FOUNDATION COURSE EXAMINATION

December 2017

P-4(FBMS) Syllabus 2012

Fundamentals of Business Mathematics and Statistics

Time Allowed: 3 Hours Full Marks: 100

The figures in the margin on the right side indicate full marks.

Notations and symbols used are as usual.

Section-A

(Fundamentals of Business Mathematics)

1. Answer any two questions:

 $5 \times 2 = 10$

- (a) The ratio of the ages of two persons is 7:5 and the sum of their ages is 120. Find their ages.
- (b) Find the simple interest on ₹ 1,000 for 5 years at 5% p.a.
- (c) Find the True Discount (T.D.) on ₹ 500 at 5% p.a. and hence find the Bill Value (B.V.) after 2 years.
- 2. Answer any two questions:

 $3\times2=6$

- (a) Find the value of x when $\begin{vmatrix} 2x & -4 \\ x & x \end{vmatrix} \begin{vmatrix} 2 & x \\ -x & 3 \end{vmatrix} = -10$.
- (b) Find the value of p if $p\sqrt{p} = \sqrt[p]{p}$.
- (c) Find the value of log 324 to the base $3\sqrt{2}$.
- 3. Choose the correct answer:

 $1 \times 5 = 5$

- (a) The number of arrangements that can be made out of the letters of the word ALGEBRA is
 - (i) 2540 (ii) 5040 (iii) 2520 (iv) 4050

(e) $\int_0^1 e^x dx = e - 1$.

mvi	13 2012	CARRON A DISTRICT AND A STATE OF
	(p)	If y varies inversely as x^2 and $y = 9$ when $x = 2$. Then the value of y when $x = 3$ is
	105 230	(i) 8 (ii) 4 (iii) 6 (iv) 12
	(c)	If ${}^{n}P_{2} = 12$, then the value of n is
		(i) 4 (ii) 6 (iii) -3 (iv) 8
	(d)	If the roots of the quadratic equation $3x^2 - 4x + p = 0$ be equal, then the value of p is
		(i) $\frac{3}{4}$ (ii) $-\frac{3}{4}$ (iii) $\frac{4}{3}$ (iv) 6
	(e)	$\int dx$ is equal to
		(i) 1 (ii) -1 (iii) 0 (iv) $x + C$
4.	Fill in	the blanks: 1×5=5
	(a)	If $n! = 120$, then $n =$.
	(b)	The value of the determinant $\begin{vmatrix} 2 & 3 \\ 3 & 9 \end{vmatrix}$ is
	(c)	If $3^x + 3^{x-1} = 4$, then $x = \underline{}$.
	(d)	The mean proportional between 4 and 9 is
	(e)	If A and B be two non-empty sets and A'and B' be their complements respectively, then
,		$(A \cup B)'$ is
5.	State	whether the following statements are <i>True</i> or <i>False</i> : $1 \times 5 = 5$
	(a)	${}^{n}C_{r}={}^{n}C_{n-r}(n\geq r).$
	(b)	If A be a set and Φ be the null set then $A \cup \Phi = \Phi$.
	(c)	If $\begin{bmatrix} 2 & 4 & -3 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & -5 & 6 \end{bmatrix}$ then order of the matrix A is (4×3) .
	(d)	$\left(\frac{dy}{dx}\right)^2 = \frac{d^2y}{dx^2}.$

6. Match the following:

 $1 \times 5 = 5$

(a)	4-digit odd numbers are to be formed with the digits 1, 2, 3 and 4 without using a digit more than once. The number of ways this can be done is	(i)	6
(b)	If one root of the quadratic equation $x^2 + bx - 8 = 0$ be the square of another, the value of b is	(ii)	4
(c)	If $y = \log\left(\frac{5}{x^3}\right)$, then the value of $\frac{dy}{dx}$ at $x = -\frac{1}{2}$ is	(iii)	12
(d)	The value of $\int_e^{e^3} \frac{\log x}{x} dx$ is	(iv)	2
(e)	If $2\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix} + K\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 10 \\ 4 & 14 \end{bmatrix}$ then K is	(v)	-2

7. Answer the following in one or two steps:

 $1 \times 4 = 4$

- (a) Construct the truth table for " $\sim p \land \sim q$ ".
- (b) Show that $y = x^5 5x^4 5x^3 1$ has a minimum value at x = 3.
- (c) Evaluate: $\lim_{x\to 2} \frac{\log(2x-3)}{2(x-2)}.$
- (d) If $f(x,y) = x^2 3xy + y^2$ then find $\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}$.

Section-B

(Business Statistics)

8. Choose the correct answer (any nine):

 $2 \times 9 = 18$

- (a) The ratio (class frequency/total frequency) is defined as
 - (i) frequency density

(ii) frequency distribution

(iii) percentage frequency

(iv) relative frequency

of the distribution is

the distribution is

combined mean is

(i) 32

(i) 42.8 (ii) 44 (iii) 45.2 (iv) 41

(iii) 29

(ii) 34

(b) The algebraic sum of the deviations of 25 observations measured from 45 is -55. The A.M.

