A COMMANDA OF THE OF TH

POSTAL TEST PAPER FOUNDATION PAPER - 3

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Time Allowed: 1 Hour Full Marks: 100

Answer all questions. Each question carries 2 marks.

1.	Two r	numbers are in the ratio 7: 9, if the sum of the numbers is 288, then the	
		er number is	
	(a)	126	O
	(b)	288	О
	(c)	162	O
	(d)	144	О
2.	If 4, 6	, p, 27, q are in continued proportion, find the values of p and q.	
	(a)	p = 9, q = 9	О
	(b)	p = 9, q = 81	O
	(c)	p = 81, q = 9	O
	(d)	p = 81, q = 81	О
3.	A cert	ain sum of money invested at a certain rate of compound interest doubles	
	in 8 ye	ears. In how many years will it become 16 times?	
	(a)	31 years	O
	(b)	28 years	O
	(c)	30 years	O
	(d)	32 years	О
4.	What	sum will amount to ₹5480 in 6 years at 10% p.a. compound interest payable	
	half-y	early?	
	(a)	₹ 3,051	O
	(b)	₹ 2,051	O
	(c)	₹ 3,501	O
	(d)	₹ 2,501	О
5.		he amount and the compound interest of ₹ 9,350 at the rate of 8% p.a.	
	•	ounded half-yearly for four years.	
	(a)	₹ 12,795 and ₹ 3,445	O
	(b)	₹ 12,720 and ₹ 3,370	0
	(c)	₹ 12,758 and ₹ 3,408	0
	(d)	₹ 12,835 and ₹ 3,485	О
6.	Accur	nulated series of deposits as future sum money is classified as –	

	(a)	Annuity Fund	О
	(b)	Sinking Fund	О
	(c)	Marginal Fund	О
	(d)	Nominal Fund	О
7.	Find t	he next 5 terms for the series: 2, -4, 8, -16, 32	
	(a)	-64, 128, -256, 512, -1024	Ο
	(b)	64, -128, 256, -512, 1024	О
	(c)	64, 128, 256, 512, 1024	О
	(d)	-64, -128, -256, -512, -1024	О
8.	For th	e given series: 66, 71, 76, 81, 86, 91, 96666, 671, 676.	
	With '	n' terms in the series, what will be the value of 'd'?	
	(a)	-5	Ο
	(b)	15	Ο
	(c)	-3	Ο
	(d)	5	О
9.	If the	Last term is 187, First Term is 371, value between two consecutive terms is	
	8 dedi	acted, find the number of terms in the series.	
	(a)	25	Ο
	(b)	22	Ο
	(c)	23	Ο
	(d)	24	О
10.	When	a Bike had travelled for 78 km in 3 hours 45 minutes in the evening, how	
	much	distance would the Bike travelled in 2 hours?	
	(a)	41.60 km	Ο
	(b)	48.88 km	Ο
	(c)	52 km	Ο
	(d)	55 km	О
11.	A Tra	in takes 35 hours to reach Punjab from Kolkata (1940 km) and takes 42	
	hours	to reach Kolkata from Gujarat (2160 km). But it took 25 hours from Punjab	
	to Gu	jarat (1420 km). How many days it take for a trip from Kolkata-Punjab-	
	Gujara	at-Kolkata and what is the distance covered?	
	(a)	4 days 6 hours and 5520 km	Ο
	(b)	3 days 18 hours and 5520 km	О
	(c)	4 days and 2680 km	Ο

