2 + 3x + 2}$

(b) (1, 2)

717.

(a) (1, 3)

(d) (-1,1)

```
The function f(x) = \frac{\alpha x + 4 \text{ if } n \le 3}{x - 1 \text{ if } n \ge 3} is continuous at x = 3, if a is
718.
           (a) (2/3)
                                            (b) (1 /3)
                                                                            (c) (-1/3)
                                                                                                            (d) (-2/3)
          The function f (x) = \frac{9x + 6 \text{ if } x \leq 3}{x + 2 \text{ if } x \geq 3} is continuous at x = 3, if a is .........
          The value of constant K is.....so that the function f (x) = \frac{x^2 - x + 12}{x - 3} is continuous at x = 3
720.
                                           (b) (3)
           (a) (7)
                                                                            (c)(5)
          The value of constant K is............ So that the function f(x) = x^2 - x + 12 if x \ne 4 is continuous at x = 4
721.
           (a)(3)
                                           (b) (4)
                                                                            (c)(1)
           For what value of K is the function f(x) = \frac{x-4}{x^2-16}x \neq 5 is continuous at x = 5
722.
           (a) (13)
                                            (b) (10)
                                                                            (c) (11)
                                                                                                             (d) (-10)
723.
           If f(x) = [1/(1-x)], the function is discontinuous at x =
                                                                                                             (d) (-2)
          If f(x) = \frac{x^2 \text{ if } x \neq 1}{2 \text{ if } x = 1} the function is discontinuous at x = 1
724
                                                                            (c)(2)
           (a) (-1)
                                           (b) (1)
                                                                                                             (d) (-2)
          If f(x) = \frac{x^2 - 7}{x^3 - x^2 + x - 1} the function is discontinuous if x = x^2 - 1
725.
                                           (b) (4)
                                                                                                             (d) (-1)
           If f(x) = (x+2)/(x-3), the function is discontinuous if x =
726.
                                                                            (c)(1)
                                           (b) (4)
                                                                                                             (d) (-1)
           The fair charges of Metro Rail is a function of distance, travelled which is given below:
727.
                                7 if ≤ 7
                                9 if 7 < x \le 12 the function is discontinuous for value of x = 12 if x > 12
           (a) (7)
                                                                            (c) (7, 12)
                                                                                                             (d) (-1)
          If f(x) = \frac{2x + 3 \text{ if } x > 3}{3x + 4 \text{ if } x \le 2} is discontinuous at x
728.
           (a) (-1)
                                           (b) (-2)
                                                                            (c)(1)
                                                                                                             (d) (2)
                     x_3 if x < 1
          If f(x) = \begin{cases} x & \text{if } x \ge 1, \text{ bat } < 2 \text{ is discontinuous at } x = \\ 2x^2 & \text{if } x \ge 2 < 3 \end{cases}
729.
                                                                            (c) (1, 12)
                                                                                                             (d) (1)
730.
           At what value of X the function is continuous in question No. 729
           (a) (1)
                                           (b) (5)
                                                                                                             (d) (-1)
                                                                            (c)(2)
           A wholesale readymade garment dealer has the following price pattern ₹15 per piece for 20 or less
731.
```

than 20, ₹20 per piece for quantity above 20 but up to 30 pieces, ₹10 per piece for quantity more than

(a) (RHL x- $20 \neq LHL \times \rightarrow 20$) (b) (Is not defined at x = 20) (c) (RHL x- $10 \neq LHL \rightarrow \times 10$) (d) (none)

30. The price and quantity function is not continuous at quantity x = 20 because......

In question 731, the function f(x) is not a continuous function at x = 30 because.....

732.

			LHL x → ≠ LHL x −			(b) (Is n (d) (Nor	ot defined (ne)	at x = 20)
733.	From th	ne follow	ing data	the karl	pearson	coefficie	ent of correle	ation is
	x	6	8	10	7	10	7	
	у	12	10	8	12	8	10	
	(a) 0.97	•		(b) 0.85			(c) -0.93	(d) 0.65
734.	From th	e followi	ng data	the karlp	earson	coefficie	nt of correla	ition is
	x	9	11	13	10	13	10	
	у	16	14	12	16	12	14	
	(a) -0.93	3		(b) 0.85			(c) 0.70	(d)0.65
735.	From th	e followi	ng data	the karlp	earson	coefficie	nt of correla	ation is
	X	7	9	11	8	11	8	
	у	14	12	10	14	10	12	
	(a) 0.97	,		(b) 0.85			(c) 0.78	(d) -0.93
736.	From th	e followi	ng data	the karlp	earson	coefficie	nt of correla	ition is
	X	11	15	15	12	15	10	
	у	18	13	11	15	11	16	
	(a) -0.9°	9		(b) -0.89)		(c) 0.80	(d) -0.50
737.	Number of observations N=10; Mean X=22, Mean Y=15, Sum of squared deviations of X from mean value =148, Sum of squared deviation of Y from mean value=168. Sum of multiplication of deviation of X and Y= 124.							
			details t		icient of	correlati	on will be	
	(a) 0.79)		(b) 0.87			(c) 0.65	(d) 0.43
738.	of multi	plication	of device	ation of X	and Y =	=32, Sum		deviation of Y from mean value =54. Sum deviations of X from mean value =60
	(a) 0.58	3		(b) 0.56			(c) 0.61	(d) 0.47
739.	Mean) deviation	X= 22, M on of Y fr	om mea	5, Sum o n value=	144. Sur	n of multi		from mean value = 120, Sum of squared deviation of X and Y =124
	(a) 0.78	}		(b) 0.87			(c) 0.65	(d) 0.43
740.	Mean 2	X=22, M		5, Sum (-			from mean value=148, Sum of squared f deviation of X and Y=36

From the above details the coefficient of correlation will be.....

	(a) 0.27		(b) 0.61		(c) 0.45		(d) -0	.10		
74 1.	If the coefficie						covariano	e is 25 ar	nd the vo	ıriance o	of X is
	(a) 4.9		(b) 12			c) 11.87		(d) 2.	99		
742.	If the coefficie 25, the standar					s 0.88 and	covariand	e is 54 aı	nd the vo	ıriance d	of X is
	(a) 3.9		(b) 2.45		(c) 0.65		(d) 1.0	09		
743.	If the coefficie 16, the standar						covariand	e is 30 aı	nd the vo	ıriance d	of Y is
	(a) 4.46		(b) 1.52		(c) 2.80		(d) 1.8	36		
744.	Find the coefficare 9 and 12.6			n betwee	n X and \	f if the cov	variance is	25 and th	ne varian	ce of X	and Y
	(a) 1.89		(b) 0.58		(c) 2.32		(d) 1.	54		
745.	If the coefficie					s 0.48 and	l covarian	ce is 39, t	he variar	nce of Y	is 25,
	(a) 14.46		(b) 16.2	5	(c) 12.80		(d) 9.8	36		
746.	What is the co and y are 25 a			efficient (of correlo	ation betw	reen x and	y is 0.65	and the	variance	e of x
	(a) 10.25	·	(b) 8.65		(c) 9.75		(d) 11	.06		
747.	What is the co				of correlo	ation betw	een x and	y is 0.87	and the	variance	e of x
	(a) 18.25		(b) 26.1		(c) 19.25		(d) 21	.06		
748.	What is the co							and y is ().92 and	the star	ndard
	(a) 40.25		(b) 38.6	5	(c) 39.75		(d) 42	92		
749.	If the coefficie						number of	observat	ions bein	g 25. Fin	d the
	(a) 0.631 to 0.7	7679	(b) 0.68	9 to 0.823	3 (c) 0.765 to	0.843	(d) 0.	65 to 0.75	56	
750.	If the coefficie of X series on \								e is 24. If	the vari	ance
	(a) 6.24		(b) 5.94		(c) 6.00		(d) 5.	54		
751.	If the coefficient	ch the co	orrelation	lies with o	another s	ample					d the
	(a) 0.614 to 0.7	786	(b) 0.62	9 to 0.793	3 (c) 0.665 to	0./64	(d) 0.	65 to 0.76)	
752. Sr. No	The following o	ire the ra 1	inks of 10 2	students i 3	in Econo 4	mics and <i>i</i> 5	Accountar 6	7	8	9	10
Rank	Accountancy	10	4	1	8	3	9	6	5	2	7
Rank	Economics	8	3	2	6	1	7	10	9	4	5
	The coefficient	of rank	correlatio (b) 0.87			rks in Acc	ountancy	and Econ (d) 0.1			
753.	The following o	ire the ra 1	inks of 10 2	students i	in English 4	and Math 5	ns 6	7	8	9	10