The mean and median of a frequency distribution are 35 and 33 respectively. The mode of

(d) If the means of two sets of observations of size 6 and 4 be 10 and 5 respectively, the

(iv) 26

	(i) 7	(ii) 6 (iii) 8	(iv) 9
(e)	If the median of	5, 2, 3, p and 8 be 4, then the	value of p is
	(i) 4	(ii) 5 (iii) 3	(iv) 2
(f)	If for two observ	vations A.M. and H.M. be 8 and	nd 2 respectively, the G.M. is
	(i) $\sqrt{2}$	(ii) 2 (iii) 4	(iv) $2\sqrt{2}$
(g)	For two variable	les x and y , the regression	coefficients are $b_{xy} = 0.4$ and $b_{yx} = 0.9$. The
	correlation coef	ficient r_{xy} is	
	(i) 0.6	(ii) -0.6 (iii) 0.3	(iv) 0·4
(h)	The quartile dev	viation of the following data 1	2, 10, 17, 14, 19, 21, 27, 30, 32, 28, 34 is
	(i) 10·4	(ii) 12 (iii) 9	(iv) 8
(i)	If $\sum p_0 q_0 = 35$ price index num		$p_0 = 3850$ and $\sum p_n q_n = 3840$, then Fisher's
	(i) 112·25	(ii) 110·65 (iii) 108·5	(iv) 115·2
(j)	A, B, C are three	e mutually exclusive and exha	sustive events. If $P(A) = \frac{3}{5}$ and $P(B) = \frac{1}{6}$, then
	the value of $P(C)$	C) is	el sel sity tempor se su polar selli cala.
	(i) $\frac{23}{30}$	(ii) $\frac{7}{30}$ (iii) $\frac{1}{10}$	(iv) $\frac{9}{10}$
		[14] [17] 이 아니라 왕왕 (24) [26] [17] [17] [17] [18] [18] [18] [18] [18] [18] [18] [18]	

(k) A businessman profits ₹ 300 in a business venture with probability 0.6 and loses ₹ 100 with probability 0.4. The expected profit of the businessman is

- (i) ₹120
- (ii) ₹ 140
- (iii) ₹80
- (iv) ₹180

(1) For a binomial distribution, the variance is

- (i) \sqrt{npq}
- (ii) npq
- (iii) np
- (iv) nq

9. Answer any nine questions:

 $2 \times 9 = 18$

- (a) The cost of manufacturing a toy was ₹ 150. If the cost of labour charge subtends an angle
 114° in a pie diagram, find the sum spent for other charges.
- (b) If a variable takes the values 1, 2,, n with equal frequencies, calculate its A.M.
- (c) If the standard deviation of n natural numbers 1, 2, ..., n be 2, find n.
- (d) If n = 10, $\sum x = 40$ and $\sum x^2 = 250$ then find the C.V.
- (e) If the A.M. and the C.V. of x be 10 and 50% respectively, find the variance of 5 2x.
- (f) If the correlation coefficient between x and y be 0.5, find the correlation coefficient between 5x and 7y.
- (g) For a frequency distribution, the difference between third and first quartiles is 2.03 and their sum is 72.65. If the median be 36.18, find coefficient of skewness.
- (h) If A and B be two independent events with P(A) = 0.3 and P(B) = 0.5, find $P(A \cup B)$.
- (i) A perfect coin is tossed 6 times. Find the probability of getting at most 3 heads.
- (j) If for a Poisson variable X, P(X = 3) = P(X = 4), find the standard deviation.

- (k) If the Laspeyres' price index and Paasche's price index numbers be 133.97 and 128.87 respectively, find the Fisher's price index number.
- (1) The daily wages of 1000 workers are normally distributed with mean ₹ 120 and standard deviation ₹ 5 respectively. Estimate the number of workers whose daily wages will be between ₹ 118 and ₹ 122. (Given: area between z = 0 and z = 0.4 is 0.155).

10. Answer any four questions:

 $6 \times 4 = 24$

(a) Find the mean for the following distribution:

Class

2 - 4

4 - 6

6 - 8

Total

Frequency:

2

4

3

10

8 - 10

(b) Given for two variables x and y.

r .

1

1

. 50

y:

2

3

Compute the product moment correlation coefficient of x and y.

- (c) Prove that the standard deviation calculated from two values x_1 and x_2 of a variable x is equal to half of their differences.
- (d) Determine the trend using 4-year moving average method from the following data.

Years	2009	2010	2011	2012	2013	2014	2015	2016
Production (000' Tons)	82	88	79	95	102	118	126	140

(e) Calculate the price index number for the year 2014 with 2012 as base using Laspeyres' or Paasche's formula which will be applicable on the basis of the following data.

Commodities	Price	Total value (000' ₹) 2014	
	2014	2012	
A	4.5	2.0	31.5
В	3.2	2.5	32.0
С	4.5	8.0	40.5
D	1.8	1.0	10.8

(f) For a Poisson variable X with mean 3, find the standard deviation. Write down the probability mass function of this distribution and hence find P(X > 0). (Given: $e^{-3} = 0.0498$).