	(d)	5 days and 2680 km	О
12.	If Bik	e covers 165 km in 3 hours and scooty covers 100 km in 2 hours, in order	
	to cov	er 1025 km, how much time would be required by bike and scooty?	
	(a)	12.42 hours and 12.42 hours	О
	(b)	21.50 hours and 19.63 hours	О
	(c)	19.52 hours and 19.52 hours	О
	(d)	18.63 hours and 20.50 hours	О
13.	With	5% increase in Distance and 2.50% increase in Time, what would be the	
	impac	t on Speed?	
	(a)	Decrease by 2.44%	Ο
	(b)	Increase by 2.44%	Ο
	(c)	Increase by 2.38%	Ο
	(d)	Decrease by 2.38%	О
14.	The d	istance between two terminal stations of Metro is 240 km. A metro rail takes	
	2 hour	rs to cover the distance. Calculate the total distance covered in 5 days, if 10	
	trips t	o and fro takes place between the two stations in a day?	
	(a)	6,000 km	Ο
	(b)	12,000 km	Ο
	(c)	24,000 km	Ο
	(d)	18,000 km	О
15.	y is th	he yardstick to measure the performance of two vehicles, where $y = Speed$	
	× Tim	be × Distance. If Distance travelled by one of the vehicle (2nd Vehicle) is	
	increa	sed by 2%, what would be the impact on the yardstick?	
	(a)	1st Vehicle would travel 4% more distance	О
	(b)	2nd Vehicle would travel 4% more distance	О
	(c)	No change in the distance travelled by any of the vehicle	О
	(d)	None of the above	О
16.	If Set	$A = \{Q, W, E, R, T, Y\}$ and Set $B = \{B, G, R, E, O, K\}$, find (A-B).	
	(a)	$Set (A-B) = \{Q, W, T, Y\}$	О
	(b)	Set $(A-B) = \{ B, G, O, K \}$	О
	(c)	$Set (A-B) = \{ E, R \}$	О
	(d)	None of the Above	Ο

PAPER - 3

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

If Set $A = \{8, 9, 7, 5, 6, 2\}$ and Set $B = \{1, 4, 9, 3, 8, 2\}$, find the union of B and 17. A. (a) Set (B U A) = $\{8, 9, 7, 5, 6, 2, 1, 4, 9, 3, 8, 2\}$ O Set $(B U A) = \{ 8, 9, 2 \}$ O (b) Set (B U A) = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ (c) O None of the Above (d) O In Venn diagram, Universal Set is represented by O (a) Stars (b) Squares O (c) Rectangle O Circles (d) O 19. Find the value of: 39×33 312 (a) O (b) 531441 O (c) 19683×27 O (d) All of the above O 20. Find the value of $11^{78}/11^{81}$? 11^3 (a) O $1/11^3$ (b) O (c) 1331 O (d) -1331O Find the value of $6^3 \times 6^{-2} \times 6^{-5} \times 6^4$ (a) 0 O 1 O (b) (c) 6 O 216 O (d) When $a^x = b^y = c^z$ and $b^2 = ac$ then 1/x, 1/y, 1/z should be in — 22. 36. G.P (a) O (b) A.P O H.P (c) O (d) None of the above O

PAPER - 3

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Express $\log^9 1 = 0$ in exponential form 23.

(a)
$$9^1 = 0$$

O

(b)
$$9^0 = 1$$

O

(c)
$$1^9 = 1$$

O

(d)
$$0^9 = 0$$

O

If $\log_{y} 32 = 10$, then which of the following is the value of y?

O

 \mathbf{O}

(c)
$$\sqrt{4}$$

O

(d)
$$\sqrt{2}$$

O

If log(7 y - 5) = 2, find the value of y.

O

O

O

O

Find the value of *v*, if $(v-1)! \times 20 = (v+1)!$

O

5 (d)

O

27. The weighted average from the following observation is `46.23.

Price per tonne (₹)	45.60	50.70	7
Tonnes Purchased	135	40	25

Simple average of the observation is?

O

O

O

O

When 9 local trains are running between Haldia and Burdwan. In how many ways can a passenger travel from Burdwan to Haldia and return by a different train?

O

O

ACCOUNTANTS OF THE PARTY OF THE

POSTAL TEST PAPER FOUNDATION PAPER - 3

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

(c)	64 ways	O
(d)	60 ways	0

29. Find the number of permutations for 15 scooters if 3 scooters are to be considered at a time.

(a)	2730	O
(b)	2370	O
(c)	2184	O
(d)	2814	O

30. How many ways can 5 drivers refill their tanks from 5 refills, assuming no refills in the fuel station remain unused?