	Rank Ma	th	9	6	4	5	10		3	1	7	2	8
	Rank Eng	glish	8	9	3	6	7		1	2	5	4	10
	The coeff (a) 0.61	ficient of		orrelation (b) 0.769			arks in <i>I</i> (c) 0.59		ınd Englis	s h is (d) 0.79			
754.	The follow	wing are	the ma	rks of 10) studen	ts in Phys	sics and	d Maths	obtaine	d in CBSI	Exami	nation	during
	Sr. No	1	2	3	4	5		6	7	8	9		10
	Physics	80	87	59	89	97		95	79	90	94	1	76
	Maths	74	78	76	70	89		90	65	81	83	3	75
	The coef (a) 0.63	ficient of		orrelation (b) 0.769			arks in <i>I</i> (c) 0.73		ınd Physi	cs is (d) 0.71			
755.	The follo				10 stude	ents in Po	aper 1	and Po		CA CPT	exami	nation	taking
	Sr. No	1	2	3	4	5		6	7	8	9		10
	Paper 1	80	59	88	89	97		95	79	90	76	3	94
	Paper 2	74	78	70	76	89		65	90	81	83	3	75
	The coeff (a) 0.33	ficient of		orrelation (b) 0.79	n betwee	_	1 and F (c) 0.43		is	(d) -0.22	2		
756.	Interview	,	44	46	34	41	36	39	45	43	3	1	32
	Written examin	ation	49	44	39	40	42	46	41	38	4	3	47
	The above examina (a) -0.127	ve table tion for <i>I</i>	MBA Exa			nk correl		etween	_		d by th		
757.	Given the (a) 0.98	e coeffic		orrelation (b) 0.64	n being	•	coeffici (c) 0.66		determin	ation will (d) 0.54		••••	
758.	Given the	e coeffic		orrelation (b) 0.64	n being		coeffici (c) 0.81		determin	ation will (d) 0.54			
759.	If the coe (a) 0.7	efficient		mination (b) 0.80	being (t is the ((c) 0.90		ent of co	rrelation (d) 0.60			
760.	Given the (a) 0.30	e coeffic		etermin (b) 0.40	ation be	_	the cod (c) 0.60		t of corre	lation wil (d) 0.50		••••••	•
761.	If the co standard (a) 3		on of y is			ce betwe					iation (of x is	3 and
762.	If the coe deviation (a) 9		, the co			en x and				eviation a	f x is 4	and sto	andard

- - (a) $\left(\frac{-12}{(2+3x)^2}\right)$ (b) $\left(\frac{12}{(2+3x)^2}\right)$ (c) $\left(\frac{-12}{(2+3x)}\right)$

- 764. If y = (3+2x)/(3-2x), then $\frac{dy}{dx}$ is equal to......

 - (a) $\left(\frac{-12}{(2+3x)^2}\right)$ (b) $\left(\frac{12}{(3+2x)^2}\right)$ (c) $\left(\frac{-12}{(2+3x)}\right)$ (d) $\left(\frac{1}{(3+2x)}\right)$

- 765. $\frac{dy}{dx}$ of $e^{1/x}$ is equal to......
 - (a) $(-e^{1/x}/x^2)$
- (c)(1)
- (d) $(1/x^2)$

- 766. $\frac{dy}{dx}$ of e^{e^x} is equal to......
 - (a) $(-e^{1/x}/x^2)$
- (b) (e-x)
- (c)(1)
- (d) (e^x . e^{e^x})

- - (a) $(-6/x^6)$
- (c) $(6x^5)$
- (d) $(x^6/5)$

- 768. If $y = \frac{x^2 1}{2}$, then $\frac{dy}{dx}$ is equal to.....
 - (a) $\left| \frac{4x}{\left(1+x^2\right)^2} \right|$ (b) $\left(\frac{2x}{(2+3x)2} \right)$ (c) $\left(\frac{3x}{(2+3x)} \right)$ (d) $\left(\frac{-x}{(2+x)} \right)$

- 769. $\frac{x^2 + 1}{(x^2 + 1)} \frac{dy}{dx}$ is equal to......
- (a) $\left| \frac{-4x}{\left(1-x^2 \right)^2} \right|$ (b) $\left| \frac{4x}{\left(1-x^2 \right)^2} \right|$ (c) $\left| \frac{-4}{\left(1+x^2 \right)^2} \right|$ (d) $\left| \frac{4}{\left(x^2+1 \right)} \right|$

- (a) $\frac{\sqrt{x}}{(\sqrt{x}-1)}$ (b) $\frac{1}{\sqrt{x}(\sqrt{x}-1)^2}$ (c) $\frac{-1}{\sqrt{x}(\sqrt{x}-1)^2}$ (d) $\frac{1}{(x\sqrt{x}-1)}$

- If $Y = \frac{1 + \sqrt{x}}{(1 \sqrt{x})}$, then $\frac{dy}{dx}$ is equal to.....
- (a) $\frac{x}{\sqrt{x}(\sqrt{x}-1)}$ (b) $\frac{1}{\sqrt{x}(\sqrt{x}-1)^2}$ (c) $\frac{-1}{\sqrt{x}(\sqrt{x}-1)^2}$ (d) $\frac{1}{(\sqrt{x}-1)^2}$

- If y = $(1+2x^2)/(1-2x^2)$, then $\frac{dy}{dx}$ is equal to......
 - (a) $\left(\frac{8x}{\left(1-2x^2\right)^2}\right)$ (b) $\left(\frac{12}{\left(2+3x\right)}\right)$ (c) $\left(\frac{-12}{\left(2+3x\right)}\right)$
- (d) $\left| \frac{-1x}{\left(1-2x^2\right)^2} \right|$

- If Y = $(1-x^2)/(1+x^3)$, then $\frac{dy}{dx}$ =

 - (a) $\left(\frac{x^3 + x 2}{\left(1 x^3\right)^2}\right)$ (b) $\left(\frac{x\left[3x^3 3x + 2\right]}{\left(1 + x^3\right)^2}\right)$ (c) $\left(\frac{x\left[3x^3 x + 2\right]}{\left(1 + x^3\right)^2}\right)$ (d) $\left(\frac{\left[x^3 x + 2\right]}{\left(1 + x^3\right)^2}\right)$

- - (a) (2)/(x+5)
- (b) $(2^{x})/(2x+5)$
- (c) (2)/(2x+5)
- (d) (1)/(2x+5)

- - (a) $(4x)/2x^2+5$)
- (b) $(-4x)/(2x^2+5)$ (c) (2)/(2x+5)
- (d) $(-4)/(2x^2+5)$

- If y = log (3x²-1), then $\frac{dy}{dx}$ is equal to.....
- (c) $(2)/(3x^2+5-1)$
- (d) $(-2x)/(3x^2-1)$

- (d) $(6)/(3x^2+5x+1)$

- If $xy = c^2$, then $\frac{dy}{dx}$ is equal to..... 778.
- (c) (y/x)
- (d)(x)

- If $x^2y = 5$, then $\frac{dy}{dx}$ is equal to..... 779.
- (c) (-2y/x)
- (d) (x/y)

- If $x^2y = 5$, then $\frac{dy}{dx}$ is equal to.....
 - (a) (-y/2x)
- (c) (-2y/x)
- (d) (-x/y)

- If $x^3y^2 = 6$, then $\frac{dy}{dx}$ is equal to.....
 - (a) (-y/2x)
- (c) (-2y/x)
- (d) (2x/y)

- If x = 2t+3 and y = 2t²-5, then $\frac{dy}{dx}$ is equal to...... 782.
 - (a) (2t)

- (d) (t)
- 783.
 - (a) (t^2)

- (d) (t/3)

- 784.

