FOUNDATION COURSE EXAMINATION

December 2019

P-4(FBMS) Syllabus 2016

Fundamentals of Business Mathematics and Statistics

Time Allowed: 3 Hours

Full Marks: 100

 $2 \times 9 = 18$

The figures in the margin on the right side indicate full marks.

Notations and symbols used are as usual.

Section-A

(Fundamentals of Business Mathematics)

(i)	Two	numbers	are	in	the	ratio	5:7.	If	the	sum	of	the	numbers	is	192,	then	the
	greate	er number	r is														

(A) 112

1. (a) Choose the correct answer:

- (B) 102
- (C) 116
- (D) 108

(ii) x varies inversely as y and if x = 3 then y = 4. If y = 6 then the value of x is

- (A) 3
- (B) 1
- (C) 2
- (D) 2·5

(iii) A sum will be double itself at a simple interest p.a. in 8 years. The simple interest is

- (A) 10%
- (B) 10·5%
- (C) 12%
- (D) 12·5%

The second of the second of the

- (iv) If (x-1), (x+1) and (2x+3) are in A.P., then the value of x is
 - (A) -2
 - (B) 0
 - (C) 2
 - (D) 4
- (v) The 8th term of the series 256, 128, 64, ... is
 - (A) 2
 - (B) 4
 - (C) 8
 - (D) 16
- (vi) If $2^{x-1} + 2^{x+1} = 80$, then the value of x is
 - (A) 8
 - (B) 4
 - (C) 5
 - (D) 10
- (vii) If a and b be the roots of the equation $2x^2 + 2x 3 = 0$ then the value of 2ab is

A sum will be double used at a su pic microst p.a. in S.y.

- (A) -6
- (B) 3
- (C) 1
- (D) -3
- (viii) The value of ${}^{3}P_{3} {}^{3}C_{3}$ is
 - (A) 0
 - (B) 5
 - (C) 6
 - (D) 1

(ix) P and Q are two non-empty sets. Given:

$$n(P) = 12$$
, $n(Q) = 6$ and $n(P \cup Q) = 10$. The $n(P \cap Q)$ is

- (A) 8
- (B) 9
- (C) 7
- (D) 0

2. State whether the following statements are True or False:

1×6=6

- (i) The mean proportional between 2 and 8 is 4.
- (ii) If $1 + 2 + 3 + \dots + n = 231$ then the value of n is 21.
- (iii) $\log_a mn = (\log_a m)(\log_a n)$
- (iv) $\frac{1}{2}(^{n}P_{3}) = 3(^{n}C_{3})$
- (v) If $3^x = \frac{1}{243}$ then the value of x is 5.
- (vi) The roots of the quadratic equation $2x^2 12x + 18 = 0$ are not equal.

3. Answer any four questions:

4×4=16

(a) There are 25 members of a student council in a college and the ratio of the number of boys to the number of girls is 3: 2. How many more boys should be added to the council so that the ratio of the number of boys to the number of girls is 9: 5?

How Hat Sald and Mantel and The areas (2, 14)

- (b) What sum of money will amount to ₹ 3704.40 in 3 years at 5% compound interest?
- (c) There are 5 questions in group A, 4 in group B and 3 in group C. In how many ways can you select 6 questions taking 3 from group A, 2 from group B and 1 from Group C?
- (d) If $P = \{2, 3, 4\}, Q = \{3, 4, 5\}, R = \{1, 2, 5, 6\}$ then find the set $P \cup (Q \cap R)$.
- (e) Find the value of $\frac{1}{\log_2 24} + \frac{1}{\log_3 24} + \frac{1}{\log_4 24}$.
- (f) Find the value of $\left(\frac{1}{81}\right)^{-\frac{3}{4}} \times (243)^{-\frac{1}{5}}$

Section-B

(Fundamentals of Business Statistics)

	The n(P n Q) is			ab = (0)	n = 12, n		
4. Cho	oose the correct answer:						2×12=24
(i)	The necessary diagram to and the whole is	compare	e among th	e various			veen a par
	(A) Bar diagram						
	(B) Step diagram					(61).	
	(C) Pie diagram						
	(D) Histogram						
(ii)	A random variable X can t 0.5 and 0.3 . The expected	ake the v					
	(A) 0·3						
	(B) 0·5						
	(C) 0·2				CESTAL -		
	(D) 0·1						
(iii)	Consider the following dat	a:					
	Marks in Mathematics:	0 - 9	10 – 19	20 – 29	30 – 39	40 – 49	Total
	No. of students (f):	10	8	12	15	5	50
	Frequency density of the se	econd cla	ass is				
	(A) 0·8						
	(D) 0						
	(B) 8 (C) 1·2						
	(D) 1 world O quota at 8						
(iv)	The measure of central ter data	ndency o			hich takes		unt all the
	(A) Median						
	(B) Mean						
	(C) Mode						
	(D) Range						