(a)	24 ways	O
(b)	120ways	O
	5 ways	0
(d)	60 ways	O

31. Examine the nature of the roots for the following equation $16x^2 - 24x + 9 = 0$

(a)	0.4667	0
(b)	0.5645	O
(c)	0.35	O
(d)	0.5	0

32. Consider the following:

Commodity	Base Price (₹)	Current Price (₹)	Weight	
A	22	45	8	
В	15	15	6	
С	80	90	7	
D	110	130	3	
Е	25	30	5	

Weighted aggregative index number is

(a) 123.34 (b) 156.11 (c) 176.52
(c) 176.52
(1) 140.00
(d) 142.89

PAPER - 3

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Consider the following: 33.

Commodity	Base Price (₹)	Current Price (₹)	Weight
A	22	45	8
В	15	15	6
С	80	90	7
D	110	130	3
Е	25	30	5

Weighted A.M of price relative index number is:

- (a) 123.34
- (b) 128.79 O
- (c) 130.92 O
- 182.13 (d) O
- 34. For what values of a and c, value of sum of the roots would be equal to b.
 - (a) a = 1, c = nO
 - (b) a = -1, c = nO
 - (c) a = n, c = -1 \mathbf{O}
 - (d) a = n, c = 1 \mathbf{O}
- The mean of a certain number of items is 42. If one more item 64 is added to the data, the mean becomes 44. The no of items in the original data is
 - (a) 20 0
 - (b) 10 0
 - 43 (c) O
 - (d) 440 \mathbf{O}
- 36. From the following data the five year moving average against year 5:

Years	1	2	3	4	5	6	7	8	9
Sales (₹)	36	43	43	34	44	54	34	24	14

- 40 (a) O
- (b) 43.6 O
- (c) 34 O (d) 41.8 \mathbf{O}
- In a certain factory a unit of work is completed by A in 4 minutes, by B in 5 minutes, by C in 6 minutes, by D in 10 minutes, and by E in 12 minutes. Average
 - number of units of work completed per minute is 25/4 (a) O
 - 5/48 (b) 0

O

(c)	4/25	Ο				
(d)	25/48	О				
Which one of the following is a feature of Harmonic Mean (HM)?						
(a)	GM is affected much by the presence of externally small or large observations;	O				
(b)	GM gives the actual value of the series;	О				
(c)	GM is useful when a given phenomenon has a limit for lower value;	О				
(d)	GM is imaginary if any of the observations is zero;	О				
If b _{XY}	and b_{YX} are regression coefficients of series X on series Y and regression					
(a)	$b_{\rm XY} \times b_{\rm YX} = r$, where r is the correlation coefficient	Ο				
(b)	$b_{XY} \times b_{YX} = r^2$, where r is the correlation coefficient	О				
(c)	$b_{XY} \times b_{YX} = -r$, where r is the correlation coefficient	Ο				
(d)	$b_{XY} \times b_{YX} = 1/r$, where r is the correlation coefficient	О				
In a bivariate regression analysis for dependent variable if $d = Actual\ value\ -$						
Predic	cted value then at different values of independent variable:					
(a)	Best fit curve occurs when $d_1^2 + d_2^2 + \dots + d_n^2$ is minimum	О				
(b)	Best fit curve occurs when $d_1^2 + d_2^2 + \dots + d_n^2$ is maximum	О				
(c)	Best fit curve occurs when $d_1^2 + d_2^2 + \dots + d_n^2$ is zero	О				
(d)	Best fit curve occurs when $d_1^2 + d_2^2 + \dots + d_n^2$ is one	О				
In a b	ivariate analysis if two regression equations are $8x - 10y + 66 = 0 & 40x - 10y + 66 = 0$					
18y - 214 = 0. Then x ,y , the mean of the series x & y care respectively						
(a)	13, 17	O				
(b)	17, 17	О				
(c)	5/4, 20/9.	O				
(d)	8, 18	О				
A lot	contains 10 items of which 3 are defective. Three items are chosen from the					
lot at random one after another without replacement. The probability that all the						
three are defective is						
(a)	0.008	О				
(b)	0.992	О				
(c)	0.067	О				
	(d) Which (a) (b) (c) (d) If bxy coefficies corre (a) (b) (c) (d) In a be Predict (a) (b) (c) (d) In a be 18y — (a) (b) (c) (d) A lot of lot at a three a (a) (b)	 (d) 25/48 Which one of the following is a feature of Harmonic Mean (HM)? (a) GM is affected much by the presence of externally small or large observations; (b) GM gives the actual value of the series; (c) GM is useful when a given phenomenon has a limit for lower value; (d) GM is imaginary if any of the observations is zero; If bxy and byx are regression coefficients of series X on series Y and regression coefficients of series Y on series X respectively then which one of the following is correct? (a) bxy × byx = r, where r is the correlation coefficient (b) bxy × byx = r', where r is the correlation coefficient (c) bxy × byx = 1/r, where r is the correlation coefficient (d) bxy × byx = 1/r, where r is the correlation coefficient In a bivariate regression analysis for dependent variable if d = Actual value - Predicted value then at different values of independent variable: (a) Best fit curve occurs when dj² + dz² + + dn² is maximum (c) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (d) Best fit curve occurs when dj² + dz² + + dn² is zero (e) 5/4, 20/9. (f) 17, 17 (g) 5/4, 20/9. (g) 8, 18 A lot contains 10 items of which 3 are defective. Three items are chosen from the lot at r				