- (d) (1/5)
- 785.

- (d) (-4/3z)
- 786.

- (d) (x^2)
- If x = x³+2n and y = 1/n³+2, then $\frac{dy}{dx}$ is equal to...... 787.
 - (a) $(-3)/n^4(3n^2+2)$
- (b) (-3)/n⁴(n²+2)
- (d) $(1/x^3+2x)$

- If y= $3x^3+x^2+5x-1$, then $\frac{dy}{dx}$ is equal to..............
 - (a) $(9x^2+2x)$
- (b) $(2x^3+9)$
- (c) (18x+2x²)
- (d) (18x+2)

- If y= x⁴+3x²+5, then $\frac{d^2y}{dx^2}$ is equal to......
- (c) (12x+2x²)
- (d) (12x+2)

- (a) $(4x^2+6x)$ (b) $(12x^2+6)$ (c) If $y = 3x^3+x^2+5x-1$, then $\frac{dy}{dx}$ is equal to......

- (d) $(2x^4+2x^2)$

- If $y=x^3+4$, then $\frac{dy}{dx}$ is equal to......
- (c) $(6x+2x^2)$
- (d) (2x+2)

- - (a) $(60x^2+4)$
- (b) $(20x^3+4)$
- (c) $(6x+2x^2)$
- (d) $(6x^2)$

- If y= $6x^3+2x+1$, then $\frac{d^2y}{dx^2}$ is equal to......

- (d) (36x)

- If y= $3x^6+4x^3$, then $\frac{d^2y}{dx^2}$ is equal to..............
 - (a) $(18x^3+1)$
- (b) $(6x^3+4)$
- (c) $(90x^4+24x)$
- (d) $(36x^3)$

- 795. If $Y = 2/3x^3-2x$, then f'(x) = 0, if x is
 - (a)(1)
- (b)(2)
- (c)(2/1)
- (d) (1/2)

796.	If f(x)= 3x ² /2-6x, then (a) (1)	f'(x) = 0, if x is(b) (2)	(c) (2/1)	(d) (1/2)
797.	If f(x)= x ²⁺ 6x, then f (x (a) (3)	(b) (2)	(c) (-3)	(d) (1)
798.	If $f(x) = f(x) = \frac{2x^2}{3} - 9$	9x + 6 then f(x) = 0, if x is.		
	(a) (-3)	(b) (3)	(c) (-1)	(d) (1)
799.	If f(x)= x³-27x+8, ther (a) (3)	n f(x) = 0, if x is	(c) (-2)	(d) (1)
800.	If f(x)= 2x ² -16x+7, the	en f (x) = 0, if x is(b) (-4)	 (c) (-3)	(d) (3)
801.	If y= (log x) ⁴ , then $\frac{d^4}{dt}$	y =		
	(a) (4(log x) ³ /x)	(b) (4(log x) ³ /2x)	(c) $(2(\log x)^3/x)$	(d) $(x \log x^3)$
802.	If y=1 /(log x), then	dy =		
		(b) (-1/x(log x) ²	(c) $(1/x(\log x)^2)$	(d) (1/log x)
803.	If $y = 3^x$, then $\frac{dy}{dx} =$			
	(a) (3logx)	(b) (log 3)	(c) (3×10g3)	(d) (log3)
804.	If y= e^{x^7} , then $\frac{dy}{dx}$ =	0		
	(a) (7x ⁶ e ^{x⁷})		(c) $(7xe^{x^7})$	(d) $(6x - e^{x^7})$
805.	If $y = e^{x^n}$, then $\frac{dy}{dx} =$	0		
	(a) (ne^{x^n-1})	(b) $(nx^{x-1}e^{x^n})$	(c) $(nx^{-1}x)$	(d) $(e^{x^n} + x)$
806.	total demand curve	14x = 40-2p=0 can be ex	pressed as	px, then the price elasticity of
007	(a) (p/7x)	(b) (-7x/p)	(c)(7p/x)	(d) (x/p)
807.	is equal to			f the demand curve, 10x=30-6p
000	(a) (3p/3x)	(b) (-3p/x)	(c) (-3p/5x)	(d) (5x/3)
808.		(b) (-6p/x)	(c) (-3p/5x)	elasticity of the demand curve, (d) (4p/5x)
809.	Find elasticity of den	nand with respect to price	e at point p=6 for demar	nd curve =x= $\left(\frac{5}{p-4}\right)$
	(a) (1)	(b) (2)	(c) (3)	(d) (-1)
810.	Find elasticity of den (a) (3/2)	nand with respect to price (b) (3/5)	e at point p=6, for dema (c)(1/3)	nd curve =x=6/(p+4)=0) (d) (0)
811.	Find elasticity of den (a) (0.6)	nand with respect to price (b) (0.2)	e at point p=6, for dema (c) (1)	nd curve =x=9/(p+4)=0) (d) (0.4)
812.	A firm's variable cost	t c=x³-x² -5x. The level of (b) (5/3 ton)	output at which averag	e variable cost is minimum is (a) (3/2 ton)

 $\lim_{\text{Evaluate } x \to 2} 3x+6)$ 813.

(b) 10

(c) 12

(d) 14

 $\lim_{x \to 5} (1/x-5) \text{ is equal to}$

(c) 1

(d) -1

 $\lim_{x\to 0}$ ($e^x - 1/x$) is equal to

(c) 2

(d) -1

 $\lim f(x)$ when f(x) = -5816.

(b) 4

(c) 5

(d) -1

 $\lim_{x \to 2} f(x^2) \text{ when } f(x) = 2$

(c) 2

(d) 4

 $\lim_{x \to 2} (x^2 - 3) / (x + 1) =$

(c) -1/3

(d) $\frac{1}{4}$

819. $\lim_{x \to 3} (x^3 - 4) / (x + 1)$ is equal to

(a) 4/23

(c) 1/8

(d) 23/4

 $(x^3 + 2) / (x^2 - 1)$ is equal to

(c) 23

(d) 10/3

 $\frac{\lim_{x \to 1} (x^3 + 2)}{(2x^2 - 1)}$ is equal to

(c) -3

(d) none

 $\lim_{x \to \infty} (1+4/x)^x =$

(b) 2

(c) e⁵

(d) 4

 $\lim_{x \to \infty} \frac{(2x^3 - 5x^2 + 2x)}{(3x^3 - 2x^2 + 5x)} =$

(b) 2/3

(c) 1/3

(d) 0

 $\lim_{x \to 0} (2x^2 - 1)/x =$ 824.

(b) 1

825.
$$\lim_{x \to 2} (e^{x^2} + 3x + 2) =$$

(b) e¹²

(c) e^{5}

(d) e1

826.
$$\lim_{x\to 0} (e^{3x-1})/x) =$$

(b) 6

(c) 3

(d) 7

827.
$$\lim_{x \to 0} (8^x - 2^x)/6^x - 2^x) =$$

(a) (log3/log4)

(b) (log4/log3)

(c) (log2/log2) (d) (log2/log3)

828.
$$\lim_{x \to 5} \sqrt{x^2 - 4} =$$

(c) $\sqrt{19}$ (d) $\sqrt{18}$

829.
$$\lim_{x \to 6} (x^2 - 7x + 12)/(x - 5) =$$

(c) 6

(d) -24

830.
$$\lim_{x \to -9} (x-9)/(x^2-81) =$$

(b) 0

(c) 1

(d) not exist

831.
$$\lim_{X \to 7} (\frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \dots + \frac{1}{7^n}) =$$

(c) 2/11

(d) 2/7

832.
$$\lim_{x\to 2} (x^2 + 5x + 6)/(x^2 + 4x + 4) = (x + 3)/(x + 2) =$$

(a) 5/4

(c) 4/5

(d) 1/5

833.
$$\lim_{x \to 0} (\sqrt{1-x} - \sqrt{1+x})/x =$$

(b) -1

(c) 1/5

(d) 1/3

834.
$$\lim_{x \to 0} x \log x =$$

(b) -1

(c) 0

(d) 2

835.
$$\lim_{X\to\infty} x^{e^{-x}} =$$

(a)0

(b) 2

(c) 1

(d) -1

836. $\lim_{X \to 12} \frac{x+12}{x^2-144} =$

(a) 1/124

(b) 1/4

(c) -1/24

(d) 12

837. $\lim_{x \to \infty} (x+5)/(x+1)^{x+3} =$

(a) e^4

(b) e-4

(c) 1

(d) 0

838. Statistics is derived from

(a) Latin word status

(b) Italian statista

(c) Both

(d) None

839. Statista or status means

(a) Physical state

(b) Political state

(c) Secular state

(d) Federal state

840. Class mark is

(a) A midpoint of class interval

(b) Upper point of class interval

(c) Lower class

(d) None

841. Width of class interval is

(a) Difference bet-

ween lower and upper limit

(b) Midpoint of upper and lower limit and lower limit (c) Three fourth of difference between upper and lower limit (d) None

842. Under exclusive class interval method

(a) Lower limit of one is lower limit of other

(b) Lower limit of one is upper limit of other

(c) Lower limit of one is midpoint of other

(d) None

843. Open end class interval is one

(a) Which does not have upper limit

(b) Which does not have lower limit

(c) Which does not have upper and lower

(d) None

844. In discrete series-frequency

(a) Can take any

(b) Frequency can take only some

(c) Both

limit

(d) None

845. Median is

Value

(a) Average point

(b) Midpoint

Likely

defined value

(c) Most likely point

(d) Most remote point

846. Mode is the value which

(a) Is a mid point

(b) Occur the most

(c) Average of all

(d) Most remote

847. A variable which can assume any value between two given value is called

(a) Continuous

(b) Discrete Value

(c) Random

(d) None

848. A variable which can have only defined value is called

(a) Discrete variable

(b) Continuous variable (c) Random variable

(d) None

849. Histogram consists of a set of rectangle having

(a) Bases on X axis and with centre at

(b) Area proportionate to class frequency

(c) Either of these two

(d) Both

the class mark and

length equal to the class interval 850. Standard deviation is used to measure the (a) Degree of variation (b) Mode value (c) Extent of extremes (d) All the three or uniformity in data values 851. A frequency curve having two maximum is called (a) A bimodal (b) Multimodal (c) Symmetrical curve (d) Skewed frequency curve Frequency curve frequency curve 852. A U shaped frequency curve can have (a) Maxima at both (b) No maxima (c) One maxima (d) More than one maxima the ends only 853. A J shaped curve has maxima at (a) One end only (b) Both end (c) Both (d) None 854. A ratio compound of itself is called (a) Duplicate ratio (b) Sub-duplicate ratio (c) Sub-triplicate ratio (d) Triplicate ratio 855. If a, b and c are in continuous proportion, then the middle term b is called (a) Mean proportion (b) Mode (c) Median (d) None The logarithm of any number to the same base is 856. (a) Unity (b) Zero (c) Infinite (d) Non existence 857. Logarithms of number to the base are known as common logarithm (a) (0)(b) (10) (c) 100 858. The whole or the integral part of a logarithm is called (a) Characteristic (b) Mantissa (c) Both (d) None 859. The decimal part of a logarithm is called (a) Characteristic (b) Mantissa (c) Both (d) None 860. If the number of elements in a sequence is finite, the sequence is called (a) Infinite sequence (b) Finite sequence (c) Limited sequence (d) None 861. If the number of element of a series is unending the sequence is called (a) Infinite series (b) Undefined series (c) Unending series (d) Expanding series 862. The empty set is one which contains..... element (b) 2 (c)3(d) 0863. A Binomial distribution is symmetrical when P= (a) 0.10(b) 0.80 (d)1 (c) 0.50864. Sleeping habit of a person is (a) An attribute (b) A variable (c) Continuous variable (d) Discrete variable 865. Weight of a person is

(b) Continuous variable (c) Variable

(a) Continuous variable (c) Variable

(a) An attribute

(a) An attribute

Death toll due to earth quack is a

866.

(d) Discrete variable

(d) Discrete variable

867.	The term Statistics can (a) Singular only	be used ins (b) Plural only	ense (c) Both	(d) None
868.	in a quantitative	e information about some (b) Data	e particular characteristics (c) Variable	under consideration (d) Attribute
869.	Which of the following (a) Interview method	is not a method for collect (b) Questionnaire	ction of primary data (c) Observations	(d) None
870.	Data arranged region v (a) Regional data	wise is known as (b) Local data	(c) Geographical data	(d) All the three
871.	Which of the following (a) Salary	is a qualitative data (b) Profits	(c) Weight	(d) Drinking habits
872.	Which of the following (a) Age	is a quantitative data (b) Weight	(c) Height	(d) All the three
873.	Presentation of data wi (a) Textual Presentation	th the help of paragraphs (b) Diagrammatical presentation	s is known as (c) Pictorial presentation	n(d) None
874.	Presentation of data wi (a) Textual Presentation	th the help of pictures is I (b) Diagrammatical presentation	known as (c) Pictorial presentation	n (d) None
875.	Horizontal bar diagram (a) Qualitative data	nmed is used for (b) Quantitative data	(c) Both	(d) None
876.	For time series data (a) Bar diagram	is used (b) Vertical diagram	(c) Pie chart	(d) Line diagram
877.	Bell shaped frequency (a) Height	curve is used for distribut (b) Marks	tion of (c) Profit	(d) All the three
878.	Frequency distribution (a) Tabular Representation of Statistical data	may be defined as (b) Graphical representation of statistical data	(c) Pictorial representation of statistical data	(d) Line diagram
879.	Quartiles are values div	viding a given set of data (b) 6	into equal parts (c) 3	(d) 2
880.	Deciles are the values (a) 10	dividing a given set of ob (b) 5	oservations into (c) 6	(d) 4
881.	Percentiles divides a se (a) 100	et of observations into (b) 80	(c) 60	(d) 10
882.	The middle most value (a) Mean	of a frequency distribution (b) Median	on table is known as (c) Mode	(d) Range
883.	Which of the following (a) Mean	measures of averages di (b) Median	vide the observation into to (c) Mode	wo parts (d) Range

884.	Which of the following (a) Mean	g measures of averages of (b) Median	divide the observation int (c) Mode	o four equal parts (d) Quartile
885.	The first quarter is kno (a) Lower quarter	own as (b) Middle quarter	(c) Upper quarter	(d) None
886.	The third quarter is kn (a) Lower quarter	own as (b) Middle quarter	(c) Upper quarter	(d) None
887.	One number is to be (a) 33/100	chosen from numbers 1 to (b) 7/100	o 100, the probability tha (c) 4/100	t it is divisible by 4 and 6 (d) 8/100
888.	The roots of the equa (a) (-2,2,2,4)	tion (x-4)²(x-2)(x+4) are - (b) (1,-2,4,-4)		(d) (2,-3,1,-4)
889.	The roots of the equation (-2,2,4)	tion (x-3)(x-2)(x-4) are (b) (3,2,4)	(c) (-1,-0,-4)	(d) (2,-1,-3)
890.	Find the value of M if	one root of the equation (b) -1/4	$F(x) = mx^2 + 2x - 3 = 0$, is 2	(d) 1/4
891.	Find the value of M, if	one root is 2, F(x) = 2x ² +1 (b) -1	mx- 6=0 (c) 2	(d) -2
892.	The roots of the equa (a) (3,2,2,4)	tion (x-3)(x-2)²(x-4) are - (b) (1,-2,2,-4)	(c) (-1,-2,2,-4)	(d) (2,-3,2,-4)
893.	Arithmetic mean of th (a) 5	ne series 1, 3, 5, 7, 9 is (b) 6	(c) 5.5	(d) 6.5
894.	GM of the series 1,3,5 (a) 945	,7,9 is (b) (315) ^{1/5}	(c) (945) ^{1/5}	(d) 90/300
895.	Harmonic means of the (a) 1575/563	ne series 1, 3, 5, 7, 9 is (b) 325/75	 (c) 88/320	(d) 90/300
896.	Arithmetic mean of th (a) 5	ne series 3, 4, 5, 6, 7 is (b) 7	(c) 5.5	(d) 6.5
897.	Geomatric mean of t (a) 2520 ^{1/5}	he series 3, 4, 5, 6, 7 is (b) 7	(C) 2120 ^{1/6}	(d) 6
898.	Harmonic mean of th (a) 2100/ 459	e series 3, 4, 5, 6, 7 is (b) 1800/654,	(c) 2000/ 558	(d) 6.5
899.	The Arithmetic mean (a) 5. 1	for the series 3, 5, 5, 2, 6, (b) 5	2, 9, 5, 8, 6, is (C) 4. 9	(d) 4.6
900.	The median value for (a) 5.1	the series 3, 5, 5, 2, 6, 2, 6 (b) 5	9, 5, 8, 6 is (C) 4.9	(d) 4.6
901.	The mode for the serie (a) 5.1	es 3, 5, 6, 2, 6, 2, 9, 5, 8, 6 (b) 5	(c) 6	(d) 8
902.	The Arithmetic mean (a) 49.8	for the series 51.6, 50.3, 4 (b) 50	8.9, 48.7, 48.5 is (c) 48.9	(d) 49.6
903.	The Median for the se	ries 51.6, 50.3, 48.9, 48.7, (b) 50	49.5 , is (c) 48.9	(d) 49.6

904.	The Arithmetic mean (a) 48.8	for the series (b) 50	s 51.6, 50.3, 48	3.9, 48.7, 49.5 (c) 49.9	is	(d) 49.8		
905.	The Mode for the seri (a) 48.8	es 51.6, 50.3 , (b) 50	48.9, 48.7, 49	. 5 is (c) None		(d) 49.5		
906.	The Harmonic mean (a) 5.87	for the series (b) 6.21	6, 5, 3, 6, 7, 1	0 and 12 is (c) 5.12		(d) 5.98		
907.	In question No. 906 th	ne mode is (b) 5	••••	(c) 5.9		(d) 5.98		
908.	The harmonic mean (a) 4.48	of the data 3 (b) 4.59	.2, 5.2, 4.2, 6.	1, 4.8 is (c) 4.64		(d) 5.1		
909.	The value of M for wh	ich the differ (b)±5	rence betwee	en the roots o (c)±6	f the equatio	n x²+mx+8 (d)±3	3=0, is 2 a	re
910.	Find Arithmetic mear							
	Wages (₹)	30			6000	4000		7000
	No. of workers		5	5	4	6		5
	(a) ₹4400	(b) ₹4320)	(c) ₹4500		(d) ₹438	30	
911.	Find the Arithmetic m	ean weight	of the student	s from the fol	lowing detail	s:		
	Weight	65kg.	66kg.	69kg.	72kg.		73kg.	
	No. of students	5	6	4	5		5	
912.	(a) 66 kg. A card is drawn from (a) 1/4	(b) 1/13	2 cards. The p	(c) 3/13		(d) 68.8 een is (d) 2/13		
913.	Calculate Median va					7	7.5	- 00
		4.5	5 3	5.5 6 14 28		35	7.5 8	
	Y (Frequency) (a) 6.5	(b) 6	3	(c) 5.5	3 23	(d) 7	0	10
914.	Calculate Median va	lue from the	following free	quency distrib	oution			
	X	3	5		7	9	11	13
	Y (Frequency)	4	3		5	2	3	3
	(a) 6.5	(b) 6		(c) 5.5		(d) 7		
915.	Calculate Median va							
	X	10-15	15-20	20-25			30-35	
	Y (Frequency)	5	3] 3	3	2	2	
	(a) 18.5	(b) 19.16	66	(c) 19.5		(d) 19.2	8	
916.	Calculate arithmetic	mean value				on		
	X	10-15	15-20	20-25	25-3	30	30-35	
	Y (Frequency)	5	3] 3	3	2	2	
	(a) 20.16	(b) 19.16		(c) 21.23		(d) 19.2	8	
917.	Calculate arithmetic						1	
	X(₹ in 000)	10-20	20-30	30-40	40-50)-60	60-70
	Y (Frequency)	2	3	6	5		2	2
	(a) 36.5	(b) 36.00		(c) 35.5		(d) 39.0	0	
918.	Find the mean deviat		ries 15,20,18,1					
	(a) 3.4	(b) 4.4		(c) 4.2		(d) 3.2		

919.	Find the value of X med (a) 15	un of the series 7,20,18,10, (b) 11	x is 14 (c) 14	(d) 16
920.	What is the standard de (a) 3.09	eviation of the data 10,12, (b) 3.41	5,8,15 (c) 2.67	(d) 3.10
921.	If X and Y are so related (a) 36	d that Y = 2x + 6 and mod (b) 30	e x=15, mode y is (c) 38	(d) 32
922.	If AM and HM are 10 ar (a) 4.1	nd 4.9 respectively, GM wi (b) 13	ill be (c) 7	(d) 14.75
923.	$\int 3x^2 dx$ is equal to	(b) (2X ² +c)	(c) (3x ² +x ³ +c)	(d) $(4x^3+4)$
924.	\int 4-2x+3x² is equal to (a) $(5x^3+x^2)$	(b) (4x-x ² +x ³)	(c) (x^3+x^2+4x)	(d) (x ³ +4x)
925.	∫(3+4x²)dx is equal to			
	(a) (x ⁴ +c)	(b) $3x + \frac{4x^3}{3}$	(c) (x^3+x^2+4x)	(d) (x ³ +x)
926.	$\int x^{1/2}+3/x$ is equal to (a) $(3\log x+2/3 x^{3/2})+c$		(c) (logx+2/3x²)	(d) (x ³ +2)
927.	$\int 1/(3x+2) dx$ is equal to (a) (log (3x+2))	(b) (1/3 log(3x+2)+c)	(c) (3x ² +x ³ +c)	(d) (log(3x+4x)
928.	$\int 1/(3x-2) dx$ is equal to . (a) $(1/3 \log(3x-2)+c)$		(c) (1/3 log (3x-2))	(d) (log(3x+1))
929.	∫(2x-3)²dx is equal to			
	(a) (1/6 (2x-3) ³ +c)	(b) ((2x-3)+x)	(c) $((2x-c)^3/3)$	(d) (None)
930.	(a) (1/12 (3x-5) ⁴ +c)		(c) ((3x+5) ³ /3)+c	(d) ((3x+5) ³ +c
931.	$\int (e^{3x+2}) dx$ is equal to	//o \ // 2 o 3 y + C o \	(a) (a) 2×+c (a)	(a) (a 3v+2) (2) (a
	(a) (e ^{3x+2})+c	(b) (3e ^{3x+c} +c)	(c) $(e3^{x+c}+c)$	(d) $(e^{3x+2})/3)+c$
932.				nowever if 2 is deducted from nes equal to 1. The number
	(a) 6/9	(b) 3/10	(c) 5/8	(d) 11/15
933.	xexdx is equal to		(-) (->(-)	(a) (av. a)
	(a) (e ^x (x-1)+c)	(b) $(e^{x}(x)+c)$	(c) $(e^{x}(x-2)+c)$	(d) (e ^x +c)
934.	Log xdx is equal to (a) (logx-x+c)	(b) (xlogx+x+c)	(c) (xlogx-x+c)	(d) (None)
005	(4,40,2,05)			
935.	(1/ (9x²-25)dx is equal f (a) (1/30 log (3x-5)/(3x+5)+c	(b) (1/30 log (3x-5)/	(c) (1/30 log (3x-5)/ (x-5)	(d) (1/3 log (3x-5)/(3x+5)+c
936.	$\int (e^{x}/e^{2x}-1)$ is equal to	(b) (1/2 log (e ^{x+1})/(e ^{x-1}))	(c) (log (ex-1)/(ex-1))	(d) (log (ex+1)/(ex+1))
			10,100,00 11 10 11	

937.	$\int (x+3)^6 dx$ is equal to (a) $(2x^2+3/5x+c)$	(b) ((3+x) ⁷ /7)+c	(c) (x^3+e^{x+4})	(d) 1/6(3+x) ⁷
938.	(1/(25x²-16)dx is eq (a) Log(5x+ (25x²-16) ^{1/2} +c		^{/2} +c (c) (1/5 log[5x+25x ²	-16] +c (d) Log(5x+(25x²-16)+c
939.	(x+3) 6 (a) (3+3/5x)+c	(b) ((3+x) ⁷ /7)+c	(c) (x+3)4)	(d) (None)
940.		equal to (b) (e ^x 2 ^{ex} /(x+1)+c	(c) (2e ^x -(e ^x /(x)+c	(d) (3e ^x -(e ^x /(x+1)+c
941.		equal to (b) (e ^x -3 ^{ex} (2x+1)+c	(c) (e ^{2x} /4(1+2x)	(d) None
942.	$^2_{\mathrm{T}} x e^x dx$ is equal to			
	(a) (2e ²)	(b) (2e ^x)	(c) (2)	(d) (e^3)
943.	$\int_{0}^{3} xe^{x} dx$ is equal to (a) $3e^{3}$	(b) 3xe ³	(c) (e ³)	(d) (0)
944.	$\int_{0}^{K} X e^{X} dx$ is equal to			
	(a) ½ (e-1)	(b) (e ²)	(c) (e^3)	(d) 2(e-1)
945.	$\int_{1}^{4} 6dx$ is equal to (a) (18)	(b) (24)	(c) (11)	(d) (44)
946.	${3\over 2}$ 3dx is equal to			
	(a) (11)	(b) (21)	(c) (3)	(d) (4)
947.	$\int_0^1 1/(3x+2) dx$ is equal			
	(a) (1/3 log 5/2)	(b) (1/3 log 3)	(c) (1/4 log e ³)	(d) (1/2 log x ³)
948.	[‡] 1/(5x+2) dx is equ (a) (1/3 log 5/2)		(c) (1/5 log 5)	(d) (1/5 log 4)
949.	\hat{f} 1/x ² dx is equal to)		
	(a) (1/3)	(b) (-1/2)	(c) (1/4)	(d) (1/2)
950.	$ \oint_0^1 xe^x dx $ is equal to . (a) (-1)	(b) (1)	(c) (2)	(d) (1/2)
951.	Å 3dx is equal to (a) (3)	(b) (11)	(c) (2)	(d) (1/2)
952.		nction is given by mc= 3x		5. The total cost function can be

(c) $3x^2+5x$

(b) x^3+5x^2+5

(d) $3x^2+5$

953.	In question No.952 the (a) (₹30,750)	total cost of 30 units will (b) (₹31,550)	be (c)(₹32,550)	(d) (₹30,900)
954.	In question No.952 the (a) (₹1025)	average cost is(b) (₹1150)	 (c) (₹1090)	(d) (₹1250)
955.	The marginal cost func	_	given as mc= x²/3-2x+500. 1	he total cost of production of
	(a) (₹125000000)	(b) (₹425000000)	(c) (₹13880000 approx)	(d) (₹12500000)
956.	In question No.955 the (a) (₹27777)	average cost of produc (b) (₹28500)	tion is (c) (₹29600)	(d) (₹25500)
957.	In question No.955 the (a) ₹1,71,111	cost of increasing produ (b) ₹2,10,000	uction from 300 units to 500 (c) ₹1,80,000	units is (d) ₹1,90,000
958.	Determine the total co (a) 5000	st of production of 200 u (b) 4600	units if Marginal cost is given (c) 6500	as mc=2x+5 (d) 5500
959.	What is the cost of prod (a) 20	duction of one toy in que (b) 25	estion No.958 (c) 45	(d) 50
960.	Determine the margino (a) (2005)	al cost of production of 1 (b) (2105)	1 000 toys in Q.No.958 (c) (2410)	(d) (2900)
961.	Determine the margina (a) (₹139.0)	al cost of production of 1 (b) (₹160.0)	120 pen, if mc=1+x/2000+e- (c) (₹133.84)	0.03x (d) (₹169)
962.	What is the cost of 1 pe (a) ₹2.00)	en in Q.No.961? (b) (₹1.33)	(c) (₹1.84)	(d) (₹1.95)
963.		roduction is mc=0.3x+4	determine the cost involved	d to increase production from
	70 to 100 units (a) (₹900)	(b) (₹885)	(c) (₹1015)	(d) (₹1000)
964.	Which of the following (a) Mean>Variance	is true for a poison distril (b) Mean <variance< td=""><td>bution (c) Mean=Variance</td><td>(d) None</td></variance<>	bution (c) Mean=Variance	(d) None
965.	Which of the following	is true for a binomial dis	tribution	
	(a) Mean>Variance	(b) Mean <variance< td=""><td>(c) Mean=Variance</td><td>(d) None</td></variance<>	(c) Mean=Variance	(d) None
966.	In a binomial distribution (a) P=0.5	on mean and mode are (b) p=0.9	equal only when (c) q=0.1	(d) all the situations
967.	The variance of a bino (a) np	mial distribution is meas (b) np(1 – p)	cured by (c) pq	(d) nq
968.	The mean of binomial (a) np	distribution is measured (b) npq	by (c) pq	(d) nq
969.	If each item of the sam (a) Remain same	nple data or observation (b) increase by 25	is decreased by 25, the Ar (c) decrease by 25	ithmetic mean will (d) decrease by 25%
970.	If each item of the sam (b) Remain same	nple data or observation (b) increase by 5	is increased by 5, the Arith (c) decrease by 5	metic mean will (d) increase by 5%
971.	Circular test is satisfied (a) Laspeyres index mean	(b) Fishers Ideal index		(d) Simple Geometric

				of price relatives
972.	Which index satisfies fac			
	(a) Laspeyres index	(b) Fishers Ideal index	(c) Paasches index	(d) Simple Aggregate average index
973.	To check the accuracy	of index by shifting the b	oase year, which test is us	ed?
	(a) Circular test	(b) Time reversal test	(c) Unit test	(d) None
974.	Which of the following n	nethod of constructing in	ndex number satisfies time	reversal test ?
	(a) Laspeyres index	(b) Fishers Ideal index	(c) Paasches index	(d) All the three
975.	Which of these is an ext	ension of time reversal te	est of index numbers	
	(a) Factor reversal test	(b) Circular test	(c) None	(d) Both
976.	Is known as	positional average		
	(a) Median	(B) Mean	(c) Mode	(d) Range
977.	The best measure of dis			
	(a) Subjective	(b) Objective	(c) Positive	(d) (a and b)
978.		x=3, regression equation	n 8x – 10y + 40 =0, 40x – 30	Dy – 200=0, find the deviation
	of y (a) 1.29	(b) 0.8	(c) 0.7	(d) 0.9
979.	If the product of two suc	ccessive number is 5256,	find the greatest number	
	(a) 73	(b) 83	(c) 84	(d) 71
980.		om of a +ve number and	-	/ IV 4
	(a) 1	(b) 3	(c) 3	(d) 4
981.	If the sum of two number	ers is K, find the maximun (b) 2K	n of their product (c) K/2	(d) K ² /4
				(5) , .
982.	The sum of a number ar	nd its reciprocal is 1 7/4. 1 (b) 4	The number is (C) 6	(d) 3
	(3)	(0)		(3)
983.		s equal to $7/3$, when x is		
	(a) -2	(b) 2	(c) 3	(d) -3
984.	If $x + y = 30$, such that $x = 30$	and y are positive intege	ers, then the minimum valu	ue of $x^2 + y^2$ is equal to
	(a) K, K-1	(b) K/2, K/2	(c) 1, K-1	(d) none
985.		nd set B has 5 elements. I	Find the total no. of injection	on that can defined from set
	A to set B (a) 60	(b) 32	(c) 50	(d) 100
	. ,			(4) 100
986.	The maxima value of th (a) 113/2	e function 4x³ + x² - 4x + (b) 376/27	12 is (c) -2/3	(d) 43/4
987.	The minima value of the	e function 4x ³ + x ² - 4x + 1	12 is	
707.	(b) 31/2	(b) 55/2	(c) 43/4	(d) 1/2
000		function Au3 Luc? Au L	10 ia	
988.	(c) 3/2	e function $4x^3 + x^2 - 4x +$ (b) 5/2	(c) -2/3	(d) 1/2
	· /	\ 1 - '	. , , -	· , ,
989.	The minima point of the	function $4x^3 + x^2 - 4x + 1$	2 is	
	(d) 3/2	(b) 5/2	(c) -2/3	(d) 1/2

990.	The marginal cost fundamental (₹16000)	ction of a TV Remote = 0.5 (b) (₹14300)	x+30= mc. Find the cost o (c) (₹12500)	f production of first 200 units. (d) (₹13990)						
991.		of 1 TV remote is		()) (700)						
	(a) (₹80)	(b) (₹145)	(c) (₹100)	(d) (₹99)						
992.		scholarship is 0.6 and B's ill get the scholarship is		me is 0.3. The probability tha						
	(a) 0.72	(b) 0.98	(c) 0.18	(d) 0.9						
993.	The Marginal Revenu	e function of a product is I								
	(a) (6x-2x ² /3)	(b) $6x - \frac{2x^3}{3}$	(c) (6x-2x ²)	(d) (8/3-2x ²)						
994.	The demand function	of product is D=12-x ² , the	MR function will be							
,,,,	(a) (12-x ²)	(b) (1-3x ²)	(c) (-2x)	(d) (-3x²)						
995.	The demand function is = 18- $\frac{4x^2}{3}$. The MR function will be									
	(a) $18 - \frac{8x}{3}$	(b) (18-2x ²)	(c) (6x-2x²)	(d) (8/3-2x ²)						
996.		n. The probability of gettin								
	(a) 2/26	(b) 1/4	(c) 1/3	(d) 5/36						
997.	When the selling price written as	e of a product is ₹3 and co	ost function y= 2550+[(x²)/	50], the profit function can be						
	(a) 3x-2550-2x ² /50	(b) 3x-2550-x ² /50	(c) 3x-2550-x ²	(d) 3x-2550-x/50						
998.	∫(log x)² is equal to									
770.		(b) (2x+x(logx)²-2logx+c)	(c) (2x(logx) ² -2logx+c)	(d) $((\log x)^2 - 2\log x^3)$						
999.	∫(logx/x²)dx is equal t	o								
	(a) (-1/x(logx+1)+c	(b) $(2x+x(\log x)^2-2\log x+c$	c) (c) (2x(logx) ² -2logx+c	(d) $((\log x)^2 - 2\log x^3)$						
1000.		m the deck of 52cards. The	e probability of all the 4 c	ards drawn being Heart is						
	 (a) 11/4165	(b) 22/4165	(c) 25/4165	(d) 0.60						

ANSWER

1	С	2	b	3	a	4	d	5	a	6	С	7	b
8	a	9	<u>в</u>	10	C	11	a	12	C	13	C	14	d
15	u	16	C	17	С	18	 b	19	С	20	а	21	b
22	C	23	<u>a</u>	24	b	25	C	26	d	27	a	28	С
29	С	30	b	31	<u>a</u>	32		33	a	34	С	35	a
36	_	37	C	38	u	39	<u>a</u>	40	C	41	b	42	С
43	b	44	a	45	b	46	a	47	С	48	b	49	b
50	C	51	С	52	<u>a</u>	53	С	54	С	55	a	56	C
57	С	58	a	59	b	60	b	61	b	62	b	63	С
64	a	65	a	66	b	67	С	68	b	69	b	70	d
71	С	72	b	73	С	74	b	75	a	76	С	77	a
78	С	79	b	80	b	81	а	82	С	83	b	84	b
85	С	86	a	87	b	88	b	89	a	90	а	91	а
92	а	93	С	94	d	95	b	96	b	97	а	98	d
99	а	100	С	101	b	102	b	103	а	104	С	105	d
106	b	107	С	108	b	109	а	110	а	111	С	112	b
113	а	114	С	115	d	116	а	117	d	118	b	119	С
120	а	121	b	122	а	123	d	124	b	125	b	126	С
127	d	128	b	129	b	130	а	131	С	132	b	133	С
134	а	135	b	136	С	137	b	138	а	139	C	140	а
141	b	142	а	143	С	144	b	145	С	146	C	147	а
148	b	149	С	150	b	151	а	152	а	153	а	154	С
155	С	156	b	157	С	158	d	159	а	160	b	161	С
162	b	163	а	164	d	165	С	166	С	167	С	168	b
169	а	170	а	171	С	172	С	173	b	174	а	175	С
176	b	177	d	178	а	179	b	180	С	181	а	182	b
183	d	184	b	185	а	186	d	187	С	188	С	189	а
190	b	191	b	192	С	193	а	194	d	195	а	196	С
197	b	198	d	199	С	200	а	201	С	202	b	203	а
204	а	205	b	206	d	207	а	208	b	209	b	210	b
211	а	212	С	213	d	214	а	215	С	216	С	217	а
218	b	219	а	220	b	221	d	222	С	223	а	224	С
225	b	226	а	227	а	228	а	229	b	230	а	231	С
232	а	233	С	234	а	235	а	236	<u>d</u>	237	b	238	а
239	<u>d</u>	240	a	241	b	242	<u>b</u>	243	b	244	а	245	а
246	b	247	b	248	a	249	b	250	С	251	С	252	С
253	а	254	a	255	<u>b</u>	256	a	257	а	258	b	259	a
260	C	261	d	262	b	263	d	264	С	265	d	266	b
267	b	268	а	269	<u>C</u>	270	а	271	С	272	b	273	d
274	<u>C</u>	275	<u>a</u>	276	d	277	С	278		279	а	280	С
281	<u>b</u>	282	d	283	С	284	<u>d</u>	285	b	286	С	287	С
288	a	289	C	290	C	291	<u>b</u>	292	C	293	С	294	<u>d</u>
295	<u>a</u>	296	C	297	C	298	<u>b</u>	299	C	300	C	301	d
302	<u>b</u>	303	b	304	<u>b</u>	305	b	306	<u>d</u>	307	d	308	С
309	а	310	а	311	b	312	С	313	С	314	d	315	d

316	С	317	d	318	а	319	d	320	С	321	b	322	d
323	a	324	<u>u</u>	325	a	326	b	327	С	328	a	329	<u>d</u>
330	<u>a</u>	331	b	332	b	333	a	334	a	335	d	336	<u>в</u>
337	b	338	С	339	b	340	a	341	d	342	C	343	С
344	b	345	a	346	b	347	d	348	С	349	b	350	b
351	b	352	a	353	а	354	a	355	С	356	d	357	С
358	С	359	a	360	а	361	a	362	d	363	С	364	b
365	b	366	d	367	a	368	С	369	d	370	a	371	a
372	b	373	a	374	С	375	С	376	а	377	b	378	b
379	С	380	b	381	b	382	b	383	С	384	b	385	b
386	а	387	а	388	d	389	b	390	а	391	b	392	b
393	С	394	а	395	а	396	С	397	b	398	С	399	b
400	b	401	С	402	b	403	d	404	а	405	d	406	а
407	b	408	d	409	b	410	С	411	а	412	b	413	b
414	С	415	b	416	b	417	d	418	b	419	b	420	b
421	С	422	d	423	а	424	a	425	b	426	а	427	b
428	С	429	b	430	а	431	d	432	а	433	С	434	b
435	а	436	b	437	С	438	а	439	b	440	С	441	b
442	С	443	b	444	b	445	b	446	а	447	b	448	d
449	d	450	а	451	С	452	а	453	b	454	d	455	d
456	С	457	а	458	d	459	а	460	С	461	а	462	а
463	С	464	b	465	b	466	С	467	а	468	а	469	b
470	b	471	а	472	а	473	b	474	С	475	b	476	а
477	b	478	b	479	C	480	а	481	а	482	С	483	b
484	b	485	С	486	d	487	С	488	а	489	b	490	а
491	b	492	С	493	р	494	а	495	b	496	d	497	d
498	С	499	b	500	d	501	а	502	а	503	d	504	а
505	d	506	а	507	а	508	а	509	d	510	b	511	С
512	b	513	b	514	b	515	а	516	C	517	b	518	d
519	С	520	С	521	d	522	d	523	С	524	d	525	b
526	а	527	b	528	С	529	d	530	а	531	С	532	С
533	а	534	d	535	а	536	С	537	а	538	С	539	а
540	d	541	а	542	U	543	С	544	U	545	b	546	а
547	а	548	С	549	d	550	b	551	d	552	С	553	а
554	d	555	а	556	а	557	а	558	С	559	b	560	а
561	b	562	С	563	а	564	а	565	d	566	а	567	а
568	b	569	а	570	С	571	d	572	b	573	а	574	d
575	b	576	d	577	а	578	d	579	U	580	а	581	а
582	d	583	С	584	U	585	d	586	Ω	587	Ь	588	а
589	а	590	b	591	U	592	b	593	b	594	C	595	d
596	С	597	b	598	а	599	а	600	U	601	đ	602	а
603	b	604	а	605	а	606	b	607	а	808	U	609	С
610	а	611	С	612	đ	613	d	614	b	615	Ь	616	а
617	b	618	а	619	b	620	С	621	d	622	b	623	d
624	а	625	b	626	С	627	а	628	а	629	b	630	а
631	С	632	а	633	D	634	С	635	а	636	đ	637	b
638	d	639	b	640	а	641	d	642	d	643	b	644	а
645	С	646	b	647	d	648	d	649	а	650	С	651	С
652	а	653	b	654	а	655	b	656	d	657	С	658	а
659	С	660	b	661	а	662	а	663	а	664	b	665	а

												1	1
666	С	667	а	668	С	669	а	670	а	671	d	672	b
673	а	674	d	675	а	676	b	677	b	678	b	679	а
680	а	681	b	682	b	683	а	684	b	685	b	686	b
687	а	688	а	689	а	690	С	691	d	692	С	693	С
694	а	695	а	696	b	697	d	698	b	699	b	700	а
701	а	702	b	703	đ	704	а	705	b	706	b	707	b
708	а	709	С	710	a	711	а	712	С	713	b	714	а
715	d	716	а	717	a	718	d	719	а	720	b	721	D
722	d	723	а	724	O	725	b	726	d	727	C	728	O
729	b	730	С	731	a	732	С	733	С	734	а	735	a
736	b	737	а	738	۵	739	а	740	а	741	b	742	۵
743	а	744	С	745	b	746	С	747	b	748	d	749	а
750	С	751	а	752	а	753	b	754	С	755	d	756	а
757	b	758	С	759	а	760	С	761	d	762	а	763	а
764	b	765	а	766	d	767	а	768	а	769	а	770	С
771	b	772	а	773	b	774	С	775	а	776	р	777	а
778	b	779	С	780	а	781	b	782	а	783	С	784	b
785	С	786	а	787	а	788	d	789	b	790	а	791	b
792	а	793	d	794	C	795	а	796	b	797	С	798	р
799	а	800	а	801	а	802	b	803	С	804	а	805	b
806	а	807	С	808	а	809	С	810	b	811	а	812	b
813	С	814	а	815	b	816	а	817	d	818	а	819	d
820	d	821	а	822	а	823	b	824	С	825	b	826	С
827	b	828	а	829	C	830	а	831	b	832	а	833	р
834	С	835	а	836	C	837	а	838	а	839	b	840	а
841	а	842	b	843	C	844	b	845	b	846	b	847	а
848	а	849	d	850	а	851	а	852	а	853	а	854	а
855	а	856	а	857	b	858	а	859	b	860	b	861	а
862	d	863	С	864	а	865	b	866	d	867	С	868	b
869	d	870	С	871	d	872	d	873	а	874	С	875	а
876	а	877	d	878	а	879	а	880	а	881	а	882	b
883	b	884	d	885	а	886	С	887	d	888	С	889	b
890	b	891	b	892	а	893	а	894	С	895	а	896	а
897	а	898	а	899	а	900	b	901	С	902	а	903	d
904	С	905	а	906	а	907	а	908	а	909	C	910	d
911	d	912	b	913	а	914	d	915	b	916	а	917	d
918	b	919	а	920	р	921	а	922	С	923	а	924	р
925	b	926	а	927	b	928	а	929	а	930	а	931	d
932	а	933	С	934	а	935	а	936	b	937	b	938	С
939	b	940	b	941	а	942	а	943	С	944	а	945	а
946	С	947	а	948	р	949	b	950	b	951	С	952	а
953	а	954	а	955	С	956	а	957	а	958	а	959	b
960	а	961	С	962	b	963	b	964	С	965	а	966	а
967	b	968	а	969	С	970	b	971	d	972	d	973	а
974	b	975	b	976	а	977	d	978	а	979	а	980	b
981	d	982	b	983	b	984	b	985	а	986	b	987	С
988	С	989	d	990	а	991	а	992	а	993	b	994	С
995	а	996	d	997	b	998	b	999	а	1000	а		
	-								-				