(v)	The A.M. of the numbers 1, 3, 5,, $(2n-1)$ is	Syllabus 2016
	(A) n^2	
	(B) $n+1$	
	(C) n	
	(D) 2n	
(vi)	The Harmonic Mean (H.M.) of the series 1, 2, 4 is	
	(A) 5	
	(B) 7	
	(C) $\frac{7}{5}$	
	(D) $\frac{12}{7}$	
(vii)	For a symmetrical distribution first quartile and median a The third quartile of the distribution is	are respectively 20 and 24.
	(A) 28	
	(B) 26	
	(C) 22	
	(D) 32	
(VIII)	Standard Deviation (S.D.) for two observations 1 and 4 is	
	(A) 1	
	(B) 1·5	
	(C) 2	
	(D) 3	
(ix)	If the two regression coefficients are $b_{yx} = -0.4$ and b_{xy} correlation coefficient (r) is	= -0.9 then the value of
	(A) 0.6	
	(B) 0.65	
	(C) -0·6	
	(D) -0.65	

- (x) For a frequency distribution coefficient of skewness = 0.6, mean = 172 and mode = 163. The value of the variance is
 - (A) 169
 - (B) 215
 - (C) 196
 - (D) 225
- (xi) For two mutually exclusive events A and B if $P(A) = \frac{3}{4}$ and $P(B) = \frac{1}{6}$, then P(A or B) is
 - (A) $\frac{11}{12}$
 - (B) $\frac{5}{12}$
 - (C) $\frac{7}{8}$
 - (D) $\frac{1}{8}$
- (xii) Two unbiased coins are tossed simultaneously. The problem of getting a head and a tail is
 - (A) $\frac{1}{4}$
 - (B) $\frac{1}{2}$
 - (C) 1
 - (D) $\frac{3}{4}$
- **5.** State whether the following statements are *True* and *False*:

 $1 \times 12 = 12$

- (i) Runs in a cricket match is a continuous variable.
- (ii) Mode for a frequency distribution is calculated from Histogram.
- (iii) The sum of the deviations of $x_1, x_2, ..., x_n$ from their A.M. \bar{x} is zero.
- (iv) Variance is always positive.
- (v) A variable x takes the values 10 and 20 with equal frequencies then the mean of x is 30.
- (vi) Median divides the whole statistical data into two equal parts.

- (vii) The standard deviation (S.D.) is independent of change of origin but dependent on scale.
- (viii) 50th percentile is known as 2nd quartile.
 - (ix) For a negatively skewed distribution it is found that mean, median and mode are respectively 58, 54 and 48.
 - (x) The correlation coefficient between two variables is independent of change of origin as well as change of scale.
- (xi) If two events A and B are mutually exclusive then $P(A \cap B) = P(A)P(B)$.
- (xii) The coefficient of range is calculated as

 $\frac{\text{Maximum observation} - \text{Minimum observation}}{\text{Maximum observation} \times 100}$

6. Answer *any four* questions:

6×4=24

(a) The following data relating to marks in a test on Mathematics of 50 students in a school were noted below:

48	54	65	58	55	57	65	55	43	60
54	65	56	77	53	63	34	45	58	47
43	42	40	56	64	63	48	75	34	53
58	53	35	33	48	46	54	44	52	62
57	56	59	55	37	42	72	47	48	46

Arrange the data in the form of a frequency distribution table in 5 classes (31 - 40, 41 - 50, 51 - 60, 61 - 70, 71 - 80). Prepare a table for cumulative frequencies (both less than and more than types) and relative frequencies.

(b) Compute the mean and standard deviation from the following data:

Marks in Mathematics: 0-20 20-40 40-60 60-80 80-100No. of students: 5 7 28 9 1

(c) Show that the standard deviation is greater than mean deviation from mean for the observations 3, 4, 5, 8.

(d) The ranks of 6 students in Mathematics (R_1) and Economics (R_2) are given as

R_1	6	2	5	1	4	3
R_2	4	3	2	5	1	6

Calculate the rank correlation coefficient.

(e) You are given the following data:

Correlation coefficient between x and y is 0.6. Find the two regression equations.

(f) The probability that A speaks truth is 0.4 and B speaks truth is 0.6. What is the probability that they will contradict each other in stating the same fact?