	(d)	0.05					О	
43.	When two events happen simultaneously which of the following is true?							
	(a)							
	` /	the second event						
	(b)	The outcome of the first event may or may not have an effect on the O						
		outcome of the second event						
	(c)	The outcome of the first event does not not have any effect on the outcome O						
		of the second event						
	(d)	(d) The outcome of the first event have always a 50% effect on the outcome						
	of the second event							
44.	From the following find the Fisher's Quantity index:							
		Item	Base Y	ear (₹)	Current	Year (₹)		
			Unit Price	Quantity	Unit Price	Quantity		
		A	8	6	12	5		
		В	10	5	11	6		
		С	17	8	8	5		
	(a)	32.76					О	
	(b)	72.34					О	
	(c)	78.12					О	
	(d)	12.74					О	
45.	Ifan	unbiased c	oin is tossed on	ce, then the two	events head and	l tall are		
	(a)		y exclusive	,			O	
	(b)	Exhaust	•				О	
	(c)	Equally	likely				О	
	(d)	All thes	-				О	
46.						-10 = 0 & -2x +		
	5y = 1	14. If coef	ficient of correla	tion between x	& y is $1/\sqrt{10}$, then	hen value of m is:		
	(a)	10					O	
	(b)	5/2					O	
	(c)	4					О	
	(d)	1					О	

PAPER - 3

FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

- A bag contains 10 red and 10 green balls. A ball is drawn from it. The probability 47. that it will be green is
 - (a) 1/10 O
 - (b) 1/3 O
 - 1/2 (c) O
 - None of these (d) O
- 48. From the following find the Simple average (GM) of Relative Quantity index:

Item	Base Year Quantity	Current Year Quantity
A	8	12
В	10	11
С	15	10

- 100.23 (a) O
- (b) 111.45 O
- (c) 190.15 O
- (d) 103.23 O
- 49. $y = (4x 3)^3 + (5x 2)^2$. Calculate y_1

(a)
$$182x^2 + 13x + 29$$

(b)
$$96x^2 + 13x + 29$$

(c)
$$12x^2 + 26x + 29$$

(d)
$$192x^2 + 26x + 58$$

Consider the following results N = 12, $\Sigma dx = 0$, $\Sigma dy = 4$, $\Sigma dx^2 = 1344$, $\Sigma dy^2 = 1344$ 215, $\Sigma dxdy = -4360$ Appropriate regression coefficient is: