

RESEARCH BULLETIN

CELEBRATING
55TH
EDITION
RESEARCH BULLETIN

ICMAI
THE INSTITUTE OF
COST ACCOUNTANTS OF INDIA

भारतीय लागत लेखाकार संस्थान

Statutory Body under an Act of Parliament
(Under the jurisdiction of Ministry of Corporate Affairs)

ISSN 2230 9241

Volume 51 • Nos. 1 & II • April & July 2025

Vision Statement

The Institute of Cost Accountants of India would be the preferred source of resources and professionals for the financial leadership of enterprises globally.

Mission Statement

The CMA professionals would ethically drive enterprises globally by creating value to stakeholders in the socio-economic context through competencies drawn from the integration of strategy, management and accounting.

www.icmai.in

RESEARCH BULLETIN

THE INSTITUTE OF COST ACCOUNTANTS OF INDIA

Statutory Body under an Act of Parliament

ISSN 2230 9241

Volume 51 • Nos. I & II • April & July 2025

Disclaimer

The Institute assumes no responsibility for any act of copying or reproduction, whether fully or partially, of any write up /research paper which is not the original work of the author. The write up /research papers published in good faith on the basis of declaration furnished by the authors.

All rights reserved. No part of this publication may be used or reproduced in any manner whatsoever without permission in writing from The Institute of Cost Accountants of India.

Price of Single Copy: **₹400.00** only

Annual Subscription (for four volumes): **₹1200.00** p.a.

Courier Charges: **₹200.00** p.a. for four volumes

Month of Publication: **February, 2026**

© 2026 The Institute of Cost Accountants of India

Printed and Published by

CMA TCA Srinivasa Prasad

President

The Institute of Cost Accountants of India

3, Institutional Area, Lodhi Road, New Delhi - 110003

.....

FOREWORD

India stands among the world's fastest-growing economies and is well positioned to sustain this momentum. In 2025, the Internet of Things (IoT) has emerged as a major driver of digital transformation. Rapid urbanisation across the country demands sustainable and efficient infrastructure and AI & IoT technologies are central to achieving the national vision of Viksit Bharat 2047. Government-backed Smart City initiatives are catalysing large-scale digital transformation across urban landscapes.

IoT in Smart Cities involves embedding sensors and networked systems into everyday infrastructure to collect and analyse data, enabling intelligent resource management and enhanced citizen services. In the Indian context, IoT extends beyond devices and connectivity; it addresses the critical challenge of balancing rapid population growth with sustainable development. As India progresses toward developing 100 smart cities under the Smart Cities Mission launched in 2015, IoT continues to play a pivotal role in translating these ambitions into reality.

This esteemed Research Bulletin of the Institute, Vol. 51, Nos. I & II, is presented with great pride. The issue features, among others, an article titled Impact of IoT Applications in Unlocking Operational Efficiency, which highlights that while IoT adoption presents cybersecurity and integration challenges, its capacity to enable data-driven decision-making and intelligent automation remains undeniable. IoT has become the backbone of smart industries, sustainable cities and digital economies. Strategic investment, continuous innovation, and seamless integration of IoT guided by long-term sustainability and human-centred design, can pave the way for a smarter, more efficient and more inclusive world.

The volume includes eight articles covering diverse topics and is expected to be engaging, thought-provoking and valuable in advancing new milestones in research and practice.

Sincere appreciation is extended to all contributors who made this issue possible, including the authors, reviewers and editor, for their professional commitment. The dedicated efforts of the editorial team are also gratefully acknowledged.

Jai Hind!

CMA TCA Srinivasa Prasad

President

CHAIRMAN'S COMMUNIQUÉ

"Research is not just about finding facts; it's about shaping futures."

Nowadays, research remains a methodical, creative, and logical investigation to discover new knowledge, solve problems, and produce new applications, but with an emphasis on data-driven methods, interdisciplinary approaches like AI integration, ethics and translational impact, using diverse methods from qualitative to quantitative to expand understanding in a structured way. It's about producing, testing, and applying knowledge dependably, moving beyond mere data collection to meaningful insights.

It gives me immense pleasure to extend my warm greetings on the occasion of the publication of this issue of Research Bulletin. This magazine serves as a valuable platform for documenting the intellectual and creative endeavours of authors on some blazing topics like: DEA approach to investigate into the Efficiency of Indian Steel Industry, Entrepreneurial Sustainable Practices; Glass Ceiling on Women Career Advancement, Management Accounting; Spot and Futures Markets; IoT, GST; ESG Reporting and Corporate Governance.

I commend the editorial team and its contributors for their dedication and effort in bringing this publication to fruition.

The readers are requested to put the valuable suggestion towards improvement of Research Bulletin.

CMA Harshad Shamkant Deshpande

Chairman

Journal & Publications Committee

The Institute of Cost Accountants of India

EDITOR'S NOTE

Greetings!!!

The Institute started publication of the 'Research Bulletin' since 1982. It has been included in the International Serial Directories [ISSN 2230 9241]. It includes both theme based and non-theme based articles on the blazing issues. Inputs are mainly received both from academicians and the corporate stalwarts. The objective of this bulletin is to highlight the dynamism in environmental, social, economic and market-related issues so that the researcher can analyze the surroundings, adapt the changes in a better manner and can take decisions strategically. This edition is a testament to the contributors for their valued contributions for about five productive decades.

This Research Bulletin, Vol.51, Nos. I & II issue includes conceptual and empirical articles and insights that would surely improve the knowledge base of readers.

The first article- *Applying DEA approach to investigate into the Efficiency of The Indian Steel Industry* tries to investigate the efficiency of 20 steel companies in the Indian Scenario during the post-recession period (2007-08 to 2012-13) in comparison to the pre-recession period (2001-02 to 2006-07). Data envelopment analysis (DEA) as an operation research technique has been used to measure the efficiency of the companies. The second paper - *Envisioning Thematic Insights on Entrepreneurial Sustainable Practices Towards Scalability: A Bibliometric Analysis* takes its motivation to sketch a thematic review on entrepreneurial sustainable practice towards scalability through bibliometric analysis on 202 studies extracted from Scopus and Web of Science (2004 to 2024) with PRISMA model criterion. The third research study *Factors Determining Glass Ceiling on Women Career Advancement* focused to identify and evaluate the most common barriers responsible for Glass Ceiling. To reach this objective, the study focused on five dimensions such as Individual, Family, Socio-cultural, Organisational and Corporate climate factors with few items. Next article, *Management Accounting in Navigating Technological Disruption for Future Business Landscape: An Empirical Study* explores the role of management accounting in navigating technological disruption and shaping the future business landscape and concludes that for management accounting to remain relevant, organizations must embrace digital tools, invest in continuous learning, and foster collaboration to navigate the complexities of a rapidly changing business environment.

The Fifth article- *Price Discovery in Spot and Futures Markets: An Empirical Investigation of HCL Data Using Hasbrouck's Information Share and Gonzalo-Granger Method* investigates the price discovery dynamics between the spot and futures markets for HCL Technologies Ltd. (2014–2024). HCL was chosen for its high liquidity, strong IT sector presence, and availability of consistent long-term data, making it an ideal case

for examining spot–futures interactions. Next article on *Transformative Impact of IoT Applications In Unlocking Operational Efficiency – A Global and Indian Perspective* enlightens us regarding global and Indian perspectives on IoT applications in key sectors such as manufacturing, healthcare, agriculture, smart cities, supply chain, and energy management. By leveraging sensor-driven insights, AI-powered automation, and cloud computing, IoT has optimized processes, reduced costs, and enhanced productivity. *The GST Evolution in India: An Empirical Baseline and the Growth Potential of Next-Gen Reforms* concludes with an analysis of these reforms, including a simplified two-slab structure and significant rate reductions, and projects their potential to address initial hurdles, boost consumer spending, and significantly accelerate India's GDP growth. This provides a critical, forward-looking perspective on the evolving GST framework. The last article on *The Role of Digital Technology in Transforming ESG Reporting and Corporate Governance* evaluates how modern technological devices like artificial intelligence (AI), blockchain, along with information analytics strengthen ESG reporting's reliability, accuracy, & transparency.

We are extremely happy to convey that our next issue of *Research Bulletin*, would be a non-theme one.

We look forward to constructive feedback from our readers on the articles and overall development of the Research Bulletin. Please send your mails at **research.bulletin@icmai.in**.

We express our sincere gratitude to all the contributors and reviewers of this important issue and wish our readers get requisite insight from the articles.

CMA (Dr.) Debaprosanna Nandy
Secretary (Officiating)
Editor - Research Bulletin
The Institute of Cost Accountants of India
E: secy@icmai.in

Journal & Publications Committee: 2025-26

CMA TCA Srinivasa Prasad

President & Permanent Invitee

CMA Neeraj Dhananjay Joshi

Vice President & Permanent Invitee

CMA Harshad Shamkant Deshpande

Chairman

CMA Suresh Rachappa Gunjalli

Member

CMA (Dr.) K Ch A V S N Murthy

Member

CMA Vinayaranjan P.

Member

CMA Avijit Goswami

Member

CMA Rajendra Singh Bhati

Member

CMA Navneet Kumar Jain

Member

CMA Dr. G. Naresh Reddy

Member (Co-opted)

CMA A. Chandrasekhar

Member (Co-opted)

CMA Y.H. Anegundi

Member (Co-opted)

CMA Sucharita Chakraborty

Secretary, Journal & Publications Committee

Addl. Director & HoD, Journal & Publications

Editorial Board

Prof. Amit Kr. Mallick

Former Vice Chancellor, Burdwan University, West Bengal

Prof. Asish K. Bhattacharyya

Distinguished Professor, Department of Finance, Accounting and Control, Shiv Nadar University, Delhi NCR

Prof. Ashoke Ranjan Thakur

Former Vice Chancellor, Sister Nivedita University, West Bengal

Prof. Bappaditya Mukhopadhyay

Professor, Analytics & Finance, Great Lakes Institute of Management, Gurgaon

Prof. Dilip Kr. Datta

Director, Sayantan Consultants Pvt. Ltd, Kolkata

Prof. Malavika Deo

Dean, School of Management, Pondicherry University, Puducherry

Prof. G. Nagaraju

Associate Professor, National Institute of Bank Management, Pune

Prof. P. K. Jain

Professor Emeritus, Department of Management Studies, Indian Institute of Technology (IIT) Delhi

Prof. Sankarshan Basu

Professor, Finance & Accounting, Indian Institute of Management Bangalore (IIMB), Bengaluru

CMA V. S. Datey

Consultant, Corporate Laws & Taxation, Nashik

Editor: CMA (Dr.) Debaprosanna Nandy

Secretary (Officiating)

Our Contributors in this issue

Akki Maruthi

Assistant Professor, Department of Commerce, SKNG, Government First Grade College, Gangavathi, Koppal, Dist. Karnataka
akkimaruthi@gmail.com

Arindam Banerjee

Assistant Professor, J.D. Birla Institute (Affiliated to Jadavpur University), Kolkata
drarindambanerjee77@gmail.com

D. Mukhopadhyay

Professor and Director, Institute of Self Exploratory Professional Innovation and Research in Education (INSPIRE), Independent Director at M/s Simplex Infrastructure Ltd and an Associate of M/s Roy, Bhattacharya & Associates, Cost and Management Consultants
mukhopadhyay2021@gmail.com

Dipra Bhattacharya

Management Consultant & IT Strategist, Kolkata
mail2dipra@gmail.com

Gayatri M. P

Assistant Professor, Department of Commerce and Management, Oxford Business College, Ballari (Karnataka)
mp.gayatri@gmail.com

Jeelan Basha V

Professor, Dept. of Commerce, Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka
drjeelanbasha@yahoo.co.in

Kaleel

Research Scholar, Dept. of Commerce, Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka
b.khaleel1100@gmail.com

Manidipa DasGupta

Assistant Professor in Commerce, The University of Burdwan
mdgupta@com.buruniv.ac.in

Our Contributors in this Issue

Rajesh Kumar Jain

Research Scholar, Apex University, Jaipur
rajes79@gmail.com

Ruchi Gupta

Faculty of Commerce & Management, Apex University, Jaipur

Sandhya Kri Shaw

Research Scholar, Department of Commerce, The University of Burdwan
sandhyakrishaw@gmail.com

Contents

APPLYING DEA APPROACH TO INVESTIGATE INTO THE EFFICIENCY OF THE INDIAN STEEL INDUSTRY <i>Arindam Banerjee</i>	1
ENVISIONING THEMATIC INSIGHTS ON ENTREPRENEURIAL SUSTAINABLE PRACTICES TOWARDS SCALABILITY: A BIBLIOMETRIC ANALYSIS <i>Manidipa DasGupta, Sandhya Kri Shaw</i>	15
FACTORS DETERMINING GLASS CEILING ON WOMEN CAREER ADVANCEMENT <i>Gayatri M. P</i>	34
MANAGEMENT ACCOUNTING IN NAVIGATING TECHNOLOGICAL DISRUPTION FOR FUTURE BUSINESS LANDSCAPE: AN EMPIRICAL STUDY <i>D. Mukhopadhyay</i>	54
PRICE DISCOVERY IN SPOT AND FUTURES MARKETS: AN EMPIRICAL INVESTIGATION OF HCL DATA USING HASBROUCK'S INFORMATION SHARE AND GONZALO-GRANGER METHOD <i>Jeelan Basha V, Kleel</i>	82
TRANSFORMATIVE IMPACT OF IOT APPLICATIONS IN UNLOCKING OPERATIONAL EFFICIENCY – A GLOBAL AND INDIAN PERSPECTIVE <i>Dipra Bhattacharya</i>	99
THE GST EVOLUTION IN INDIA: AN EMPIRICAL BASELINE AND THE GROWTH POTENTIAL OF NEXT-GEN REFORMS <i>Akki Maruthi</i>	116
THE ROLE OF DIGITAL TECHNOLOGY IN TRANSFORMING ESG REPORTING AND CORPORATE GOVERNANCE <i>Ruchi Gupta, Rajesh Kumar Jain</i>	135

APPLYING DEA APPROACH TO INVESTIGATE INTO THE EFFICIENCY OF THE INDIAN STEEL INDUSTRY

Arindam Banerjee

Abstract

The present paper tries to investigate the efficiency of 20 steel companies in the Indian Scenario during the post-recession period (2007-08 to 2012-13) in comparison to the pre-recession period (2001-02 to 2006-07). Data envelopment analysis (DEA) as an operation research technique has been used to measure the efficiency of the companies. Linear program has been formulated for both periods of study. For the purpose of analysis, four inputs (related to cost) and two outputs related to profit and sales have been taken into consideration for the study. Further spearman rank correlation has been utilized to understand if there were any significant changes in the rank obtained by the companies during the post-recession period when compared to the pre-recession period.

Keywords

Data envelopment analysis (DEA), Decision-making Units, Spearman rank correlation, Steel Industry

1. Introduction

DEA (Data Envelopment Analysis) approach has been used to compute the efficiency of the Indian steel companies. The entire period of study has been segregated into pre (2001-02 to 2006-07) and post (2007-08 to 2012-14) recession period. The post-recession period includes the recession period. A Linear Program has been developed for 20 steel companies (selected as per highest turnover) taking four input variables and two output variables related to sales and profitability for both the period of study. The efficiency and super efficiency (whose efficiency score = 1) scores have been computed using Lingo Software. A further analysis has been conducted to investigate if the recession did have an impact on the ranking of the companies utilizing data envelopment analysis.

Rationale for Using DEA over other methods in this study :

The rationale of using DEA over other performance measure approaches is that it doesn't require specification of a functional form for the production frontier if it is compared to regression-based techniques such as Stochastic Frontier Analysis which rely more on distributional assumptions and pre-defined input-output relationship. Thus, it can be said that DEA is less assumption driven and flexible. DEA can also accommodate multiple inputs and outputs that can be measured in different units. Apart from this DEA provides relative efficiency scores by benchmarking firms against best practice frontiers thus

helping to identify efficient performers and the extent of inefficiencies in others. Ratio analysis basically examines efficiency one dimensionally while DEA captures multidimensional performance in a more comprehensive manner. Thus, the rationale for choosing DEA over other methods is that DEA is a robust and appropriate choice for evaluating the efficiency of Indian steel companies during the pre- and post-recession periods.

One of the reasons for choosing the steel industry for my study is that it is a very important sector in the Indian scenario. India is the 2nd largest producer of crude steel in the world. It contributes more than 2% to the National GDP and employs around 2.5 million people directly or indirectly. (Source: <https://steel.gov.in/>). The global financial crisis hit the world economy at large characterized by a decline in Gross domestic product, and production as well as having a negative impact on IIP (Index for Industrial Production). In the study, an effort has been made to understand how the steel companies performed during the recession period by computing their efficiency scores during the pre and post-period of recession.

2. Past Literature Reviewed:

Some of the past works of scholars referred by me for conducting the present research are as follows:

Lee et al (2023) have utilized data envelopment analysis to optimize the efficiency of the logistic companies that are listed on the Malaysia stock exchange by using operational risk factors. In the

paper basic indicator approach has been used and improvement indicators have been identified to improve the inefficient logistics companies as per the paper.

Choudhary and Arora (2022) have investigated the efficiency of the twenty-one nationalized banks in India using DEA method and have also allotted ranks as per their efficiency scores. Further an effort has been made in this paper to compute the coefficient of variation in the efficiency scores obtained by the banks.

Arasu et al (2021) in their paper have utilized Data Envelopment analysis to identify appropriate variables for the performance valuation of the stock. The stock selected have been segregated into 3 sets of inputs and outputs and it has been found from the study that all three sets of inputs and outputs indicate and helps in identifying efficient stocks.

Giri et al (2021) in their paper have investigated the efficiency of twenty steel-producing firms during 2018-19 taking into consideration three input variables and one output variable related to sales turnover. Technical efficiency scores have been computed and it has been observed from the study that out of 20 companies, there were a total of eleven companies were placed on the efficient frontier line and the rest nine were below the efficient frontier line. A further effort was made in the paper to improve the quality of the inputs so as to increase the efficiency of the companies.

Zoakah et al (2020) in their paper has analyzed the financial statements of twenty quoted manufacturing companies listed in the Nigerian Stock Exchange utilizing

DEA. The study revealed that only three companies managed their liabilities and assets in an efficient manner. The paper tried to benchmark the manufacturing efficiency in Nigeria using DEA.

Dutta et al (2020) in their paper has investigated the performance of NBFCs by utilizing DEA. The paper has taken the panel data for five years and then calculated the super efficiency scores and then regressed the same on exogenous factor in stage 2. The paper also states that managers should focus on profitability ratios like return on assets rather than return on equity as a significant indicator of efficiency.

Vikas and Bansal (2019) have tried to explore the efficiency of the twenty-two companies belonging to the gas and oil sector in India which were actually listed in NSE. They have taken 3 inputs and 2 outputs for the DEA approach. It was observed from the study that around 59% of the companies were found to be technically efficient.

Smriti and Khan (2018) in their paper have computed the efficiency scores of 1007 manufacturing firms in Bangladesh utilizing DEA. It was found that a total of 29 firms were considered to be efficient and it was also observed from the study that the inefficiency was caused due to manager experience, firm size, etc.

Debnath and Sebastian (2014) have tried to evaluate the technical efficiency of steel companies by utilizing DEA approach. Four input variables and four output variables related to sales and profitability were considered for the study. The efficiency scores were further segregated

into technical efficiency and scale efficiency which evaluated the reasons for inefficiency in the decision-making units or otherwise.

Lovell et al (1994) in their paper have applied Data Envelopment Analysis to examine productivity and efficiency trends in industrial context.

Seiford et al (1990) in their paper highlighted the flexibility of DEA to compare performance across the companies with heterogeneous resources.

Charnes et al (1978) in their paper introduced data envelopment analysis as a powerful non-parametric measure for measuring efficiency across industries. The CCR model actually laid the foundation for assessing technical efficiency under constant return to scale.

Banker et al (1984) in their included BCC model to incorporate variable return of scale.

Besides the above past literature, the work of Golany and Roll (1989) and Bowlin (1998) has been referred to while selecting the appropriate number of Decision-Making units for the present study. The 4 input variables selected for the present study have also been extracted from previous works like Raw Materials [Ziae & Falahati (2017)], Fuel, water and power charges [Barnum & Gleason (2008)], Employee's Compensation [Zbranek(2013)] and Net Fixed Assets[Wang et al (2010)]. The 2 output variables have been extracted from previous work like Sales [Ziae & Falahati (2017)] and PBIT [Wang et al (2010)].

3. Objectives of the study:

The main objective of the present study was basically to:

- To compute the efficiency and super efficiency scores (if efficiency score =1) of the selected decision-making units in the study by developing the linear program for both the pre-and post-recession period.
- After the efficiency scores have been computed these selected decision-making units are ranked as per efficiency scores for both the pre- and post-recession period.
- The present study also tries to find out the rank correlation through the Spearman rank correlation technique utilizing the ranks obtained to investigate if there was a significant difference between the ranks obtained by the decision-making units during the pre- and post-recession period.

Relevancy of the Objectives of the study:

DEA as a tool has been widely applied in banking and other sectors but limited research is available in Indian steel industry which have assessed the efficiency of the Indian steel firms across the pre and post period of recession. The study has not only computed efficiency scores, but also ranked firms and testing changes across phases provides fresh evidence on how the external shocks affect industry performance. The study provides insights which are not only academically valuable but also for policymakers, managers and investor seekers to enhance competitiveness in this key sector.

4. Research Methodology:

4.1 Sources of Data and Sample selected:

The data regarding the Indian steel companies were extracted from Prowess software. A total of five hundred steel companies were extracted. Four input variables and two output variables for these companies were extracted for the recession period (2001-02 to 2006-07) and the

post-recession period (2007-08 to 2012-13). Those companies whose data were not available for any of these years were removed from the list. Then the top twenty steel companies as per their turnover were finally selected. The companies finally selected are known as Decision-making units. The list of twenty companies selected is given below in Table 1:

Table 1: Details of Decision-Making Units

Companies	Decision Making Units
Aarti Steels Ltd.	DMU 1
ArcelorMittal Nippon Steel India Ltd.	DMU 2
Bhushan Power & Steel Ltd.	DMU 3
J S W Ispat Steel Ltd. [Merged]	DMU 4
J S W Steel Ltd.	DMU 5
Jayaswal Neco Inds. Ltd.	DMU 6
Kalyani Steels Ltd.	DMU 7
Mahindra Intertrade Ltd.	DMU 8
Mahindra Ugine Steel Co. Ltd. [Merged]	DMU 9
National Steel & Agro Inds. Ltd.	DMU 10
Rastriya Ispat Nigam Ltd.	DMU 11
Sanvijay Rolling & Engg. Ltd.	DMU 12
Shah Alloys Ltd.	DMU 13
Steel Authority of India Ltd.	DMU 14
Sunflag Iron & Steel Co. Ltd.	DMU 15
Tata Steel B S L Ltd. [Merged]	DMU 16
Tata Steel Downstream Products Ltd.	DMU 17
Tata Steel Ltd.	DMU 18
Uttam Galva Steels Ltd.	DMU 19
Uttam Value Steels Ltd.	DMU 20

Source: Compiled by Author

4.2 Statistical Tool Used and Period of Study:

DEA (data envelopment analysis) approach has been used to compute the efficiency and super-efficiency scores of the above DMUs. SPSS 20 and Lingo 9.0 has been used for analysis purpose. The period of study is pre-recession period (2001-02 to 2006-07) and post-recession period (2007-08 to 2012-13)

4.3 Selection of Decision-Making Units:

The past work of Golany and Roll (1989) and Bowel (1998) has been referred to while determining the number of decision-making units to be taken for the study.

The following formula is been used as stated by their work as a thumb rule to select the number of DMUs.

Number of DMUs(n) \geq maximum of

$$\{(2*Inputs*Outputs);3(Inputs + Outputs)\}$$

$$\text{Number of DMUs(n)} \geq \text{maximum of } (2*4*2); (3(4+2))$$

$$n = \text{Max (16) or (18)}$$

$$n \geq 18$$

As per the formula above the minimum number of decision-making units should be eighteen to get a good result from data envelopment analysis.

Hence for this study, twenty companies have been taken.

4.4 Variable Selection:

Inputs and outputs should be carefully selected to conduct Data envelopment analysis. Overall, four (4) inputs and two (2) outputs are taken into consideration for the present study. These variables are selected on the basis of past work. The details of the variables along with the past

work reference are given in Table 2.

Table 2: Details of Input and Output Variables along with reference to Past Work

Variables	Output/Input	Past related work
Sales	Output	Ziae & Falahati (2017)
Profit before Interest and Tax	Output	Wang et al. (2010)
Expenses on Raw Material	Input	Ziae & Falahati (2017)
Water, power and Fuel Charges	Input	Barnum & Gleason (2008)
Employees' Compensation	Input	Zbranek(2013)
Fixed Assets (Net)	Input	Wang et al. (2010)

Source: Compiled by Author

5. Result and Findings

The following steps have been utilized to compute the efficiency scores of the steel companies:

- A linear program for each company has been formulated to compute the

efficiency scores of the companies during the pre-and post-recession period through Lingo 9.0.

- For those companies whose efficiency scores =1; super efficiency scores were computed.
- These companies were then ranked as per their efficiency and super

efficiency scores.

The linear program developed to compute the efficiency of Arati Steel Ltd during the pre-recession period is given in Annexure 1.

The efficiency and super efficiency scores computed during the pre-recession and post-recession period using Lingo software are given in Table 3 and 4 respectively

below:

Table 3: Efficiency and super efficiency scores of steel companies during the pre-recession period

	Name of Steel Companies	Efficiency	Super Efficiency
1	Aarti Steels Ltd.	1	1.03213
2	ArcelorMittal Nippon Steel India Ltd.	1	1.05566
3	Bhushan Power & Steel Ltd.	0.980694	
4	J S W Ispat Steel Ltd. [Merged]	0.869435	
5	J S W Steel Ltd.	1	1.05747
6	Jayaswal Neco Inds. Ltd.	0.766391	
7	Kalyani Steels Ltd.	1	1.0839
8	Mahindra Intertrade Ltd.	1	1.03536
9	Mahindra Ugine Steel Co. Ltd. [Merged]	0.905652	
10	National Steel & Agro Inds. Ltd.	1	1.25402
11	Rashtriya Ispat Nigam Ltd.	1	1.00986
12	Sanvijay Rolling & Engg. Ltd.	1	1.08143
13	Shah Alloys Ltd.	0.954989	
14	Steel Authority Of India Ltd.	1	1.01112
15	Sunflag Iron & Steel Co. Ltd.	0.727923	
16	Tata Steel B S L Ltd. [Merged]	0.98763	
17	Tata Steel Downstream Products Ltd.	1	1.21204
18	Tata Steel Ltd.	1	1.08075
19	Uttam Galva Steels Ltd.	0.959191	
20	Uttam Value Steels Ltd.	0.721052	

Source: Computed by Author
Table 4: Efficiency and super efficiency scores of Steel Companies during post-recession period

	Name of the Steel Companies	Efficiency	Super Efficiency
1	Aarti Steels Ltd.	1	1.08468
2	ArcelorMittal Nippon Steel India Ltd.	0.998471	
3	Bhushan Power & Steel Ltd.	0.969661	
4	J S W Ispat Steel Ltd. [Merged]	0.89674	
5	J S W Steel Ltd.	0.97907	
6	Jayaswal Neco Inds. Ltd.	0.750199	
7	Kalyani Steels Ltd.	1	1.26759
8	Mahindra Intertrade Ltd.		1.02104
9	Mahindra Ugine Steel Co. Ltd. [Merged]	0.916662	
10	National Steel & Agro Inds. Ltd.	1	1.13289
11	Rashtriya Ispat Nigam Ltd.	0.999499	
12	Sanvijay Rolling & Engg. Ltd.	0.940015	
13	Shah Alloys Ltd.	0.9743424	
14	Steel Authority of India Ltd.	0.983822	
15	Sunflag Iron & Steel Co. Ltd.	0.711737	
16	Tata Steel B S L Ltd. [Merged]	1	1.09219
17	Tata Steel Downstream Products Ltd.	1	1.09174
18	Tata Steel Ltd.	1	1.06832
19	Uttam Galva Steels Ltd.	0.931054	
20	Uttam Value Steels Ltd.	1	1.07086

Source: Computed by Author
Explanation of Table 3 and Table 4:

The results from Table 3 reflects that total of 11 companies achieved efficiency score of 1 while the remaining 9 companies were inefficient. This highlights that before the recession more than half of the companies were able to operate on efficient frontier.

In contrast to this during the post-recession period (Table 4) reveals a decline as only 8 companies achieved full efficiency while 12 companies were inefficient.

This increase in the number of the inefficient companies suggests that the global financial crisis and subsequent slowdown had an adverse effect on the

operational efficiency in the steel sector. The persistence of some companies like Kalyani Steels Ltd., Tata Steel Ltd., and Tata Steel Downstream Products Ltd. on the efficient frontier indicates the resilience in maintaining efficiency despite the turbulent environment. On the other hand, firms such as Sun flag Iron & Steel Co. Ltd consistently recorded low efficiency scores

Recession period

during both the periods indicating that the structural inefficiency that become worse in post-recession period.

The companies were ranked as per the pre- and post-recession efficiency scores. The ranks obtained by the companies are given in Table 5 below:

Table 5: Ranks obtained by the Steel Companies during the Pre- and Post-

Name of Steel Companies	Pre-Rank	Post Rank
Aarti Steels Ltd.	9	5
ArcelorMittal Nippon Steel India Ltd.	7	10
Bhushan Power & Steel Ltd.	13	14
J S W Ispat Steel Ltd. [Merged]	17	18
J S W Steel Ltd.	6	12
Jayaswal Neco Inds. Ltd.	18	19
Kalyani Steels Ltd.	3	1
Mahindra Intertrade Ltd.	8	8
Mahindra Ugine Steel Co. Ltd. [Merged]	16	17
National Steel & Agro Inds. Ltd.	1	2
Rashtriya Ispat Nigam Ltd.	11	9
Sanvijay Rolling & Engg. Ltd.	4	15
Shah Alloys Ltd.	15	13
Steel Authority of India Ltd.	10	11
Sunflag Iron & Steel Co. Ltd.	19	20
Tata Steel B S L Ltd. [Merged]	12	3
Tata Steel Downstream Products Ltd.	2	4
Tata Steel Ltd.	5	7
Uttam Galva Steels Ltd.	14	16
Uttam Value Steels Ltd.	20	6

Source: Computed by Author

Explanation of Table 5:

The ranks obtained by the companies during the pre and post period of recession shows a notable change. The Kalyan Steels Ltd actually improved from rank 3 in prerecession period to rank 1 while National Steel and Agro Industries Ltd which was ranked 1 in pre-recession period slipped to rank 2 in post-recession period. Tata Steel BSL ltd which was rank 12 in the pre-recession period sharply rose to rank 3 in post-recession period highlighting a significant efficiency gain. Companies like Sanvijay Rolling & Engineering Ltd. and

Uttam Galva Steels Ltd slipped I ranking reflecting difficulties in sustaining ranks. It can be said from the above observation that some industry leader retained their dominance while several other companies either improved or lost ground depending upon how they actually faced the inflationary pressures.

Spearman rank correlation test was conducted through SPSS to investigate if there was a significant difference in the ranks obtained by the steel companies in the pre-and post-recession period. The result of the rank correlation is given in

Table 6 below:

Table 6: Spearman Rank Correlation

		Pre-rank	Post -rank
Spearman's rho	Correlation Coefficient	1.000	.632
	Sig. (2-tailed)	.	.003
	N	20	20
	Correlation Coefficient	.632	1.000
	Sig. (2-tailed)	.003	.
	N	20	20

Source: Computed by Author

Explanation of Table 6:

The result of spearman rank correlation [0.632 (p = 0.003)] indicates that there is moderate to strong significant correlation among the ranks during the pre and post period of recession. It meant that the companies that were efficient before recession also remained competitive

afterwards during the post-recession period. Recession created both gainers and losers.

A further endeavor has been done in this paper to investigate into the averages of the various input and output variables taken for the study. The results of the mean of the various inputs and outputs are given in table 7 below:

Table 7: Mean of different input and output variables in the pre- and post-recession period

Variables	N	Pre-Mean	Post- Mean	% Increase
Raw Material	20	13266.7447	38160.7333	188
Power	20	3219.0567	6386.2925	98
Compensation	20	3259.9750	6774.2042	108
Net Fixed Assets	20	22914.4683	47254.8383	106
Sale	20	38537.9692	87862.7025	128
PBIT	20	6902.9233	14535.6567	110
Valid N (listwise)	20			

Source: Computed by Author
Explanation of Table 7:

The results show a sharp rise in input costs, with raw materials increasing by 188%, employee compensation by 108%, and fixed assets by 106% in the post-recession period. Outputs also grew, with sales rising by 128% and PBIT by 110%. Although firms managed to expand revenues, the faster rise in input costs explains why overall efficiency declined for many companies.

6. Discussion and Conclusion:

In this conclusion section an effort has been made to summarize the explanation of each table. It is concluded from the study that out of 20 steel companies, 9 were found to be inefficient during the pre-recession period having the efficiency score less than one (1). In the case of the post-recession period, the number of steel companies having an efficiency score of less than one has increased to twelve (12). This may

be perhaps due to the fact that the post-recession period includes the recession period when the manufacturing sector was affected. When the ranking of the steel companies is investigated during the pre-recession period it is observed that National Steel and Agro Inds India Ltd has been ranked as the number one steel company followed by Tata Steel Downstream Products Ltd and Kalyani Steel Ltd. In the post-recession period, Kalyani Steel Ltd has emerged as the number one steel company in terms of efficiency followed by National Steel and Agro Inds India and Tata Steel B.S.L Ltd.

A further investigation into the mean of the input variables revealed that the total raw material cost increased by 188% followed by compensation to employees (108%) and Net Fixed Assets (106%). In fact, output variables sales and Profit before interest and tax reflect a 128% and 110% increase in the post-recession period vis a vis the pre-recession period which indicates that the selected companies performed well

from 2007-08 to 2012-13.

Spearman Rank correlation test signifies that there is no significant difference between the ranks obtained by the steel companies during the pre-recession period vis a vis post-recession period. It can be safely concluded from the study that the recession did not have much impact on the ranking of the selected steel companies.

The findings of the present study actually can provide a very useful insights for a number of stakeholders like for managers, policy makers, investors or employees. For the managers the result of the study can provide a benchmark to identify inefficiencies and they can also adopt best practices in industry from frontier firms which will increase their cost control and productivity techniques.

The policymakers can utilize the result of the present study to emphasise the need for sectoral support in areas like raw material cost or energy efficiency or upgrade technology to sustain competitiveness.

The investors can use the efficiency ranking can offer a reliable measure of resilience and long-term value creation in a cyclical industry like steel.

The employee can leverage higher efficiency and profitability to job security and also skill development opportunities.

One of the limitations of the study is that this study is based on four inputs and two outputs selected for the study to compute the efficiency of the companies. If the input and output change the result may also change.

The present work can also be extended to other sectors to study the efficiency of the

companies related to that sector.

References:

- Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. *Management science*, 30(9), 1078-1092.
- Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. *European journal of operational research*, 2(6), 429-444.
- Arasu, B. S., Kannaiah, D., Nancy Christina, J., and Shabbir, M. S. (2021), "Selection of variables in data envelopment analysis for evaluation of stock performance", *Management and Labour Studies*, Vol 46 No 3, pp337-353.
- Banerjee, Arindam. "Measuring the efficiency of Indian cement companies utilizing data envelopment analysis during the pre- and post-recession period." *Serbian Journal of Management* 13.2 (2018): 201-213.
- Barnum, D. T., & Gleason, J. M. (2008). Bias and precision in the DEA two-stage method. *Applied Economics*, 40(18), 2305-2311.
- Bowlin, W. F. (1998), "Measuring performance: An introduction to data envelopment analysis (DEA)", *The Journal of Cost Analysis*, Vol 15 No 2, pp 3-27.
- Chaudhary, R., & Arora, H. D. (2022). Efficiency evaluation of public and nationalized Indian banks using data

envelopment analysis. International Journal of System Assurance Engineering and Management, 13(1), 469-478.

- Dutta, P., Jain, A., and Gupta, A. (2020), “Performance analysis of non-banking finance companies using two-stage data envelopment analysis”, *Annals of Operations Research*, Vol 295 No 1, pp 91-116.
- Fare, R., Grosskopf, S., & Lovell, C. K. (1994). *Production frontiers*. Cambridge university press.
- Giri, S., Paul, P., and Mitra, P. (2021), “Understanding the performance measurement of Indian steel Industry: A DEA approach”, *Materials Today: Proceedings*.
- Golany, B., and Roll, Y. (1989), “An application procedure for DEA”, *Omega*, Vol 17 No 3, pp 237-250.
- Lee, P. F., Lam, W. S., & Lam, W. H. (2023). Performance Evaluation of the Efficiency of Logistics Companies with Data Envelopment Analysis Model. *Mathematics*, 11(3), 718.
- Mitra Debnath, R., & Sebastian, V. J. (2014). Efficiency in the Indian iron and steel industry—an application of data envelopment analysis. *Journal of Advances in Management Research*, 11(1), 4-19.
- Smriti, T. N., and Khan, H. R. (2018), “Efficiency analysis of manufacturing firms using data envelopment analysis technique”, *Journal of Data Science*, Vol 16 No 1, pp 69-78.
- Seiford, L. M., & Thrall, R. M. (1990). Recent developments in DEA: the mathematical programming approach to frontier analysis. *Journal of econometrics*, 46(1-2), 7-38.
- Vikas, V., and Bansal, R. (2019), “Efficiency evaluation of Indian oil and gas sector: data envelopment analysis”, *International journal of emerging markets*.
- Wang, Y. M., and Chin, K. S. (2010), “Some alternative models for DEA cross-efficiency evaluation”, *International Journal of Production Economics*, Vol 128 No 1, pp 332-338.
- Zbranek, P. (2013), “Data envelopment analysis as a tool for evaluation of employees’ performance”, *Acta Oeconomica et Informatica*, Vol 16(394-2016-24293), 12-21.
- Ziae, O., and Falahati, B. (2017), “A Data envelopment analysis (DEA)-based model for power interruption cost estimation for industrial companies. In 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) ,pp. 1-5. IEEE.
- Zoakah, D. J., Mwuese, N. T., and Goyit, M. G. P. (2020), “A Data Envelopment Analysis Approach for Benchmarking of Manufacturing Efficiency in Nigeria.

Annexure:

Linear Program of Aarti Steels Ltd (Pre-recession period)

Min = Theta;

$$1764.28*w1+13407.83*w2+12000.15*w3+23461.51*w4+22640.98*w5+5270.03*w6+2623.36*w7+2056.76*w8+2211.86*w9+7237.61*w10+26782.91*w11+2638.68*w12+6285.48*w13+79582.98*w14+3551.05*w15+16516.31*w16+1804.51*w17+19395.33*w18+10284.53*w19+5818.66*w20 \leq 1764.28*\theta;$$

$$575.15*w1+13632.28*w2+859.63*w3+6314.20*w4+4093.93*w5+255.98*w6+280.26*w7+36*w8+692.21*w9+319.98*w10+2208.61*w11+152.83*w12+612.95*w13+22173.38*w14+651.21*w15+958.41*w16+28.85*w17+8225.43*w18+552.2*w19+1793.21*w20 \leq 575.15*\theta;$$

$$110.68*w1+771.75*w2+275.58*w3+959.20*w4+862.63*w5+241.31*w6+113.31*w7+51.60*w8+277.93*w9+87.06*w10+5109.5*w11+51.53*w12+104.55*w13+40613.50*w14+214.21*w15+254.86*w16+82.73*w17+14622.75*w18+177.80*w19+216.96*w20 \leq 110.68*\theta;$$

$$1473.80*w1+49446.33*w2+7798.66*w3+$$

$$62253.43*w4+59159.5*w5+3676.83*w6+1581.38*w7+117.20*w8+888.16*w9+1687.98*w10+29574.6*w11+402.13*w12+714.80*w13+130255.6*w14+2471.21*w15+9692.75*w16+853.51*w17+76900.83*w18+5335.20*w19+13005.41*w20 \leq 1473.80*\theta;$$

$$4330.28*w1+52401*w2+18648.71*w3+50526.01*w4+52519.25*w5+8998.23*w6+6637.45*w7+4386.10*w8+5216.83*w9+2950.83*w10+69162.30*w11+3981.18*w12+9791.18*w13+271594.28*w14+6954.26*w15+23812.33*w16+5014.85*w17+36781.20*w18+15676.65*w19+11376.41*w20 \geq 4330.28;$$

$$386.43*w1+6377.40*w2+2017.70*w3+5143.83*w4+12842.76*w5+373.60*w6+745.05*w7+302.58*w8+483.28*w9+342.65*w10+14897.95*w11+366.38*w12+645.75*w13+51169.9*w14+447.86*w15+2297.91*w16+351.36*w17+37835.21*w18+125.821*w19-227.40*w20 \geq 386.43;$$

$$w1+w2+w3+w4+w5+w6+w7+w8+w9+w10+w11+w12+w13+w14+w15+w16+w17+w18+w19+w20=1;$$

$$w1 \geq 0; w2 \geq 0; w3 \geq 0; w4 \geq 0; w5 \geq 0; w6 \geq 0; w7 \geq 0; w8 \geq 0; w9 \geq 0; w10 \geq 0; w11 \geq 0; w12 \geq 0; w13 \geq 0; w14 \geq 0; w15 \geq 0; w16 \geq 0; w17 \geq 0; w18 \geq 0; w19 \geq 0; w20 \geq 0;$$

ENVISIONING THEMATIC INSIGHTS ON ENTREPRENEURIAL SUSTAINABLE PRACTICES TOWARDS SCALABILITY: A BIBLIOMETRIC ANALYSIS

Manidipa DasGupta
Sandhya Kri Shaw

Abstract

Sustainable entrepreneurship confirms an eco-friendly and socially responsible business practice under the principle of 'regeneration' in compliance with the concepts like 'environmental stewardship', 'social inclusion', etc. But, in reality, due to some inconsiderate entrepreneurial activities, the complementary co-existence of entrepreneurial profitability and ethical responsibility is found spoiled which restricts its own existence also. The present study hence takes its motivation to sketch a thematic review on entrepreneurial sustainable practice towards scalability through bibliometric analysis on 202 studies extracted from Scopus and Web of Science (2004 to 2024) with PRISMA model criterion. The study, with co-occurrence network analysis, has detected some significant clusters of knowledge foundation like 'Social Welfare', 'Entrepreneurial Social Impact', 'Social change and transformation', etc. and has recommended future research avenues in relation with Decent work environment, Workforce Well-being, etc. It finds its novelty in executing scientific mapping on entrepreneurial practice towards scalability, which proves its policy implication also.

Keywords

Entrepreneurship; Scalability; Sustainable practices; Co-Occurrence, Bibliometric Analysis

Introduction

Entrepreneurial sustainability is found dependent on several exogenous and endogenous issues amongst which its own sustainable practice to promote long-lasting socio-environmental prosperity is the most significant one which differentiates it from other enterprises (Carter, 2021; Neri et al., 2023). The fact can be substantiated from the world-wide scenario where the only 30% enterprises which were supposed to be ethically responsible were found sustain for more than a decade, while majority have to down their shutters at their very inception (Carter, 2021). Entrepreneurial sustainable practices hence seem to be the continuing commitment of the enterprise to behave ethically in compliance with the satisfaction of all stakeholders in duo with its economic development. Thus, sustainable entrepreneurship can address socio-environmental concerns, economic gain and transformation of sectors towards sustainability (Guterman, 2024). All these hence create a provision to avail of entrepreneurial scalability with conditional effects of value creation to society, low/no carbon emission, etc. (Neri et al., 2023). Entrepreneurial sustainable practice towards scalability hence focuses on the entrepreneurial strategies on resource management, creating and delivering of exceptional values to customers, transparent communication with stakeholders and flexibility in the adoption of business environmental challenges (Ramakrishna et al., 2024). All these

hence ensure entrepreneurial exponential growth in terms of employees, customers, revenue, branch/unit etc. considering resource optimization, cost minimization and strategic alliance with a combination of social welfare through community engagement, equitable workplace practice as per race, gender etc. (Veleva, 2021; Harlin & Berglund, 2021; Foncubierta-Rodriguez, 2022; Palmie et al., 2023; Bohan et al., 2024; Coviello et al., 2024; Buriak & Makovoz, 2024). Entrepreneurial scalability gets its shape into **scale up** (increase in customer/employee/units), **scale out** (enterprise innovation and outlets in different locations), **scale deep** (social-personal-cultural transformation and enhancement of the standard of living of people), and **rescale** (requirements of a healthy enterprise) (Blozen et al., 2019; Plassnig et al., 2022; Kim & Kim, 2022; Paat-Dahlstrom & Dahlstrom, 2022; Ismail et al., 2022; Bohan et al., 2024). These are all inter-linked through business operation and collectively promote persistent growth of enterprises (Blozen et al., 2019; De Bruin, 2016; Moon, 2017). In this regard, entrepreneurial sustainable practice can ensure scalability only if it can obey some specific strategies suited in competitive environment (Singh, 2016; Jones, 2023; Ramakrishna et al., 2024; Align, 2024).

This backdrop, therefore, has created curiosity in research domain to emphasize on the entrepreneurial sustainability practices towards scalability which is justified with the notable number of studies indexed in Scopus and Web of Science (WoS) e-data base. The theoretical and empirical journey on that theme is dispersed with

contribution from multiple streams like Business Management and Accounting, Economics, Finance and Social Science where researchers from different countries were found engaged. The influx of literature from variant fields of study exorbitant the need for visualizing a comprehensive synthesis of the theme of knowledge.

Hence, in searching out the trends of entrepreneurial sustainable practices towards scalability, though a few studies (Harlin & Berglund, 2021; Foncubierta-Rodriguez, 2022; Henery et al., 2023; Neri et al., 2023; Ramakrishna et al., 2024; Hinderer & Kuckertz, 2024) were found to cover the present domain of research, no studies till reviewed traced the broader views of the content of the concerned research arena through network analysis. Further, no contribution is found to detect the evolution of the thematic trend analysis. This evidential gap motivates the present study to blend both qualitative and quantitative analysis to explore the past trend of the present body of knowledge and to explore potential emerging avenues of current knowledge domain in future.

In this regard, the study proposed to answer the following research questions (RQs):

RQ1: What is the annual research trend of publication in the area of entrepreneurial sustainable practices towards scalability?

RQ2: What are the themes of the most prolific article in the entrepreneurial sustainable practices towards scalability?

RQ3: What are the thematic clusters that emerged from the co-occurrence analysis of the Author's keywords in the present research domain?

RQ4: What is the scope of future research?

The remainder parts of the present study hence can be framed in four more sections. Section 2 highlights on the bibliometric research method, while Section 3 deals with the findings of the present study. Section 4 exposes the avenues for future research and section 5 discloses conclusion of the present study.

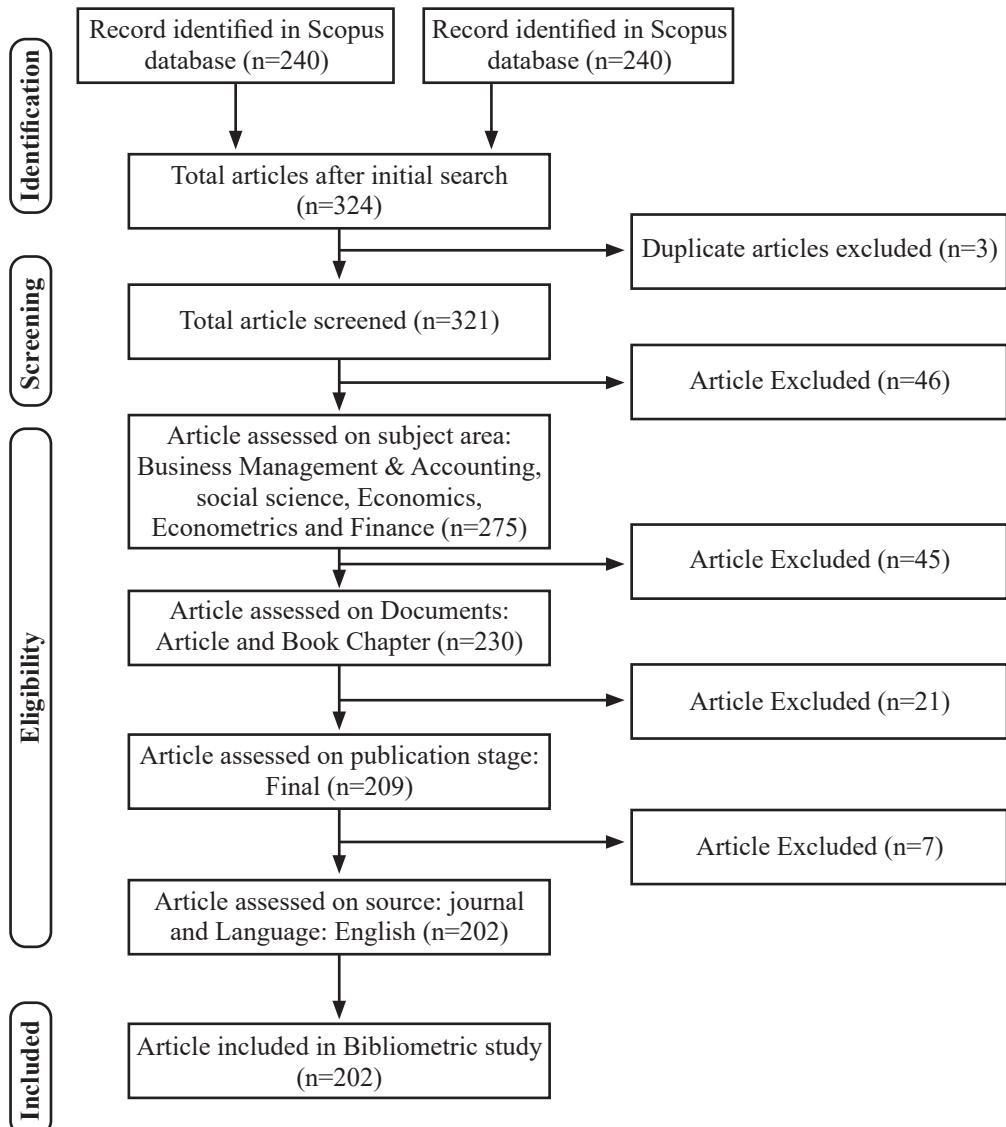
Data collection and Methodology

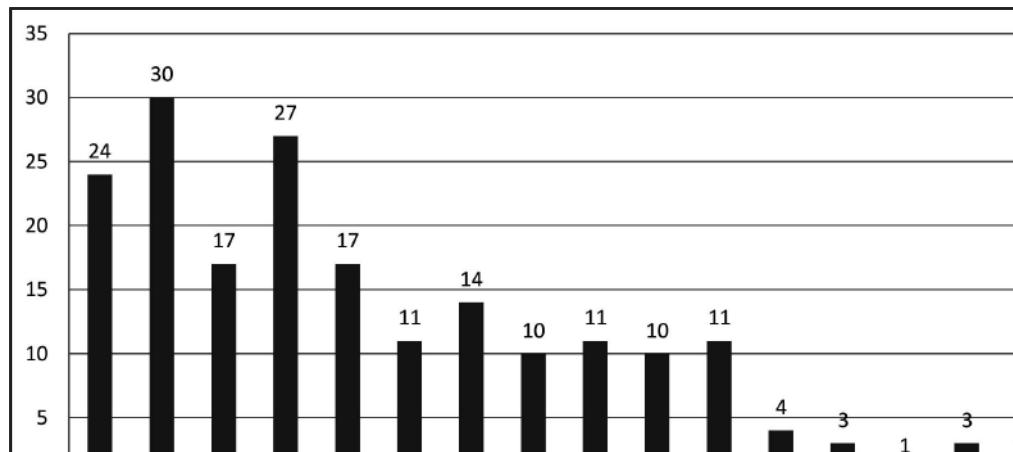
This study is exploratory in nature seeking to highlight on the past and future research trends of entrepreneurial sustainable practices towards scalability. Hence, it selected papers conditioned on the subject areas, document types, publication stage, source type, and language.

- **Data Extraction and cleaning:**

Scopus and WoS databases were accessed from 2004-2024. To avoid inaccuracies with vague/false bibliometric information e.g. duplicity (multiple entries for the same article), error (name of author in the place of country or institution), terminology or spelling inconsistency, an extraction method was adopted (Lim et al., 2024). But, papers with same title were not removed. Hence, the study step-wise adopted (a) sorting of the data, (b) locating and removing the duplicates, (c) making cross-checks, (d) saving the duplicate-free bibliometric dataset, and (e) updating review protocol with bibliometrix approach of R tool.

- **Searching Tool:** The search tool of the present study appears with the keywords 'Entrepreneur' OR 'Entrepreneurship' AND 'Sustainable' OR 'Sustainability' AND 'Scaling' OR 'Scalability*'. The keywords were found in the title or/and within the text of the article. The asterisk mark (*) was used as an advanced search where the related terms of keywords such as 'Enterprise' and 'Enterprises' were also searched at a time. The 'AND' was used to combine two separate keywords, and 'OR' was used for interchangeable keywords.
- **Subject Area:** Due to the multidimensionality of the concepts, the present study searched for Business Management, Accounting, Economics, Econometrics, and Finance as its subject area.
- **Document Type:** Only 'Articles' and 'Book Chapters' published in the aforementioned subject areas were considered.
- **Publication Stage:** The present study preferred to accept the 'final stage of publication' of articles to get assurance of their publication.
- **Source Type:** Journal and Edited Volume are taken in the present study to maintain a specific quality standard.
- **Language:** English language is selected for the present study as it is universally accepted and considered as the basic language of international communication for reaching the widest possible audience.




Figure 1: The PRISMA Model of the present study
Source: Author's compilation based on sources of database

3. Findings of the present study

3.1 Annual research trends of entrepreneurial sustainable practices towards Scalability

The sustainability and scaling related research got attention from the academic fraternity of entrepreneurship from 2004. Passing through a volatile publication trend, the concerned knowledge domain got its maximum publication in the year 2023 where around 44% were traced as

published after 2020. During this tenure from 2004 to 2024, 2004 and 2011 were found as the most unproductive years might be due to the disturbance in the support of funding mechanism from the US Government, European debt crisis, inflation and disturbance of the global supply chain due to some natural calamities like Japan earthquake and tsunami which diverted the attention of research fraternity. Figure 2 reflects the year- wise publication trend (in number) since 2004.

Figure 2: Year-wise Publication on Entrepreneurial sustainable practices towards Scalability

Source: Author's Compilation based on Scopus and WOS database

3.2 Themes of the most prolific articles on Entrepreneurial sustainable practices towards scalability

'Social Entrepreneurship and Societal Transformation: An Exploratory Study' by Alvord S.H.; Brown L.D.; Letts C.W (2004) was claimed as the most prolific

article (citation: 831) arguing in favour of **social change and transformation** as a means for entrepreneurial sustainability and scaling. The study, though stressed on the equitable mode of business growth and social sustainability through scale up and scale deep strategies, lacked considering

entrepreneurial environmental activities and social innovation for its long-term prosperity and suitability. It contradicted the findings of Gliedt et al. (2018) and Gasca (2017) where enterprise innovation was regarded as the sole contributor to sustainable practice and scaling. The next most prolific study, 'New urban utopias of postcolonial India: An Entrepreneurial urbanization in Dholera smart city, Gujarat' by Dutta (2015) (citation: 387), though opposed the effect of any business model in transforming regional culture, opined in favour of the effect of that model in regional economic sustainability and thus accepted a **robust business model** for achieving entrepreneurial sustainability and scalability. The study hence was found in different direction from the findings of Bocken (2015) and Moon (2017) where sustainable finance was supposed to be the most significant for meeting ecological and economic wellness and scaling of an enterprise. Next best prolific study by Law (2014) entitled 'Scale, change, and resilience in community tourism planning' (citation: 243) considered **resilience planning** as a means to identify the potential hazards and threats to establish a recovery plan for its sustainability. But the study encountering the most prolific study accepted only economic resilience irrespective of social and ecological resilience for social change and transformation. Entrepreneurial **social innovation** was accepted as a way to get sustainability and scalability by the next most prolific study, 'Sustainable venture capital - Catalyst for sustainable start-up success?' by Bocken (2015) (citation: 176), which was also endorsed by Gasca

(2017) (Living labs: Implementing open innovation in the public sector' citation: 134), Gliedt et al., (2018) ('Innovation Intermediaries Accelerating Environmental Sustainability Transitions' citation: 109).

3.3 Co-occurrence network of Author's keywords

Co-occurrence analysis indicates the potential relationship and occurrence of two or more concepts, themes, and keywords under a specific research domain. With the help of co-occurrence analysis, the present study satisfies the third research question, i.e., identification of the thematic cluster under the research area 'Entrepreneurial sustainable practices towards scalability.

A total of 613 keywords were found in the present research field where from 34 keywords were selected for analysis considering the discretionary criterion of having three or more-time occurrences. Table-1 and Figure 3 exhibit the themes that prevailed in the selected keywords with seven clusters prevailing between 2013 and 2024, viz. 'Social Innovation of Enterprise', 'Entrepreneurial Social Impact', 'Social change and transformation', 'Social Welfare', 'Scalable Business Model', 'Entrepreneurial Orientation' and 'Sustainable development'. The themes collectively focused on the excellence of operation and performance of team work for enhancing the sustainable practices towards scaling of enterprises. Social innovation, social impact, social changes, social welfare were tools of sustainable practices which performed through products and services with low

negative impact on society and exceptional utility to customers. This would make an entrepreneurial distinct image in the eyes of customers, could attract new customers and confirmed eligibility in taking special benefits from the stakeholder for scaling (scale up, scale out, scale deep).

Cluster 1: The theme conformed entrepreneurial social sustainability and growth with the adoption of **social innovation** in products and services. The cluster pointed out the support of the latest technology, venture capital fund, and conducive environment as the means to achieve scalability in operation (Bocken et al., 2016; Gasca, 2017).

Cluster 2: The theme argued in favour of the **impact of entrepreneurial growth on society** and its people which complementarily impose positive effect on its prosperity and scalability (Blozen et al., 2019).

Cluster 3: The studies (Das & Koch, 2014; Gliedt et al., 2018) under the cluster endorsed the entrepreneurial socio-environmental contribution in compliance with **social change and transformation** like women empowerment, better livelihood of local people, developing green skills and gender equality along with social innovation for successful

sustainability and scalability of enterprise.

Cluster 4: The studies under the cluster ensured active participation of the enterprises in upgrading standard of living of local people in view of achieving **social welfare** and entrepreneurial scalability (Garbie, 2015; Acquier et al., 2019). This contribution helps in making unique identity and long-term successful survival of the enterprise in competitive market.

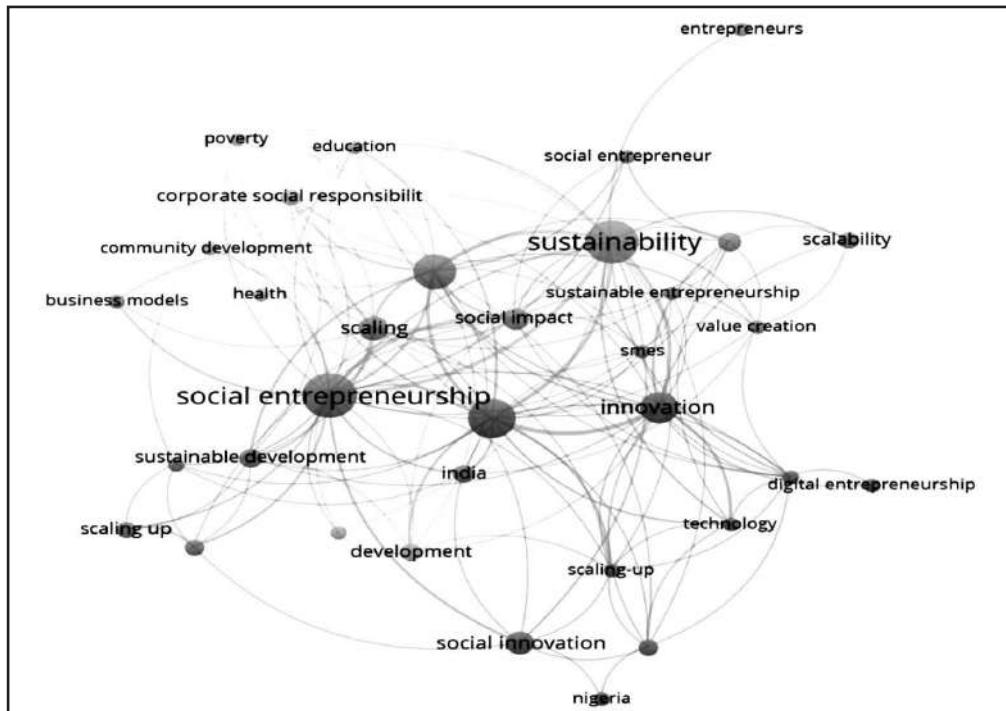
Cluster 5: The theme stressed on the robust **scalable business model** in an equitable mode of profit earning capacity and societal contribution which could protect the same from sudden macro environmental shock and ensure to get sustainability and scalability (Acquier et al., 2019).

Cluster 6: The cluster argued in favour of strong and positive **entrepreneurial orientation**, operational support, and team performance to reach entrepreneurial growth and sustainability (Aschari-Lincoln & Jacobs, 2018; Foncubierta-Rodriguez, 2022). The initiative further would help encounter challenges and thus ensured long-term prosperity.

Cluster 7: The thematic focus of the cluster confirmed the sustainable

development practice of an enterprise, specially in an area required to be developed. This ensured special entrepreneurial

recognition in competitive market and thus offered sustainability (Van Loon et al.,2018).


Table 1

**Thematic Clusters on Entrepreneurial sustainable practices towards scalability
(Co-occurrence Analysis)**

Cluster/ Theme	Authors	Title	TC
Cluster:1 Social Innovation of Enterprise	Moore, M.-L., Riddell, D., & Vocizano, D. (2015).	Scaling Out, Scaling Up, Scaling Deep: Strategies of Non-profits in Advancing Systemic Social Innovation	70
	Bocken N.M.P.; Fil A.; Prabhu J. (2016)	Scaling up social businesses in developing markets	62
	Gasca M (2017)	Living labs: Implementing open innovation in the public sector	134
	Bolzan, L. M., Bitencourt, C. C., & Volkmer, M. B. (2019).	Exploring the scalability process of social innovation	56
Cluster: 2 Social impact of enterprises	Sandeep M.S.; Ravishankar M.N.(2015)	Social innovations in outsourcing: An empirical investigation of impact sourcing companies in India	42
	Bocken N.M.P.; Fil A.; Prabhu J. (2016)	Scaling up social businesses in developing markets	62
	Aschari-Lincoln J.; Jacobs C.D.(2018)	Enabling effective social impact: Towards a model for impact scaling agreements	29
Cluster:3 Social change and transformation,	Alvord S.H.; Brown L.D.; Letts C.W. (2004)	Social Entrepreneurship and Societal Transformation: An Exploratory Study	831
	Desa G.; Koch J.L(2014)	Scaling Social Impact: Building Sustainable Social Ventures at the Base-of-the-Pyramid	116
	Gliedt T.; Hoicka C.E.; Jackson N. (2018)	Innovation Intermediaries Accelerating Environmental Sustainability Transitions	109

Cluster: 4 Social Welfare	Bocken N.M.P. (2015)	Sustainable venture capital - Catalyst for sustainable start-up success	71
	Garbie, I. (2016)	Sustainability in small and medium-sized manufacturing enterprises: An empirical study	
	Acquier A.; Carbone V.; Masse D. (2019)	How to create value(s) in the sharing economy: Business models, scalability, and sustainability	176
Cluster: 5 Scalable Business Model	Dobson K.; Boone S.; Andries P.; Daou A. (2018)	Successfully creating and scaling a sustainable social enterprise model under uncertainty: The case of ViaVia Travellers Cafa	27
	Acquier A.; Carbone V.; Masse D. (2019)	How to create value(s) in the sharing economy: Business models, scalability, and sustainability	71
	Dressler M.; Paunović I. (2020)	Towards a conceptual framework for sustainable business models in the food and beverage industry: The case of German wineries	19
Cluster: 6 Entrepreneurial Orientation	Aschari-Lincoln, J., & Jacobs, C. D. (2018).	Enabling Effective Social Impact: Towards a Model for Impact Scaling Agreements	10
	Wakkee I.; van der Sijde P.; Vaupell C.; Ghuman K. (2019)	The university's role in sustainable development: Activating entrepreneurial scholars as agents of change	55
	Foncubierta-Rodríguez, M.-J. (2022)	Influence of the entrepreneur's personal values in business governance style and their relationship with happiness at work.	12
Cluster: 7 Sustainable development	Moon C.J. (2018)	Contributions to the SDGs through social and eco entrepreneurship: New mindsets for sustainable solutions	12
	Singer J.B. (2018)	Fact-Checkers as Entrepreneurs: Scalability and sustainability for a new form of watchdog journalism	24
	Van Loon, J., Woltering, L., Krupnik, T. J., Baudron, F., Boa, M., & Govaerts, B. (2020)	Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America	76

Source: Author's compilation based on Scopus and WOS database

Figure 3: Co-occurrence network of author's keywords based on Entrepreneurial sustainable practices towards scalability

Source: Author's Compilation based on Scopus and WOS database

Figure 4 visualizes the relevance of the study in the academic world with the support of word cloud analysis (R tool – Biblioshiny). The examination of frequency of searching of keywords of the present research domain can be picturized

through word cloud analysis. The bigger size of the keywords (Entrepreneurship, sustainability, scaling up, etc.) confirmed maximum number of studies from the respective field.

Figure 4

Word cloud for Author's keywords on Entrepreneurial sustainable practices towards scalability

Source: Author's compilation based on Scopus database, WOS, and R tool (Biblioshiny)

4. Avenues for future research

Considering the thematic analysis on the present research domain, it can be confirmed that entrepreneurial socio-environmental performance with a complementary effect of its economic wellness under the guidance of innovation, effective leadership, social transformation, etc. would be the basic means to achieve entrepreneurial sustainability and scalability. The domain hence claims to have a direction of future potential studies where further research can be pursued.

4.1 Leadership style and entrepreneurial sustainable practices towards scalability
Leaders with socio-cultural motives have more sustainable practices towards

entrepreneurial scaling (Inkumsah, 2024; Hanifzadeh et al., 2024). Literature (Inkumsah, 2024; Naguib & Barbar, 2025) confirmed more effectiveness and efficiency of the women leaders in entrepreneurial social changes and transformation. Leadership style (autocratic, democratic, participative, transactional, and transformational) in compliance with the situational requirement ensures long-term survival and scalability of enterprise (Hanifzadeh et al., 2024). Likewise, the leadership style, its motive (personal, economic, and social) behind joining in the enterprise etc. would have a positive influence towards scaling and sustainability of the enterprise (Aschari-Lincoln & Jacobs, 2018; Okeke, 2019; Foncubierta-Rodriguez, 2022; Hanifzadeh et al., 2024).

The domain hence should encounter some questions for further studies like which leadership style is most preferable for enhancing employee performance in a sustainable entrepreneurship? How do positive commitment and loyalty of the leader towards the enterprise promote sustainability and scaling of a nascent enterprise? Is women leader of an enterprise more responsible to have entrepreneurial sustainable practice towards scalability?

4.2 Workforce well-being and entrepreneurial sustainable practices toward scalability

Workforce wellbeing encompasses the holistic state of employees' physical, mental, and emotional health at work, which is crucial for their performance, retention, and productivity (Asriandi et al., 2024) and also creates a direct relationship with entrepreneurial sustainable practices towards scalability. Moving on workforce wellbeing, enterprises should consider a supportive and inclusive environment with strategic consciousness across all operations (Bryson et al.,2017). The area of study hence wants to locate some questions like what factors do influence workforce wellbeing at enterprise? How does workforce wellbeing relate with entrepreneurial sustainable practices? What is the impact of workforce wellbeing on entrepreneurial scalability?

4.3 Decent work environment and entrepreneurial sustainable practices towards scalability

Decent work confirmed workable environment encompassing opportunity for productive work, fair income, health-security, freedom to express concerns, equitable treatment for all at workplace (Mukhuty & Johnson, 2021; Genedy et al.,2024). Thus, the concept can be undertaken as a part of sustainable practices of entrepreneurs which can assure scalability. But, sometimes intentionally or inadvertently, the decent work environmental condition is not found to be maintained at enterprise, which restricts its productivity and hence requires proper supervision and monitoring. Now, some research questions may be undertaken for further studies, viz. What is the reason behind maintaining decent work environment in enterprise? What factors of decent work environment are found crucial for maintaining entrepreneurial sustainable practices towards scalability?

4.4 Green initiatives in the sustainable practice of enterprise towards scalability

The green initiatives would be the pro-ecological initiatives that could promote environmental sustainability with economic benefits (Olson,2008; Wysocki, 2021). It would include the green technology adoption, green financing, conserving water, renewable energy and optimal utilization of resources for sustainability and scalability (Rasi et al.,2010; Wysocki, 2021; Wang & Cheng, 2024; Tazhibekova & Shametova, 2025). The enterprise hence could assure minimization of wastage of resources and lowest contribution to carbon footprint (Tazhibekova & Shametova, 2025). But,

in the manufacturing enterprises, the adoption of green technology as a tool for environmental sustainability and future scalability would moderately be influenced compared to the energy efficiencies and water conservation (Rasi et al.,2010; Yacob, 2017; Wang & Cheng, 2024). Thus, future research may be undertaken on some questions like How do green innovations ensure scalability of an enterprise? How does adoption of green technology reduce the carbon footprint of an enterprise? What measures are found effective for customer awareness of green innovation and green technology adopted by an enterprise?

5. Conclusion

Entrepreneurial sustainable practices towards scalability are an equitable concept of persistent growth of business variables (revenue, profit, employees) and sustainable activities of the enterprise for environment and society. The present study concluded with valuable insights into the bibliographic data on 202 articles based on Scopus and WOS databases on entrepreneurial sustainable practices towards scalability. The first article (Alvord et al.,2004) of the present domain argued in favour of the entrepreneurial social change and transformation in a competitive world. It should also be stressed on the application of scale deep strategy of scaling along with the scale up and out for better survival of enterprises. The study found its major theme of knowledge foundation with 'Social Innovation of Enterprise', 'Entrepreneurial Social Impact', 'Social change and transformation',

'Social Welfare', 'Scalable Business Model', 'Entrepreneurial Orientation' and 'Sustainable development'. It also emphasised on the future trend of research on the positive impact of leadership, workforce wellbeing and decent work environment in association with the entrepreneurial sustainable practices towards scalability.

The present study proves its policy implication with the conceptualization of the context of sustainable practices of entrepreneurs towards scalability grounded with co-occurrence and the future research trend in this knowledge domain. But, like other studies, the present study cannot deny its limitations connected mainly with the data sources and citation analysis. In this regard, due to time and resource constraints, data sources are limited only to Scopus and WoS, omitting other sources like Dimension, ABDC, etc. Though citation of a paper is taken as the only condition to measure its influential aspect, the probable negative meaning of high citation on a paper is neglected in this study which might be linked with some confrontation in this ground.

References

- Acquier, A., Carbone, V., & Massé, D. (2019). How to create value (s) in the sharing economy: Business models, scalability, and sustainability. *Technology Innovation Management Review*, 9(2). <https://www.timreview.ca/article/1215>
- Align. (2024, March 5). *Sustainable Scaling: Strategies for Value-*

Driven Business Growth. <https://alighttoday.com/blog/sustainable-scaling#:%~:text=The%20Core%20of%20Sustainable%20Scaling,planning%20to%20daily%20decision%2Dmaking>.

- Alvord, S. H., Brown, L. D., & Letts, C. W. (2004). Social Entrepreneurship and Societal Transformation: An Exploratory Study. *The Journal of Applied Behavioral Science*, 40(3), 260–282. <https://doi.org/10.1177/0021886304266847>
- Aschari-Lincoln, J., & Jacobs, C. D. (2018). Enabling Effective Social Impact: Towards a Model for Impact Scaling Agreements. *Sustainability*, 10(12), 4669. <https://doi.org/10.3390/su10124669>
- Asriandi, A., Sitompul, G. A., & Sangaji, J. (2024). Transforming Workforce Dynamics: The Role of Remote Work Flexibility, Technological Adoption, and Employee Wellbeing on Productivity of State Owned Enterprise Employee. *International Journal of Business, Law, and Education*, 5(2), 2445–2457.
- Bocken, N. M. (2015). Sustainable venture capital - Catalyst for sustainable start-up success? *Journal of Cleaner Production*, 108, 647–658. doi:10.1016/j.jclepro.2015.05.079
- Bocken, N. M., Fil, A., & Prabhu, J. (2016). Scaling up social businesses in developing markets. *Journal of Cleaner Production*, 139, 295–308.
- Bohan, S., Tippmann, E., Levie, J., Igoe, J., & Bowers, B. (2024). What is scaling? *Journal of Business Venturing*, 39(1), 106355.
- Bolzan, L. M., Bitencourt, C. C., & Volkmer, M. B. (2019). Exploring the scalability process of social innovation. *Innovation & Management Review*, 16(3), 218–234. <https://doi.org/10.1108/INMR-05-2018-0029>
- Bryson, A., Forth, J., & Stokes, L. (2017). Does employees' subjective well-being affect workplace performance? *Human Relations*, 70(8), 1017–1037. <https://doi.org/10.1177/0018726717693073>
- Buriak, M., & Makovoz, O. (2024). Scaling for sustainability: A change management framework aligned with SDGs. *L. & Innovative Soc'y*, 52.
- Carter, T. (2021, January 3). *The True Failure Rate of Small Businesses*. Entrepreneur. <https://www.entrepreneur.com/startng-a-business/the-true-failure-rate-of-small-businesses/361350>
- Coviello, N., Autio, E., Nambisan, S., Patzelt, H., & Thomas, L. D. (2024). Organizational scaling, scalability, and scale-up: Definitional harmonization and a research agenda. *Journal of Business Venturing*, 39(5), 106419.
- Desa, G., & Koch, J. L. (2014). Scaling Social Impact: Building Sustainable Social Ventures at the Base-of-the-Pyramid. *Journal of*

- *Social Entrepreneurship*, 5(2), 146–174. <https://doi.org/10.1080/19420676.2013.871325>
- De Bruin, A. (2016). Towards a framework for understanding transitional green entrepreneurship. *Small Enterprise Research*, 23(1), 10–21. <https://doi.org/10.1080/13215906.2016.1188715>
- Datta, A. (2015). New urban utopias of postcolonial India: 'Entrepreneurial urbanization' in Dholera smart city, Gujarat. *Dialogues in Human Geography*, 5(1), 3–22. <https://doi.org/10.1177/2043820614565748>
- Foncubierta-Rodríguez, M.-J. (2022). Influence of the entrepreneur's personal values in business governance style and their relationship with happiness at work. *Corporate Governance: The International Journal of Business in Society*, 22(3), 592–617. <https://doi.org/10.1108/CG-05-2021-0197>
- Garbie, I. (2016). Sustainability in small and medium-sized manufacturing enterprises: An empirical study. *The Journal of Engineering Research [TJER]*, 13(1), 42–57.
- Gascó, M. (2017). Living labs: Implementing open innovation in the public sector. *Government Information Quarterly*, 34(1), 90–98. doi:10.1016/j.giq.2016.09.003
- Genedy, M., Wiklund, J., & Bakker, A. (2024). EMPLOYEE WORK CONDITIONS AND WELL-

- BEING IN SCALE-UPS. *Frontiers of Entrepreneurship Research*, 44. <https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authType=crawler&jrnln=07407416&AN=183357444&h=19buseuveIolfkLknXgPV%2BZzPeYg7fhjejLrFMOGWh83YLcn00WD7Gy0SrqFSQIEyUZUn624F7v4iZgSbatQ%3D%3D&crl=c>
- Gliedt, T., Hoicka, C. E., & Jackson, N. (2018). Innovation intermediaries accelerating environmental sustainability transitions. *Journal of Cleaner Production*, 174, 1247–1261.
- Hanifzadeh, F., Talebi, K., & Jafari-Sadeghi, V. (2024). Scalability of startups: The impact of entrepreneurial teams. *Journal of Global Entrepreneurship Research*, 14(1), 15. <https://doi.org/10.1007/s40497-024-00383-7>
- Harlin, U., & Berglund, M. (2021). Designing for sustainable work during industrial startups—The case of a high-growth entrepreneurial firm. *Small Business Economics*, 57(2), 807–819. <https://doi.org/10.1007/s11187-020-00383-3>
- Henry, M., Hoogenstrijd, T., & Kirchherr, J. (2023). Motivations and identities of "grassroots" circular entrepreneurs: An initial exploration. *Business Strategy and the Environment*, 32(3), 1122–1141. <https://doi.org/10.1002/bse.3097>
- Hinderer, S., & Kuckertz, A. (2024). Degrowth attitudes among

entrepreneurs hinder fast venture scaling. *Business Strategy and the Environment*, bse.3735. <https://doi.org/10.1002/bse.3735>

- Inkumsah, S. G. (2024). Female Entrepreneur's Perspective on Gender Equality and Strategies for Sustainable Entrepreneurship-A Qualitative Study of Female Entrepreneurs' motivation, challenges, and Contribution to Gender Equality and sustainability in entrepreneurship. <https://gupea.ub.gu.se/handle/2077/82379>
- Ismail, A., Ghalwash, S., & El Sebaie, N. (2022). Up-Fuse: International growth of an Egyptian eco-friendly social enterprise. *Emerald Emerging Markets Case Studies*, 12(1), 1–24. <https://doi.org/10.1108/EEMCS-10-2020-0390>
- Jones, L. (2023, April 17). Sustainable scaling: What it is and how you do it. <https://techfundingnews.com/sustainable-scaling-what-it-is-and-how-you-do-it/>
- Kim, S., & Kim, A. (2022). Going Viral or Growing Like an Oak Tree? Towards Sustainable Local Development Through Entrepreneurship. *Academy of Management Journal*, 65(5), 1709–1746. <https://doi.org/10.5465/amj.2018.0041>
- Lew, A. A. (2014). Scale, change and resilience in community tourism planning. *Tourism Geographies*, 16(1), 14–22. <https://doi.org/10.1080/14616688.2013.864325>
- Lim, W. M., Kumar, S., & Dontu, N. (2024). How to combine and clean bibliometric data and use bibliometric tools synergistically: Guidelines using metaverse research. *Journal of Business Research*, 182, 114760.
- Moon, C. (2017). 100 global innovative sustainability projects: Evaluation and implications for entrepreneurship education. 805–816.
- Mukhutty, S., & Johnson, S. (2021). Entrepreneurship Skills Needs and Policies: Contribution to Decent Work. In F. Christie, M. Antoniadou, K. Albertson, & M. Crowder (Eds.), *Decent Work* (pp. 83–96). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-80117-586-920211007>
- Naguib, R., & Barbar, J. (2025). Factors Shaping Sustainability Through Female Entrepreneurship in the GCC: A Systematic Review with Multi-Level and Institutional Perspective. *Sustainability*, 17(5), 2163.
- Neri, A., Butturi, M. A., Lolli, F., & Gamberini, R. (2023). Inter-firm exchanges, distributed renewable energy generation, and battery energy storage system integration via microgrids for energy symbiosis. *Journal of Cleaner Production*, 414, 137529. <https://doi.org/10.1016/j.jclepro.2023.137529>
- Okeke, V. I. (2019). Leadership style and SMEs sustainability in Nigeria: A multiple case study. *Walden*

University. <https://search.proquest.com/openview/5e6975be8e48121f2e37da46571a0361/1?pq-origsite=gscholar&cbl=18750&diss=y>

- Olson, E. G. (2008). Creating an enterprise-level “green” strategy. *Journal of Business Strategy*, 29(2), 22–30.
- Paat-Dahlstrom E.; Dahlstrom E. (2022). Catalyzing Space Industries: Lessons learned from New Zealand on building entrepreneurial space ecosystems in developing and emerging countries. <https://www-scopus-com-buruniv.knimbus.com/inward/record.uri?eid=2-s2.0-85167593404&partnerID=40&md5=aa8f50caa17bc357a13e88fc28a0393e>
- Palmié, M., Parida, V., Mader, A., & Wincent, J. (2023). Clarifying the scaling concept: A review, definition, and measure of scaling performance and an elaborate agenda for future research. *Journal of Business Research*, 158, 113630.
- Plassnig, S. N., Pettit, M., Reichborn-Kjennerud, K., & Säumel, I. (2022). Successful scaling of Edible City Solutions to promote food citizenship and sustainability in food system transitions. *Frontiers in Sustainable Cities*, 4, 1032836. <https://doi.org/10.3389/frsc.2022.1032836>
- Ramakrishna, Y., Agarwal, R., & Indiran, L. (2024). Strategies for Developing Entrepreneurial Start-Up Scalability and Sustainability. In *Innovation and Resource Management Strategies for Startups Development* (pp. 215–235). IGI Global. <https://www.igi-global.com/chapter/strategies-for-developing-entrepreneurial-start-up-scalability-and-sustainability/340246>
- Rasi, R. Z., Abdekhodaei, A., & Nagarajah, R. (2010). Environmental initiatives: An exploration of small and medium enterprise (SMEs) responses toward green technologies. International Conference on Logistics and Transport, Queenstown, New Zealand. https://www.academia.edu/download/40280895/ENVIRONMENTAL_INNOVATIVES_AN_EXPLORATION20151122-7907-xitj37.pdf
- Singh, A. (2016). Creating Values for the Beneficiaries: Interplay of Opportunity Recognition, Resource Mobilisation (Resourcefulness) and Capabilities of Social Entrepreneurs. In A. Singh, *The Process of Social Value Creation* (pp. 173–202). Springer India. https://doi.org/10.1007/978-81-322-2827-1_9
- Tazhibekova, K., & Shametova, A. (2024). Ecological Initiatives and Their Influence on the Competitiveness and Sustainability of Companies: “Green” Strategies of SMEs. *Journal of the Knowledge Economy*, 16(1), 1623–1645. <https://doi.org/10.1007/s13132-024-02062-0>
- Van Loon, J., Woltering, L., Krupnik, T. J., Baudron, F., Boa,

M., & Govaerts, B. (2020). Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. *Agricultural Systems*, 180, 102792.

- Veleva, V. (2021). The role of entrepreneurs in advancing sustainable lifestyles: Challenges, impacts, and future opportunities. *Journal of Cleaner Production*, 283, 124658. <https://doi.org/10.1016/j.jclepro.2020.124658>
- Wang, L., & Cheng, Z. (2024). Impact of the Belt and Road Initiative on enterprise green transformation. *Journal of Cleaner Production*, 468, 143043.
- Wysocki, J. (2021). Innovative green initiatives in the manufacturing SME sector in Poland. *Sustainability*, 13(4), 2386.
- Yacob, P., Wong, L. S., & Khor, S. C. (2019). An empirical investigation of green initiatives and environmental sustainability for manufacturing SMEs. *Journal of Manufacturing Technology Management*, 30(1), 2–25.

FACTORS DETERMINING GLASS CEILING ON WOMEN CAREER ADVANCEMENT

Gayatri M. P

Abstract

Women are graduating with managerial expertise and technical knowhow, and entering the corporate with much ease, but their push to progress in the higher corridors of the management is much slow. The paper focus to identify and evaluate the most common barriers responsible for Glass Ceiling. To reach this objective, the study focused on five dimensions such as Individual, Family, Socio-cultural, Organisational and Corporate climate factors with few items. The study was carried out using a structured and administered questionnaire distributed to 525 women employees' working in middle and junior level in Information Technology sector in Bengaluru and secondary data was gathered by going through existing and recent literature and reports which focused in the context of Glass Ceiling. Sampling method such as Convenience sampling was used to collect the data. Statistical tests such as multiple regressions were used to test the key hypotheses in order to analyse the data SPSS software was used. It was found from the outcome that there is statistical significant impact of glass ceiling barriers on turnover intention and the proposed model is a good fit.

Keywords

Barriers, Glass Ceiling, Information Technology, Women.

Introduction

Women in India have played a vital role in all walks of life. The contribution of women to the economic growth of the nation can be ascertained by the number of women joining the workforce, especially the Information Technology sector (S. Lakshminaryanan and A. Savarimuthu, 2016). Today's workforce is unique and so much diverse than never before as women and minority are integrated in the workforce, despite this remarkable increase in the involvement and increase in the workforce but their entry to the diverse managerial position still remains restricted this fact is confirmed from various studies. Inspite of professional opportunities and ample options still women is not presented at the higher corridors of the management (Pillai, Prasad and Thomas 2011). Women are not advancing at the same rate when compared to their male counterparts this gap led to the discourse about "Glass Ceiling". The Glass Ceiling phenomenon was first mentioned in a Wall Street Journal article and made entry to the corporate world by Carol Hymowitz and Timothy Schellhardt, (1986) to describe the lack of upward mobility of women and minorities into executive ranks in corporate jobs today. As per sustainable development goals, goal # 5 gender equality includes nine targets wherein target # 5.5 ensures women's full and effective participation in leadership and decision making. Therefore, empowering women will fuel the sustainable economies and benefit the society and humanity at

large. The present study is carried in IT sector, as IT sector being most populous and majorly contribute to the GSDP of Karnataka.

According to Marriam-Webster Dictionary "Glass Ceiling is an intangible barrier within a hierarchy that prevents women or minorities from obtaining upper-level positions"

Problematic

Women make up approximately 50 per cent of the global population. The presence of women on boards is crucial for the good corporate governance practices (Jayati Sarkar and Ekta Selarka 2015). Inspite of Company Act 2013 made an amendment that at least one woman should be represented on the board, followed by SEBI (2015) that all the listed companies must comprise of one Women in the Board of Directors but still India statistically lags behind when compared to other countries who have been implementing quota reforms. The population of female employees working in IT industry is high and more female are concentrated only in lower and middle level management and encounter glass ceiling which is a hindrance in terms of both visible and invisible obstacle for a women to climb corporate ladder when compared to male. As per (Global Gender Gap Report 2016) Globally gender diversity in IT companies averages at 31 percent, while for the Indian IT firms stands still low at 21 percent, proving that the Glass ceiling still exists.

Review Of Literature

Works on Common Barriers Responsible for Glass Ceiling

In the present section, the researcher has reviewed few empirical works on glass ceiling barriers such as individual, family, socio-cultural, organisational and corporate climate. However, there are no empirical works carried on corporate climate. Therefore, in some studies organisation barriers, corporate climate and corporate culture are used interchangeably.

Individual Barriers Individual barrier is considered as the most influential factor for the women career advancement (Bombuwela and De Alwis, 2013). Education and experience can be looked as factors of individual barrier, but in the recent past large number of women are graduating from reputed educational institutions and are securing required job experience with par with their male counterparts (Jayawardane and Sajeewani, 2017). (Myers, 2017) opines that there is an increasing trend in the participation of women in the higher education, but there is disparity in the attainment of the leadership position. (Smith, Crittenden and Caputi, 2012) states that women are helpful, kind, sympathetic and nurturing while men are ambitions, self-confident, independent and assertive which are considered as highly important traits to hold the upper management position. Furthermore, Francis Ofunya Afande, (2015) in his study has found that individual barriers such as age, gender based issues, individual skills, tenure, hard work, reputation, more self-critical than men and lack of

self-confidence affect more on women's career advancement in the banking sector in Kenya. Supporting this (Tharenou, 2005) pinpointed the importance of individual factors such as work experience, personality and education.

Family Barriers Women in IT professionals are challenged by the demands of the work as well as their families. The winds of change have touched them in their career roles, but they remain untouched in their domestic roles. Working women have to perform the juggling act which includes the multiple responsibilities and roles at work such as heavy meetings, business trips, foreign assignments and the daily chores of life and home. Women employees working in IT sector are torn between these seemingly irreconcilable commitments to work and family (S. Lakshminaryanan and A. Savarimuthu, 2016). (Adhikary, 2016) has explained that lack of job exposure and marriage during their career are factors that hindrance career development. (Cansu Akpinar Sposito, 2013) work and life balance challenges will have a bearing on the career progression of the women, if not handled properly may contribute to the glass ceiling phenomena.

Socio-cultural Barriers In many countries especially in India, women are presumed to be weak and emotionally fragile beings and also stereotyped as not being astute and aggressive enough to lead an organisation (Ambreen Wani, 2013). (Bijay Lama, 2019) the objective of the study was to find out the upshot of glass ceiling on women career growth in banks which are functioning in Pokhara Metropolitan city. Multiple

regressions were run to find the impact of social, personnel and organisational barrier on women career development. It was found that independent variables explained 39.1 per cent of the variance of dependent variable. It was also found that among the glass ceiling factors the most influencing factor is social factor.

Organisational Barriers Women career advancement is hampered by the organisation HR Practices, structure and culture (Tlaiiss and Kauser, 2010) the author furthermore added tokenism, lack of mentoring, poor interpersonal relationships, role modeling, organisational networking as factors of organisational barriers. (Myers, 2010) further added lack of opportunity to participate in the decision making, leadership position, professional meetings and development, inadequate HR practices, biased principles of promotion. In addition, (Cross, 2010) has stated culture of long working hours, promotion procedure, and Standard of performance evaluation to be included in organisational barriers. (Edirisinghe and Thalgaspitiya, 2016) opines that organisational barrier as the second most influencing factor on glass ceiling. In supporting this (Ambreen Wami, 2013) holds the view that the major indicator of glass ceiling are well ingrained corporate culture, management leadership which differs from that of male as women are believed to be more nurturing and soft.

Research Gap

Literature review indicates that most of the studies pertaining to glass ceiling have been extensively researched in developed

countries but there is paucity of research endeavoured in Indian context. Literature have spoken a lot about the glass ceiling factors and there is a dearth of work about which factor (personal, family, organizational and societal) contribute more to the glass ceiling and career development of a women particularly in IT sector (Nilufer Azeez P V and R G Priyadarshini 2018).

Objectives of The Study

1. To identify and evaluate the most common barriers responsible for Glass ceiling in IT companies.
2. To test the proposed model using AMOS.

Research Hypotheses

1. H_0 1 There is no significant impact of
 - H_0 1a. Glass ceiling barriers on Job dissatisfaction
 - H_0 1b. Glass ceiling barriers on Work disengagement
 - H_0 1c. Glass ceiling barriers on Turnover Intention
2. H_0 2 The Hypothesized model does not have a good fit.

Research Methodology

The present study is partly empirical and partly literature based; of course the latter is given more focus in the study. To accomplish the stated objectives, the researcher has gathered data from both primary and secondary source

of information. The primary data was collected in the form of well-structured and administered questionnaire which is prepared in the Google form and floated to female employees working at middle and junior levels in select IT companies working in Bengaluru. The researcher in order to reach the respondents applied convenience and snowball (also known as centre- referral sampling) In total 525 completely filled questionnaires were received. In order to identify the most common barriers among female to glass ceiling the independent variable such as individual, family, socio-cultural, organisational and corporate climate

barriers were adopted and dependent variable that is consequences of glass ceiling on women career advancement such as Job dissatisfaction, Work disengagement and turnover intention is used. Five point Likert scale is used to measure the study variables where 5= strongly agree and 1= strongly disagree. To give quantitative precision to the empirical analysis statistical tools such as multiple regressions are used. The data collected was analysed with SPSS 20. A Confirmatory Factor Analysis (CFA) using AMOS is used to determine if the data fit the model based on the factors identified through factor analysis.

RESULTS AND ANALYSIS

Table 1: KMO and Bartlett's test Results

Kaiser-Meyer- Oklin Measure of Sampling Adequacy		.947
Bartlett's test of Sphericity	Approx. Chi Square	1.767
	Df	820
	Sig.	.000
	Source: Primary Data- Factor Analysis	

The outcome of the KMO test, which determines if the sample size used for factor analysis is acceptable, is shown in Table 1. KMO's value varies from 0 to 1, and the closer it gets to 1, the better. The larger the sample size, the better the factor analysis will be. KMO values greater than 0.5 are usually deemed sufficient for reliably executing factor analysis. The KMO value is .947, which is higher than .5. Hence, the sample size is sufficient. The null hypothesis that the correlation matrix

is an identity matrix is further tested using Bartlett's test of sphericity. Table 1 shows that the significant value (p value) of Bartlett's test is .000, which is less than 0.05. As a result, the correlation matrix is not an identity matrix, and it is significant. As a result, the factor model appears to be appropriate (Verma, 2013)

Table 2: Variance of factors: (factor extraction by rotation)

Component	Initial Eigen Value			Rotation Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1.	17.455	42.572	42.572	6.787	16.554	16.554
2.	3.957	9.651	52.223	6.591	16.074	32.629
3.	2.309	5.631	57.854	5.580	13.610	46.239
4.	1.844	4.497	62.351	4.272	10.419	56.658
5.	1.678	4.092	66.443	4.012	9.785	66.443

Extraction method: Principle Component Analysis

Table 2 shows the factors that were retrieved and the variance that these factors explained. The first, second, third, fourth, and fifth factors, after rotation, explain 16.554, 16.074, 13.610, 10.419, and 9.785 percent of the total variation, respectively. As a result, all of these variables together account for 66.443 percent of the total

variation. Table 2 shows the eigenvalues for each of the factors. Only those factors with eigenvalues of 1 or greater are kept. The eigenvalues for the first five elements are all greater than one, as you can see. As a result, only five criteria were kept in this analysis.

Table 3: Confirmatory Factor Analysis of common barriers (independent variables) responsible for glass ceiling

	Items	Mean	SD	Comm.	FL	VE
Individual Factors						
2	Low Self-perception about ourselves	2.56	1.370	.597	.672	16.554
3	Low confidence level on my part is a barrier	2.17	1.424	.780	.621	
4	I am emotionally not suited to be in the top	2.02	1.327	.800	.696	
5	I am not competitive enough to be in the top position	2.05	1.317	.743	.698	
6	Age is a hindrance to reach top level	2.42	1.350	.625	.688	

7	Lack of networking with top officials	3.00	1.242	.548	.627	
8	Less qualification is a hindrance to be at top	2.92	1.277	.614	.652	
10	Lack of knowledge/ skills to climb corporate ladder	2.97	1.106	.618	.613	
11	I find it difficult to shuffle work and non-work.	2.84	1.083	.692	.629	

Cronbach's alpha .917

Family Factors

13	I am unable to accept foreign assignments due to family commitments	2.75	1.333	.662	.744	
14	Lack of support from family towards career growth	2.41	1.393	.747	.718	
15	Domestic duties and routines slow women's progress	2.97	1.220	.777	.790	
16	Social isolation have an impact on career growth	3.20	1.154	.654	.690	
17	Can't take risky jobs due to family responsibility	2.88	1.322	.702	.772	
18	I have been underrepresented at work due to family commitments	2.87	1.158	.745	.703	
19	Maternity gap does not allow to come back to previous position	2.91	1.183	.597	.620	
20	Family issues interferes with my ability to perform job related duties	2.62	1.324	.753	.752	
21	I have denied career advancement options due to my family commitment	2.76	1.177	.728	.686	

Cronbach's alpha .942						
Socio-cultural Factors						
22	Gender stereotype still prevails in our society	3.79	.925	.520	.618	13.610
23	Society perceives women as having lower competence than men	3.61	.972	.560	.688	
24	Women are more seen as home maker than ruler	3.94	1.149	.696	.686	
25	Lack of social acceptance of women in higher position	3.55	1.063	.646	.762	
26	Male are considered as bread winners by tradition	3.30	1.048	.654	.751	
27	Society perceive women lack in leadership skills to be in the top	3.30	1.031	.691	.775	
28	Traditional values, beliefs and systems are obstacle for women career advancement	3.69	.993	.681	.719	
29	It is assumed that women can't contribute their ideas openly at top level as men	2.93	1.277	.703	.615	
30	Women are immobile to commute from one place to another	3.05	1.126	.608	.617	
31	It is assumed that women at top are autocratic when compared to men	3.28	1.031	.674	.702	
32	Non-acceptance of women in the traditional jobs reserved for men	3.22	1.002	.751	.725	
Cronbach's alpha .926						
Organisational Factors						
35	Biased decisions of management with regard to promotions	3.63	.998	.699	.718	10.419
36	Heightened stress and pressure levels at work	3.79	1.124	.669	.749	

Cronbach's alpha .779						
Corporate Climate						
37	Lack of support from male subordinates at work place	2.47	1.384	.740	.732	9.785
38	Lack of support from female subordinates at work place	2.61	1.301	.702	.744	
39	Lack of mentoring facilities	2.84	1.204	.663	.641	
Cronbach's alpha .868						

H₀1a : There is no significant impact of glass ceiling barriers on job dissatisfaction

Table 4: Multiple Regressions for Job dissatisfaction

Predictor	Criterion	B	Beta	Sig.	R	R ²	VIF
Constant	Job Dissatisfaction	20.046		.0001	.359	.129	
Individual Barriers		-.011	-.028	.658			2.369
Family Barriers		-.042	-.108	.098			2.539
Socio-Cultural Barriers		-.021	-.051	.336			1.679
Organisation Barriers		.718	.378	.000			1.421
Corporate Climate		-.227	-.215	.000			1.841

Source: Primary Data

Hypothesis Decision: Null Hypothesis rejected

F	15.384
R	.359
R²	.129
P-value < 0.05	

Multiple regression tests have been used to test the relationship between independent and dependent variable. In order to run the test all the independent variables with few items have been clubbed together separately. The result of the multiple

regression analysis for independent variables namely individual barriers, family barriers, socio-cultural barriers, organisational barriers and corporate climate and dependent variable namely job dissatisfaction depicts that R is .359 and

R^2 is .129 which means 13 percent of the total variation in the value of dependent variable is attributed to the effect of the independent variable. The above table depicts that independent factors explains 13 per cent to Job dissatisfaction. However, the remaining 87 per cent is explained by other factors. (Ferenc Moksony, 1990) in his work "Small is Beautiful" stated that in social science R^2 with small value is acceptable. The Sig. p-value = .000 for all the independent variables with relation to dependent variable, it shows that there is significant relationship between independent and dependent variable. This leads to support null hypothesis that is reject the null hypothesis and accept the alternative hypothesis. As per general rule of thumb, the Variance Inflation Factor (VIF) beyond 4 require further investigation and surpassing 10 indicates the sign of serious multi-Collinearity requiring correction or modifications in variables. The above table shows that VIF of all independent variables are less than 4 so there is no requirement

of any modifications and the data are valid. The results are in line with (Abdul, Islam and Alam, 2016); (Bijay Lama, 2019) (Hamid M, and Saad M, 2016).

Job dissatisfaction = (20.046) * (.011) individual factors – (.042) family factors – (.021) socio-cultural factors + (.718) organisational factor – (.227) corporate climate

The most important contributor for job dissatisfaction is organisational factor ($\beta=.378$) and is significant and has positive impact on job dissatisfaction as the p-value is less than 0.05. Thereby stating that job dissatisfaction increases due to organisation barriers increase such as biased decision making, heightened stress, lack of transparent policies and so on. It can be witnessed that individual barriers, family barriers, socio-cultural barriers and corporate climate has a negative influence on the job dissatisfaction that is ($\beta= -.028$), ($\beta= -.108$), ($\beta= -.051$), ($\beta= -.215$) respectively.

H₀1b: There is no significant impact of glass ceiling barriers on work disengagement

Table 5: Multiple Regressions for Work disengagement

Predictor	Criterion	B	Beta	Sig.	R	R ²	VIF
Constant	Work disengagement	20.674		.0001	.348	.121	
Individual Factor		-.052	-.120	.058			2.365
Family Factor		-.036	-.086	.189			2.533
Socio-Cultural Factors		.026	.058	.274			1.679
Organisation Factors		.618	.307	.000			1.420
Corporate Climate		-.252	-.225	.000			1.844

Source: Primary Data

Hypothesis Decision: Null Hypothesis Rejected

F	14.296
R	.348
R²	.121
P-value < 0.05	

The above table 5 has been analysed using multiple regression analysis for independent variables namely individual barriers, family barriers, socio-cultural barriers, organisational barriers and corporate climate and dependent variable namely work dissatisfaction reveals that R is .348 and R² is .121 which means 12 percent of the total variation in the value of dependent variable is attributed to the effect of the independent variable. The Sig. p-value = .000 for all the independent variables with relation to dependent variable, it shows that there is significant relationship between independent and dependent variable. This leads to support null hypothesis that is reject the null hypothesis and accept the alternative hypothesis. The results are in line with (Bijay Lama, 2019); (Hamid M, and Saad M, 2016).

$$\text{Work disengagement} = (20.674) * (.052)$$

$$- (.036) \text{ family factors} + .026 \text{ (socio-cultural factors)} + (.618) \text{ (organisation factors)} - (.252) \text{ corporate climate}$$

The equation divulges that partially the glass ceiling barriers in the model influence dependent variable significantly. The most important contributor for work disengagement is organisational barriers ($\beta=.307$) followed by social-cultural barriers ($\beta=.058$) it is insignificant as the p-value is greater than 0.05. One can witness that organisation barriers contribute to work disengagement and have a significant impact in comparison with other barriers. Work disengagement increase as organisation barriers increase. In the above table it can be seen that individual barriers, family barriers and corporate climate have a negative influence on the work disengagement ($\beta=-.120$), ($\beta=-.086$), ($\beta=-.225$) respectively.

H₀1c: There is no significant impact of glass ceiling factors on turnover intention

Table 6: Multiple Regressions for Turnover Intention

Predictor	Criterion	B	Beta	Sig.	R	R ²	VIF
Constant	Turnover Intention	.953		.0001	.503	.253	
Individual Factor		.064	.146	.013			2.369
Family Factor		.035	.084	.166			2.539
Socio-Cultural Factors		.037	.084	.088			1.679

Organisation Factors		.773	.377	.000			1.421
Corporate Climate		-.116	-.102	.047			1.841

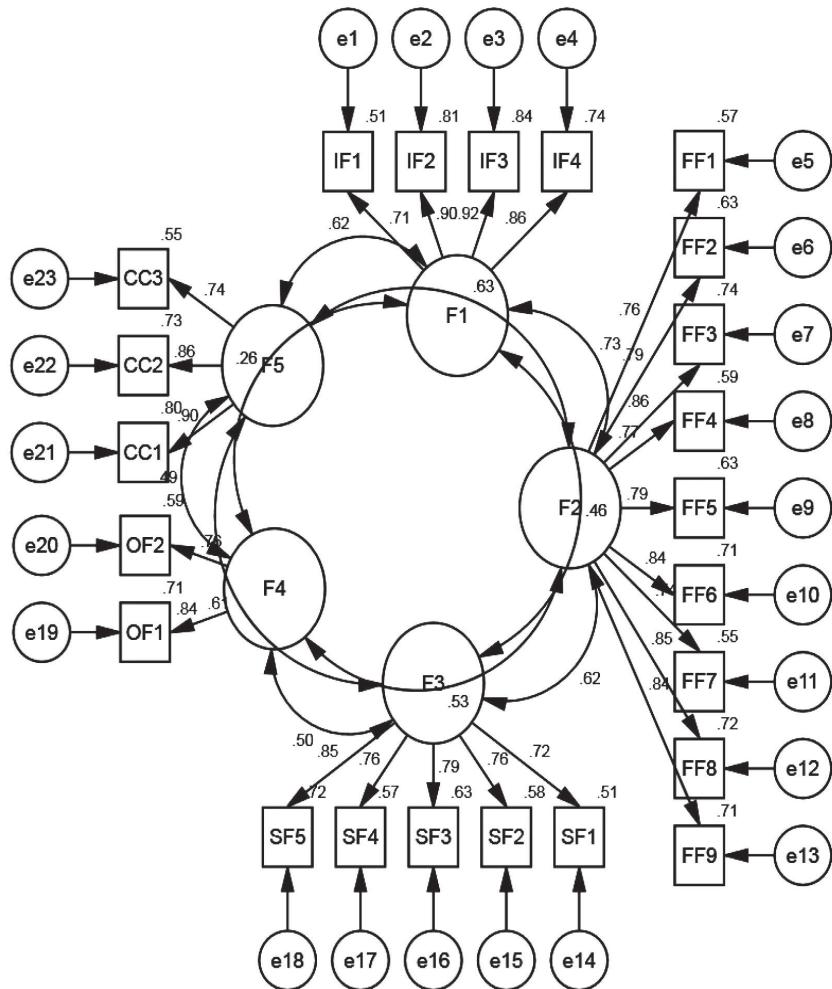
Source: Primary Data
Hypothesis Decision : Null Hypothesis Rejected

F	35.129
Sig.	.000
R	.503
R ²	.253
P-value < 0.05	

The above table 6 of the multiple regression analysis for independent variables, namely: individual barriers, family barriers, socio-cultural barriers, organisational barriers, and corporate climate and dependent variable namely turnover intention reveals that R is .503 and R² is .253 which means 25 per cent of the total variation in the value of dependent variable is attributed to the effect of the independent variable. According to Cohen (1988) R-square value between 0.25 or above indicate high effect size. Falk and Miller (1992) values should be equal or greater than 0.10 for the variance explained of a particular endogenous construct to be deemed acceptable. The Sig. p-value = .000 for all the independent variables with relation to dependent variable, it shows that there is significant relationship between independent and dependent variable. This leads to support null hypothesis that is reject the null hypothesis and accept the alternative hypothesis. (Hair, 1995) stated 10 as the maximum level of VIF and (Ringle 2015) stated 5 as the maximum level of VIF. The results are in line with (Al-

Azzawi A. S. A, Upadhyay M and Tyagi N.2019); (Bijay Lama, 2019); (Hamid M, and Saad M, 2016); (Tiwari M, Mathur G, and Awasthi S.2019).

Turnover intention = (.953) * (.064) individual factors + (.035) family factors + (.037) socio-cultural factor + (.773) organisational factors - (.116) corporate climate


The equation reveals that half of the barriers of the glass ceiling in the model influence dependent variable significantly. The most important contributor for turnover intention is organisational barriers ($\beta=.377$) followed by individual barriers ($\beta=.146$). Turnover Intention increase as organisation and individual barriers increase. Social-cultural barriers and family barriers ($\beta=.084$) are insignificant as p-value is greater than 0.05. In the above table it can be seen that corporate climate has a negative influence on the glass ceiling ($\beta= -.102$)

Model Testing
Validity and Reliability

Individual item reliabilities, convergent

validity, and discriminant validity are the three-step procedure to evaluate and measure a model (Hulland, 1999). Item loading is the base to determine the individual item reliability, and it is

claimed that all the items should have factor loadings between 0.4-0.7. Any item below the factor loading of 0.4 should not be considered for the analysis (Carmines and Zeller, 1979; Hulland, 1999).

Table 8: Result of the Measurement Model

			FL	IR	Delta	AVE	SFL	S D	C R
IF1	<---	IF	0.714	0.510	0.490				
IF2	<---	IF	0.898	0.806	0.194				
IF3	<---	IF	0.919	0.845	0.155				
IF4	<---	IF	0.859	0.738	0.262	0.8475	3.39	1.101	0.9125
FF1	<---	FF	0.756	0.572	0.428				
FF2	<---	FF	0.793	0.629	0.371				
FF3	<---	FF	0.86	0.740	0.260				
FF4	<---	FF	0.768	0.590	0.410				
FF5	<---	FF	0.795	0.632	0.368				
FF6	<---	FF	0.843	0.711	0.289				
FF7	<---	FF	0.742	0.551	0.449				
FF8	<---	FF	0.848	0.719	0.281				
FF9	<---	FF	0.841	0.707	0.293	0.8051	3.274	1.312	0.8909
SF1	<---	SF	0.716	0.513	0.487				
SF2	<---	SF	0.764	0.584	0.416				
SF3	<---	SF	0.795	0.632	0.368				
SF4	<---	SF	0.756	0.572	0.428				
SF5	<---	SF	0.849	0.721	0.279	0.7949	3.164	1.492	0.8703
OF1	<---	OF	0.84	0.706	0.294				
OF2	<---	OF	0.765	0.585	0.415	0.7971	3.21	1.417	0.8791
CC1	<---	CC	0.897	0.805	0.195				
CC2	<---	CC	0.855	0.731	0.269				
CC3	<---	CC	0.742	0.551	0.449	0.8070	3.259	1.329	0.8888

Source: Computed using Excel
IF=Individual Factor, FF=Family Factor, SF= Socio-cultural Factor, OF=Organisation Factor, CC= Corporate Climate (refer in the model)
FL=Factor Loading, AVE= Average Variance Extracted, SFL= Sum of Factor Loading, IR= Item Reliability, SD= Sum of Delta and CR= Composite Reliability

A good rule of thumb is an AVE of 0.5 or higher indicates adequate convergent validity. An AVE of less than 0.5 indicates that on average, there is more error remaining in the items than there is variance explained by the latent factor structure. The rule of thumb for a construct reliability estimate is that 0.7 or higher suggest good reliability. Reliability between 0.6 and 0.7 may be acceptable provided the other indicators of a model's construct validity are good.

By examining the average of the variance extracted (AVE), the assessment of the convergent validity is done. It is deemed to be acceptable when the composite reliability (CR) and AVE are above 0.7 and 0.5, respectively (Chin, 1998). In this study, all the factor loadings and AVE are greater

than 0.5, and the CR values are above 0.7 as shown in the table above, hence, it can be concluded that there has been an establishment of convergent validity.

Next, the assessment of discriminant validity is done. It is the degree to which a construct is really distinct from other construct (Duarte and Raposo, 2010) when there are low relationships between all the measures of the importance and the measure of remaining constructs, the square root of the AVE and the correlation of the different constructs are compared to discourse the discriminant validity. We can say that the discriminant validity is established when the extracted AVE is higher than its correlations with all the other constructs (Fornell and Larcker, 1981).

Table 9: Discriminant Validity of Glass Ceiling Barriers

Factors	AVE	IF	FF	SF	OF	CC
Individual Factor	0.8475	---	0.5285	0.2125	0.066	0.3832
Family Factor	0.8051	0.5285	---	0.3856	0.2798	0.3919
Socio-culture Factor	0.7949	0.2125	0.3856	---	0.254	0.3709
Organisation Factors	0.7971	0.066	0.2798	0.254	---	0.2401
Corporate Climate Factors	0.807	0.3832	0.3919	0.3709	0.2401	---

Source: Computed using Excel

The model is a good fit and is in line with conceptual and theoretical framework.

H₀2: The Hypothesized model does not have a good fit.

Table 10: SEM Results of Goodness of Fit

Name of Category	Name of Index	Calculated Index Value	Critical Value
Absolute Fit	Root mean square error of approximation	0.08	= <0.08
	Goodness of fit	0.84	>0.80
Incremental Fit	Normed fit index	0.88	>0.90
	Comparative fit index	0.90	>0.95
	Tucker-Lewis index	0.90	0 < TLI < 1
Parsimonious Fit	$\chi^2/d/(normal\ chi-square)$	4.89	1 < χ^2/df < 3

Source: Output using AMOS

Model evaluation and fit depends on three indices namely absolute fit like Root Mean Square Error of Approximation (RMSEA), incremental fit like Normed Fit Index (NFI), Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI), and parsimonious fit like normal chi-square. RMSEA is expressed per degree of freedom, thus making it sensitive to the number of estimated parameters in the model. Value less than 0.08 or equal indicates good fit. Whereas value higher than 0.08 represent reasonable errors of approximation in the population. Values between 0.08 to 0.1 indicate a mediocre fit (Byrne, 2010). The CFI and NFI measure the extent to which the default model fit is superior to the independence model. When it comes to Parsimony goodness of fit index, the cut off for the ratio of the chi-square to its corresponding degree of freedom is between 1 and 5 (Bollen, 1989). The above table reveals that all the indices

fall in the acceptance criteria that is Root Mean Square Error of Approximation is 0.08 which is equal to the criteria given. Similarly, Goodness of fit is 0.84 which is greater than 0.80. When it comes to Normed fit index is 0.88 which is almost nearer to 0.90 likewise comparative fit index and Tucker-Lewis index is 0.90 and 0.90 respectively which falls with the criteria. Normal chi-square CMIN is 4.89. Therefore, null hypothesis is rejected, the proposed model is a good fit.

Practical Implications

In this background, the suggestions that follow are relating to the ways and means to shatter the barriers faced by women employees.

Organisation level

- It was realised that most of the women take backseat rather than

taking up challenging leadership roles, especially after they come back after a long hiatus. To address this, TCS has employed counsellors and put in place programs like Re-orientation, stay connected and iEXCEL. Likewise, Wipro launched a program Women of Wipro in 2008 to identify the challenges faced by women. Similarly, Women Leader Program introduced by Tech Mahindra will help women in middle level to develop necessary skill sets required in leadership roles. Many such beneficial and skill uplifting programs should be introduced for the career advancement of women.

- Any organisation would benefit immensely from lending an empathetic ear to their own employees rather than blindly replicating inclusivity measures adopted by multi-national corporations, giant organisations or even their parent company.
- The concept of work for limited hours in a day/ working on alternate day/ part time jobs in IT which is very popular in US and UK, is not much in vogue in India, women employees if given such opportunities, can benefit tremendously.
- Women should be given the option of work from home even after the pandemic is at rest. However, bosses should not consider such arrangement as indicator of less commitment of lower productivity on part of women employees.
- Career counselling sessions and

mentorship programs by senior female managers are also suggested.

- Emphasize the significance of forging robust bonds with the first-line manager and the executive officials as it was found during the interview and questionnaire survey that major portion of women employees lack networking with top officials.
- Allowing them to interact with successful women IT managers in Karnataka who can function as role models or mentors. Women can benefit from their know-how by learning how they rose to high positions in the workplace, what challenges they experienced, and how they overcame them.
- Having a strong quota system helps to overcome the cultural barriers that a women face and motivates them to aspire higher and using quotas is found to be one of the controversial ways to represent more women on board.
- It is found that the divorce rate has doubled in Bengaluru and is among the top three cities in 2025, the reason being, evolving societal value, rising financial independence and changing family dynamics and gender roles. Therefore, the researchers suggest premarital counseling, emotional intelligence training, and strengthening family bonds can help reverse this trend.
- It has been observed that earlier the female workforce had two shifts, one shift in the office and another

shift at home, but now they are juggling between three shifts that is one in office, and another at home, and the last one is with childcare. Work life balance is viewed more as a women's issue rather than men's as it is the traditional mind-set that female is responsible for the smooth running of the home affairs, child bearing and elder care irrespective of her job responsibilities. Hence, indeed, it is a barrier to women's career advancement. Furthermore, measures like establishing crèche at work place, long paternity leaves, to offer right role after a long sabbatical or maternity leave, work from home, flexi timings and return to work program.

Conclusion

Glass Ceiling is a burning issue in the field of Human Resource Management and women studies as it has impact on employee, employer, productivity and organisation as a whole. Lot of discussion is carried on Glass Ceiling in forums, conferences, seminars and workshops to study the factors influencing women career advancement. The present study has considered five factors such as individual, family, socio-cultural, organisational factors and Corporate Climate. It was found from the analyses that there is existence of glass ceiling in IT sector and there is significant relationship between glass ceiling barriers and women career advancement. The researcher in the end came up with few key practical implications

from the organisation view in general and HR manager in particular.

REFERENCES

1. Adam, A., & Richardson, H. (2001). Feminist philosophy and information systems. *Information Systems Frontiers*, 3(2), 143-154.
2. Al-Manasra, A. (2013). What are the glass ceiling barriers effects on women career progress in Jordon. *International Journal of Business and Management*, 8(6), 22-37.
3. Ambreen, W. (2013). Breaking through the glass ceiling. *International Monthly Referred Journal of Research in Management and Technology*, 2(12).
4. Bass, B.M., & Avolio, B.J. (1994). Shatter the glass ceiling: Women may make better managers. *Human Resource Management*, 33(4), 549-560.
5. Bierema, L. L., & Cseh, M. (2003). Evaluating AHRD research using a feminist research framework. *Human Resource Development Quarterly*, 14(1), 5-26.
6. Bindu, N. H. (2022). A study on glass ceiling and its impact on the career development of women at workplace. *International Journal of Innovative Research in Technology*, 8(8).
7. Burger. (2007). Gender equality in science, engineering and technology. New York: Taylor and Francis Group.
8. Burke, R. J. (2002). Career development of managerial women. *Advancing Women's Career*, 139-

161.

9. Carol, H., & Timothy, D. S. (1986). Article in the Wall street Journal, "The Glass Ceiling."
10. Center for Social Research. (2009). Women managers in India: challenges and opportunities.
11. Chandrasekhar, K. S., & Shiv Prakash, C. S. (2011). Women employment in ICT enterprises. SCMS Journal of Indian Management, 18-27.
12. Dex S. (1985). The Sexual Division of work: Conceptual revolutions in the social sciences. Brighton: Wheatsheaf Books Ltd.
13. Endalachew, B. (2016). The role of empowering women and achieving gender equality to the sustainable development of Ethiopia. Pacific Science Review: Humanities and Social Sciences, 2(1), 37-42.
14. Fernandez, J.P. (1999). Race, gender, rhetoric: The true state of race and gender relations in corporate America. New York: McGraw-Hill.
15. Francis, O. A. (2015). Factors affecting women career advancement in the banking industry in Kenya (A case of Kenya commercial bank branches in Nairobi country, Kenya). Journal of Marketing Research and Consumer Research, 9(1).
16. Gupta, A., Koshal, M., & Koshal, R. J. (1998). Women managers in India: challenges and opportunities, Equal Opportunities International, 17(8), 4-18.
17. Gutek, B.A. (2001). Women and paid work. Psychology of Women Quarterly, 25, 379-393.
18. Hair, J.F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis. Seventh Edition, Prentice Hall, Upper Saddle River, New Jersey.
19. ILO. (2004). Gender equality around the world.
20. International Monetary Fund Report <https://www.business-standard.com>. Retrieved on May 20, 2021.
21. Jackson, J. F. L., & O' Callaghan. (2009). what do we know about glass ceiling effects? A taxonomy and critical review to inform higher education research. Research in higher education.
22. Jacob, J. A. (1999). Handbook of gender and work, sage, Thousand Oaks, CA.
23. Jain, N., & Mukherji, S. (2010). The perception of glass ceiling in Indian organisation: An exploratory study. South Asian Journal of Management, 17(1), 23-39.
24. Lakshmi Narayanan, S., & Savarimuthu, A. (2015). Work-family conflict, family-work conflict as predictors of work-life balance among women employees working in IT industries. International Conference of Technology and Business Management, 23(25).
25. Lyons, K., & Williams, M. (2002). Women in Technology. Retrieved on July 2019. <http://www.cas.ibm.com/archives/1998/wprkshops/wit/html>

26. Moore, D. (1995). Role conflict: not only for women? A comparative analysis of 5 nations. *IJCS*, 1(2).
27. Morrison, A. M., & Von Glinnow, M.A. (1990). Women and minorities in management. *American Psychologist*, 45(2), 200-208.
28. Morrison, A. M., White, R. P., & Van Velsor, E. (1987). Breaking the glass ceiling: Can women reach the top of America's largest corporation?
29. Nilufer Azeez, P. V., & Priyadarshini, R. G., (2018). Glass Ceiling factors affecting women career advancement in IT industry in India.
30. Pankaj, T. (2016). Glass ceiling practices with working women in educational sector at Bhavnagar region. *Journal of Commerce and Management*, 16.
31. Prahladhai, J. V. (2015). Glass ceiling practices with working women in education sector at Bhavnagar region.
32. Rajashekaran, P.,& Julia, T. (2011). Why do women still experience downward gravitation in the corporate ladder? A close look at glass ceiling in Bahrain. *Research and Practice in Human Resource Management*, 19 (1), pp. 1-10.
33. Rana, K. (1998). Modern working women and the development debate. New Delhi: Kanishka Publishers.
34. Renuka Devi, S. V., & Kangalakshmi. (2015). Factors influencing work life balance of women employees in information technology companies, *IOSR Journal of Business and Management*, 17(6), 1-4.
35. Sachdeva, G. (2014). Glass ceiling converted into glass transparency: A study on the factors making women executives successful in the Indian Banking sector. *Journal of Business Management and Social Science Research*, 3(4), 46-51.
36. Sanskriti, S., & Lipsa, D. (2016). Women and Corporate sector of India: A study on impact of glass ceiling existence in corporate sector of India. *Social Sciences International Research Journal*, 1(1).
37. Sarmistha, N. A., Bhaskar., & Sovonjit, G. (2014). "Corporate glass ceiling: An impact on Indian women employees." *International Journal of Management and International Business Studies*. 4(2), 135-140.

MANAGEMENT ACCOUNTING IN NAVIGATING TECHNOLOGICAL DISRUPTION FOR FUTURE BUSINESS LANDSCAPE: AN EMPIRICAL STUDY

D. Mukhopadhyay

Abstract

This empirical study explores the role of management accounting in navigating technological disruption and shaping the future business landscape. With a sample size of 385 respondents, the study investigates how technological advancements, such as AI, data analytics, and automation, are transforming management accounting practices. Using a 5-point Likert scale, the research assesses the impact of ten independent variables, including technological adoption, strategic decision-making, and the evolving role of management accountants. Descriptive and inferential statistical methods, including multiple regression analysis, chi-square tests, and Cronbach's alpha, were employed to analyse the data. The findings reveal that while technology significantly enhances decision-making, forecasting, and budgeting, challenges like resistance to change and a lack of technical skills persist. The study concludes that for management accounting to remain relevant, organizations must embrace digital tools, invest in continuous learning, and foster collaboration to navigate the complexities of a rapidly changing business environment.

Keywords

Technological Disruption, Management Accounting, Data Analytics, Digital Transformation, Strategic Decision-Making

“Management accounting must evolve to embrace digital tools, enabling accountants to add value through strategic decision-making and advanced data analytics, essential for organizations to thrive in the digital age.”

— Joe Knight¹

1. Introduction

1.1 Background of the Study

Technological disruption has become a defining characteristic of the modern business landscape, fundamentally altering how organizations operate and compete. In this context, management accounting plays a pivotal role in equipping businesses to navigate these disruptions. By leveraging advanced tools and techniques, management accounting enables organizations to adapt to shifting market dynamics, optimize resources, and make strategic decisions. For instance, Kaplan and Norton (1992) introduced the Balanced Scorecard, a framework that integrates financial and non-financial measures to enhance strategic decision-making, demonstrating the potential of management accounting to address complexity in

turbulent environments. Similarly, Chenhall and Langfield-Smith (1998) highlighted how innovative management accounting practices significantly influence organizational performance during periods of change.

The rapid advancements in technology, particularly in automation, artificial intelligence (AI), big data analytics, and cloud computing, have brought about profound changes across industries. These technological disruptions are reshaping business processes and, consequently, the role of management accountants. In a world where data is abundant and decision-making must be faster and more informed, management accounting has had to evolve to keep pace with these changes.

This empirical study aims to explore how management accounting practices are evolving to address technological disruption, offering actionable insights for future-ready businesses in an ever-changing landscape.

2.2 Theoretical Framework

The theoretical framework for this study is grounded in the Technology Acceptance Model (TAM)², which posits that the

1 Joe Knight (August 28, 1963-) born in California, United States. Knight earned his Bachelor's degree in Economics from University of California, Berkeley, and later pursued an MBA at Stanford University, focusing on business management and financial literacy. As a co-founder of 'the Business Literacy Institute' Knight has been a leading advocate for integrating financial and management accounting principles into strategic decision-making. His groundbreaking book, "*The Accounting Game*", has played a pivotal role in making management accounting more accessible. His career is marked by contributions that emphasize the use of technology and data analytics to redefine management accounting's role in organizational growth. He continues to promote the importance of financial literacy in navigating technological disruptions for the future business landscape.

2 The Technology Acceptance Model (TAM), introduced by Fred Davis in 1986, is a widely used

perceived ease of use and perceived usefulness of technology influence its adoption. The study also draws on the Resource-Based View (RBV)³, which emphasizes the role of technology as a critical resource for achieving a competitive advantage. The theoretical framework provides a structured lens for analysing the impact of technological disruption on management accounting, focusing on challenges faced by management accountants and the implications for decision-making and performance. It integrates institutional theory and contingency theory to understand the evolving relationship between technology and management accounting practices.

Management accountants face significant challenges in adapting to technological disruption, including skill gaps, resistance to change, and integration of emerging tools. Burns and Scapens (2000) noted that traditional organizational routines often resist technological innovation, creating inertia. Al-Htaybat et al. (2018) highlighted the need for enhanced digital literacy among management accountants to fully leverage technologies like data analytics. Wysocki (2019) observed that Industry 4.0 technologies require management accountants to adopt new roles as strategic advisors, emphasizing the need

for reskilling. Additionally, Agostino and Arnaboldi (2018) emphasized challenges in integrating social media and digital dashboards into traditional accounting frameworks, often due to limited training and organizational support.

These challenges underscore the necessity of rethinking management accounting education and professional development. Institutional support and policy interventions are vital to addressing these barriers, ensuring management accountants can meet the demands of a rapidly evolving technological landscape.

Technological disruption profoundly affects decision-making and performance measurement in organizations. Kaplan and Norton (1996) demonstrated that tools like the Balanced Scorecard integrate financial and non-financial data, enabling dynamic decision-making in a technologically advanced environment. Agostino and Sidorova (2016) noted that big data analytics provide real-time insights, improving managerial decisions. Brynjolfsson and McAfee (2014) emphasized how digital technologies enhance organizational agility, enabling quicker responses to market changes. Furthermore, Dai and Vasarhelyi (2017) highlighted how blockchain improves transparency and accuracy in financial

framework to predict and explain user acceptance of technology. Initially applied in his doctoral research, TAM evaluates how perceived usefulness and perceived ease of use influence individuals' intentions and behaviour toward adopting new technologies.

³ The Resource-Based View (RBV), developed by Birger Wernerfelt in 1984, is a strategic management framework emphasizing a firm's internal resources as key to achieving competitive advantage. RBV focuses on valuable, rare, inimitable, and non-substitutable (VRIN) resources to explain variations in firm performance and sustained success.

reporting, reinforcing trust in performance metrics.

These advancements illustrate the critical role of technology in transforming management accounting into a strategic function. However, success depends on effectively navigating challenges such as resistance to change and the need for organizational alignment, underscoring the importance of frameworks that link technological innovation with enhanced performance.

2.3 Technological Disruption and Its Influence on Management Accounting

Technological disruption⁴ is reshaping

⁴ Technological disruption, popularized by Clayton M. Christensen in the 1990s, refers to innovations that significantly alter industries by displacing established technologies or creating entirely new markets. It highlights how emerging technologies can challenge traditional business models, leading to transformative shifts in consumer behaviour, competition, and organizational strategies.

⁵ Artificial Intelligence (AI) refers to the simulation of human intelligence in machines to perform tasks like learning, problem-solving, and decision-making. The term was coined by John McCarthy in 1956 during the Dartmouth Conference, where AI as a field of study was officially introduced and explored for the first time.

⁶ Blockchain refers to a decentralized digital ledger technology that securely records transactions across multiple computers. The term was first coined by an anonymous person or group under the pseudonym Satoshi Nakamoto in 2008, in association with the creation of Bitcoin, and has since evolved into a broader technology for various applications.

⁷ Big Data Analysis refers to the process of examining large and complex datasets to uncover patterns, correlations, and trends. The term gained prominence in the early 2000s, with the rise of technologies to handle vast amounts of data. It became widely used following advancements in data processing and storage capabilities. Further, the phrase “Big Data Analysis” does not have a clear, single inventor. However, it began to gain traction in the early 2000s, with the rise of technologies like Hadoop and NoSQL databases designed to process large datasets. Researchers such as Viktor Mayer-Schönberger and Kenneth Cukier, in their 2013 book *Big Data*, helped popularize its modern use in both academia and industry.

⁸ Management Accountant refers to professionals responsible for managing financial information to aid decision-making within organizations. While the role evolved in the early 20th century, the phrase itself became widely recognized in the 1950s, especially after the establishment of organizations like the Chartered Institute of Management Accountants (CIMA). The professional designation ‘Management Accountant’ is synonymously used for “Cost and Management Accountant,” “Cost Accountant,” and “Certified Management Accountant” all refer to professionals specializing in managing costs and financial

management accounting by introducing tools that significantly impact decision-making, reporting, and strategic planning. Technologies like artificial intelligence

(AI)⁵, blockchain⁶, and big data analytics⁷ are transforming traditional accounting practices, enhancing efficiency and accuracy. Research by Brynjolfsson and McAfee (2014) highlights the role of digital technologies in reshaping business processes. Furthermore, studies by Wysocki (2019) and Agostino and Sidorova (2016) emphasize how these disruptions drive the need for management accountants⁸ to acquire new skills and

adopt advanced tools for performance measurement and forecasting, positioning the profession for future challenges. As technological disruption continues, management accountants will need to adapt by enhancing their technological proficiency and strategic thinking. The future business landscape will require accountants to leverage technology not just for financial reporting but also for driving innovation and business growth.

2. Literature Review

Technological advancements⁹ have brought significant transformations in management accounting practices, influencing decision-making processes, cost management, and overall organizational strategies. This literature review explores existing research to identify key themes in management accounting amid technological disruption, evaluate gaps in knowledge, and establish the basis for this study.

2.1 Evolution of Management Accounting

Management accounting¹⁰ has evolved

performance within an organization. The terms began gaining recognition in the early to mid-20th century, particularly as formal qualifications were established by bodies like CIMA and the Institute of Management Accountants (IMA), the Institute of Cost Accountants of India (ICMAI)

⁹ Technological advancement refers to progress in technology, driving innovation and improving efficiency in various fields. Though it's challenging to pinpoint the exact first use of the phrase, the concept emerged prominently during the Industrial Revolution in the 18th and 19th centuries, as technological progress accelerated rapidly.

¹⁰ Management Accounting refers to the process of preparing financial and non-financial information to assist in decision-making, planning, and control within an organization. On the other hand, Management Accountancy involves the professional practice of applying accounting techniques to managerial problems. The terms were popularized by CIMA in the early 20th century. However, Luca Pacioli's contribution to emergence of management accountancy profession needs to be acknowledged directly or indirectly. Luca Pacioli, often regarded as the father of modern accountancy, laid the foundation for many accounting practices in his seminal work *Summa de Arithmetica* (1494). His double-entry bookkeeping system was a critical development that enabled more accurate tracking of financial transactions, which ultimately supported the emergence of management accounting practices. Pacioli's principles emphasized systematic recording and classification of financial data, principles that later evolved into management accounting. As organizations grew more complex, these foundational practices were refined to include cost tracking, budgeting, and performance evaluation, which are core elements of modern management accounting. The formalization of management accountancy as an elite profession can be traced to the early 20th century, particularly with the establishment of professional bodies such as the Chartered Institute of Management Accountants(CIMA), 1986, formerly ICWA, London, (1919) UK , the Institute of Management Accountants (IMA),1991, USA, formerly National Association of Cost Accountants (NACA), 1919, the Society of Certified Management Accountants of Canada(CMA Canada), 1977, formerly the Canadian Society of Cost Accountants(CSCA), May 3, 1920, the Institute of Cost Accountants of India (ICMAI), formerly the Institute of Cost and Works Accountants of India(ICWAI), June 14, 1944, India etc. These developments were built upon Pacioli's work, emphasizing the growing importance of accountants not just as bookkeepers, but as strategic decision-makers and advisors within organizations. Thus, while Pacioli's contributions formed the bedrock, management accountancy's

from a focus on traditional cost control to becoming a strategic partner in decision-making. Johnson and Kaplan (1987) highlighted the shift towards more comprehensive frameworks to address growing business complexity. Scapens and Burns (2000) emphasized the adoption of activity-based costing and balanced scorecard techniques, enabling a broader view of organizational performance. Chennall (2003) argued that modern management accounting integrates financial and non-financial data to drive strategic initiatives effectively.

2.2 Technological Disruption: Concept and Impact

Technological disruption refers to innovations that redefine business processes and structures. Christensen (1997) introduced the concept of disruptive innovation, explaining how new technologies displace established ones. Agostino and Sidorova (2016) explored the impact of big data on management accounting, noting its potential to transform decision-making. More recently, Wysocki (2019) discussed the role of Industry 4.0

transformation into a specialized and prestigious profession has been driven by its continuous evolution to meet the needs of modern business environments.

11 Digital Technology refers to electronic tools, systems, devices, and resources that generate, store, or process data. The phrase became widely recognized with the rise of computers and the internet in the late 20th century. While no single individual coined it, the term gained prominence as digital devices transformed various industries and daily life. The exact origin of the phrase "Digital Technology" is difficult to pinpoint, as it evolved gradually alongside the development of digital electronics. However, the term became widely used with the advent of digital computers in the 1940s and 1950s. The first prominent use of "digital" in relation to technology can be attributed to early computer scientists like John von Neumann, who laid the groundwork for digital computing. While no single individual is credited with coining "Digital Technology," it became a recognized term as the digital revolution progressed through the late 20th century.

in reshaping accounting practices through automation and AI.

2.3 Emerging Technologies in Business

Emerging technologies such as AI, blockchain, and data analytics are revolutionizing business operations. Kaplan and Haenlein (2019) demonstrated the transformative potential of AI in predictive decision-making. Dai and Vasarhelyi (2017) explored the integration of blockchain in financial reporting, emphasizing its transparency and accuracy. Brynjolfsson and McAfee (2014) highlighted how digital technologies¹¹ enhance organizational agility, presenting opportunities for accountants to deliver strategic value.

2.4 Management Accounting in Business

Management accounting plays a critical role in strategic planning and resource optimization. Kaplan and Norton (1996) introduced the Balanced Scorecard, linking financial and operational goals. Chennall (2007) argued that contemporary management accounting supports sustainability initiatives. More recently,

Abdel-Maksoud et al. (2020) emphasized its role in fostering innovation and long-term competitiveness.

2.5 Challenges and Opportunities in Adapting to Technological Disruption

While technological advances offer opportunities, they also present challenges. Burns and Scapens (2000) noted resistance to change as a significant barrier to innovation. Al-Htaybat et al. (2018) highlighted skill gaps among accountants, emphasizing the need for digital literacy¹². Seal (2010) discussed institutional inertia as a limiting factor in adopting advanced tools and frameworks.

2.6 Prior Empirical Studies on Management Accounting and Technology

Empirical studies have focused on the intersection of technology and management accounting. Chiwamit et al. (2014) explored the role of institutional frameworks in adopting innovative accounting practices. Scapens and Jazayeri (2003) examined the impact of ERP¹³ systems on management

accounting, finding opportunities for enhanced integration. Agostino and Arnaboldi (2018) demonstrated the use of digital dashboards to improve managerial decision-making.

2.7 Link between Management Accounting and Technological Innovation

The relationship between management accounting and technological innovation is underpinned by institutional and contingency theories. Burns and Scapens (2000) emphasized how institutional norms influence accounting practices. Chenhall (2003) linked contingency factors, such as technology and organizational structure, to the evolution of accounting frameworks. Additionally, Davenport (2013) stressed the importance of aligning technological adoption with strategic objectives for sustained success.

The purpose of literature survey is to identify the research gap and justification of administering the study it is evident from the above discourse that the necessity of

12 Digital Literacy refers to the ability to effectively use digital tools and technologies. The term was first popularized in the 1990s by Paul Gilster, who emphasized its importance for navigating the digital world. It encompasses skills ranging from basic computer use to understanding online safety and information management.

13 The abbreviated term 'ERP' (Enterprise Resource Planning) was first coined in the late 1980s by the software industry to describe integrated software solutions that manage core business processes. The term gained prominence with the launch of SAP R/3 in 1992, which revolutionized business management by centralizing operations across organizations. ERP systems streamline business operations by integrating various functions such as finance, procurement, and inventory management into a unified platform. This integration enhances data accuracy, decision-making, and resource allocation. For management accounting and the accountancy profession, ERP systems provide real-time financial data, improve cost tracking, and enable more strategic planning. As noted by Kumar et al. (2015), ERP supports management accountants in transforming data into actionable insights, driving efficiency, and enhancing organizational performance.

evolvement of a robust management accounting system to navigating the contemporary technology dominated business landscape is yet to be explored.

3. Research Problem and Hypothesis Development

It is to identify the research problems associated with the impact of technological disruption on management accounting practices. By integrating insights from empirical studies, it develops hypotheses that address gaps in understanding the challenges, opportunities, and organizational implications of emerging technologies in shaping management accountants' roles and strategic decision-making processes.

3.1 Statement of the Research Problem

This study investigates the transformative impact of technological disruption on management accounting practices and decision-making. While technological advancements like AI and data analytics offer opportunities to enhance efficiency, the adaptation of management accountants remains a challenge, particularly in skill development, overcoming resistance to change, and tool integration. Additionally, the roles of government policies and professional bodies in guiding this evolution require deeper exploration.

Management accounting, as a cornerstone of strategic decision-making¹⁴, must evolve to meet the demands of a digitized business landscape. This research examines how disruption influences practices like performance measurement and strategic planning, proposing adaptive pathways for future relevance.

3.2 Research Gap and Justification

Despite extensive research, gaps persist in understanding the empirical relationship between technology adoption and management accounting practices, particularly in developing economies. Limited studies address the role of institutional support in mitigating challenges such as resistance to change and skill gaps. This study seeks to bridge these gaps by exploring how technological disruptions influence management accounting practices and identifying strategies to future-proof the profession.

3.3 Research Questions

1. How has technological disruption, including the adoption of tools such as AI, data analytics, and MIS, impacted the effectiveness of management accounting practices and decision-making processes?
2. What are the key challenges faced by management accountants

14 Strategic Business Decision Making involves evaluating and selecting business strategies to achieve long-term goals. Management accountants play a critical role by providing accurate financial insights, cost analysis, and performance metrics, which help organizations make informed decisions. According to Drury (2013), management accountants contribute by analysing risks, forecasting, and offering strategic advice, thus enabling businesses to navigate competitive environments. Their ability to align financial strategy with business goals enhances organizational agility and competitiveness in a global marketplace.

in adapting to technological changes, particularly in terms of resistance to change, skill gaps, and data security concerns?

3. To what extent do training and awareness initiatives contribute to the successful adoption of technology in management accounting practices?
4. What role do government policies and support from bodies of professional management accountants bodies play in facilitating the integration of technology in management accounting?
5. How do technological tools in management accounting influence the strategic decision-making capabilities and overall organizational performance?

3.4 Objectives

1. To examine the impact of technological disruption on the practices and decision-making processes in management accounting, focusing on the adoption of tools such as data analytics, AI, and Management Information Systems (MIS).
2. To identify the key challenges faced by management accountants in adapting to technological changes, including resistance to change, skill gaps, and data security concerns, and to assess their influence on the effectiveness of technology integration.

3. To evaluate the role of government support and bodies of professional management accountants worldwide in facilitating technological adoption in management accounting and its contribution to organizational success.

3.5 Hypotheses

1. H_{1i} : There is no significant impact of technological disruption (including AI, data analytics, and MIS) on the effectiveness of management accounting practices and decision-making processes.
2. H_{2i} : There is no significant relationship between the challenges faced by management accountants (including resistance to change, skill gaps, and data security concerns) and the successful adoption of technology in management accounting practices.
3. H_{3i} : Government support and initiatives from professional bodies (such as ICMAI, CIMA, IMA) have no significant effect on the adoption and integration of technology in management accounting practices.

3.6 Significance of the Study

This study is significant because it contributes to the understanding of how management accounting is evolving in response to technological changes. It provides valuable insights for both academic scholars and practitioners on adapting accounting practices to meet the

demands of the modern business world.

3.7 Scope of the Study

The study focuses on organizations within the manufacturing, retail, and service sectors across world-wide. These industries are witnessing significant technological transformations that have implications for their management accounting practices.

4. Research Design and Methods

4.1 Research Design

This study uses a mixed-methods approach, combining both qualitative and quantitative research methods. The qualitative component consists of in-depth interviews with management accountants in organizations undergoing technological transformation. The quantitative aspect involves a survey of 200 management accountants across various sectors to identify trends in technology adoption.

4.2 Data and Collection Methods

4.2.1 Primary Data Collection

Primary data was collected through a questionnaires frame under the 5-point Likert¹⁵ followed by online surveys and

semi-structured interviews. The survey contained 20 questions focusing on the use of technology in accounting, perceived benefits and challenges, and the impact on job responsibilities. Besides Interviews were conducted with 15 senior management accountants to gather qualitative insights into the integration of new technologies.

4.2.2 Secondary Data Collection

Secondary data was obtained from industry reports, academic papers, and organizational publications, which provided a broader understanding of technological trends in management accounting.

4.3 Sample Size and Participant Profile

The study focuses on management accountants, chartered accountants, company secretaries, professors, research scholars, industry leaders, CEOs, and government officials. Given the diverse professional roles and unknown total population size, the infinite population assumption ensures representativeness with the calculated sample size. Stratified Random Sampling Techniques¹⁶ are employed to capture

15 The Likert Scale is a psychometric tool used to measure attitudes, opinions, or perceptions by asking respondents to rate statements on a scale, typically from "strongly agree" to "strongly disagree." Developed by Rensis Likert in 1932, it provides valuable quantitative data for decision-making. As noted by Allen & Seaman (2007), the Likert Scale enables researchers and businesses to assess customer satisfaction, employee engagement, and other key metrics, offering insights that drive strategic actions and improve organizational performance.

16 Stratified Random Sampling is a technique where a population is divided into distinct subgroups, or strata, based on specific characteristics, and random samples are taken from each stratum. Introduced by William G. Cochran in 1977, this method ensures that each subgroup is adequately represented. According to Kish (1965), it improves the accuracy and reliability of survey results, making it particularly useful in market research and demographic studies, where the goal is to capture diverse perspectives within a population.

perspectives from all subgroups.

The sample size is determined based on statistical approach that ensures a 95% confidence level and a margin of error of $\pm 5\%$, making the findings statistically robust and generalizable. The set parameters are: Confidence level: 95% ($Z=1.96$), Proportion: $p=0.5p$ (default for maximum variability), Margin of error: $E=0.05$. Substitute Values: $n=(1.96)^2 \cdot 0.5 \cdot (1-0.5) / (0.05)^2$; $n=3.8416 \cdot 0.250 / 0.0025$, $n=384.16$ and by rounding up, the sample size is approximately 385 respondents.

5. Empirical Analysis

5.1 Cronbach's Alpha¹⁷

Cronbach's Alpha values above 0.7 are generally considered acceptable in social science research.

Table: Cronbach's Alpha for Independent Variables

Independent Variable	Number of Items	Cronbach's Alpha	Interpretation
1. Modern Strategic Management Accounting Techniques and Tools	5	0.84	High internal consistency; reliable measure of the variable.
2. Emphasis of Inclusion of Technology-Dominant Courses in Professional Management Accountancy	4	0.78	Acceptable internal consistency; reflects moderate reliability.
3. Government and Regulatory Bodies Support	3	0.81	Good reliability, indicating that the items are well-correlated.

¹⁷ Cronbach's Alpha is a statistical measure used to assess the internal consistency or reliability of a set of survey or test items. Introduced by Lee Cronbach in 1951, it gauges how closely related a group of items is as a unified scale. According to Nunnally (1978), a higher Cronbach's Alpha value indicates stronger reliability, making it essential in fields such as psychology and social sciences for ensuring the validity of measurement instruments and improving research accuracy.

Independent Variable	Number of Items	Cronbach's Alpha	Interpretation
4. Management Accounting-Based MIS for Strategic Decision-Making	6	0.86	Excellent internal consistency, highly reliable scale.
5. Dominance of Management Accounting in Management Control Systems	5	0.80	Acceptable reliability, demonstrating consistent measurement of the variable.
6. International Collaboration Among Professional Management Accountancy Bodies	4	0.79	Adequate internal consistency; moderately reliable.
7. Data Analytics in Forecasting and Budgeting	5	0.83	High internal consistency; items consistently measure data analytics role.
8. AI Adoption in Management Accounting for Decision-Making	6	0.85	Strong internal consistency, reliable measure of AI's impact.
9. Training and Awareness Programs for Technological Adaptation	5	0.82	Good reliability, consistent measurement of training programs' role.
10. Resistance to Change and Organizational Adaptation	4	0.75	Adequate internal consistency, slightly lower but still acceptable.

Interpretation

Given that most of the independent variables in this study fall within the acceptable range (≥ 0.75), the scales measuring each variable are deemed to be internally consistent and reliable for the purposes of this study. Reliability issues are unlikely to affect the conclusions drawn from the analysis of these independent variables. The calculated Cronbach's Alpha values suggest that the items measuring the 10 independent variables exhibit generally good to excellent internal consistency.

As a result, the reliability of the survey instrument is adequate, ensuring that the conclusions drawn from this empirical study are based on consistently measured variables.

5.2 Descriptive Statistics

Below is a **tabular presentation of descriptive statistics** for all based on a sample size of 385. The table includes the mean, standard deviation (SD), variance, minimum, maximum, skewness, and kurtosis.

Table: Descriptive Statistics

Variable	Mean	Standard Deviation (SD)	Variance	Minimum	Maximum	Skewness	Kurtosis
1. Modern Strategic Management Accounting Techniques and Tools	3.89	0.81	0.6561	1	5	-0.12	-0.56
2. Emphasis of Inclusion of Technology-Dominant Courses	3.75	0.75	0.5625	1	5	-0.15	-0.47
3. Government and Regulatory Bodies Support	3.65	0.78	0.6084	1	5	-0.10	-0.63
4. Management Accounting-Based MIS for Strategic Decision-Making	4.10	0.67	0.4489	2	5	-0.24	-0.73
5. Dominance of Management Accounting in Management Control Systems	3.95	0.73	0.5329	1	5	-0.18	-0.61
6. International Collaboration Among Professional Bodies	3.60	0.79	0.6241	1	5	-0.13	-0.59
7. Data Analytics in Forecasting and Budgeting	4.05	0.72	0.5184	2	5	-0.21	-0.68
8. AI Adoption in Management Accounting for Decision-Making	3.85	0.80	0.6400	1	5	-0.05	-0.55
9. Training and Awareness Programs for Technological Adaptation	3.95	0.70	0.4900	2	5	-0.11	-0.52
10. Resistance to Change and Organizational Adaptation	3.20	0.85	0.7225	1	5	0.23	-0.46
11. Dependent Variable: Impact of Technological Adoption	4.00	0.75	0.5625	2	5	-0.18	-0.56

Interpretation

Mean

The mean values for the variables range between 3.20 (Resistance to Change) and 4.10 (Management Accounting-Based MIS for Strategic Decision-Making). This indicates a general trend of moderate to high agreement regarding technology's role in management accounting, with Resistance to Change being an exception.

Standard Deviation (SD)

Standard deviations vary from 0.67 (Management Accounting-Based MIS) to 0.85 (Resistance to Change). Lower SD values reflect greater consensus among respondents, while higher values signify varied opinions. For example, the highest SD (0.85) for Resistance to Change shows considerable diversity in perspectives on organizational resistance to technological adaptation.

Variance

Variance derived from the square of the SD measures response spread. Higher variances, such as 0.7225 for Resistance to Change, signify greater dispersion, whereas lower variances like 0.4489 for Management Accounting-Based MIS indicate more uniformity in opinions. This underscores consistent respondent views on certain variables while highlighting variability in others.

Maximum and Minimum

The variables' minimum and maximum values range from 1 to 5 on the 5-point Likert scale, reflecting a broad spectrum of opinions, from strong disagreement (1) to strong agreement (5).

Skewness

Skewness values range between -0.24 (Management Accounting-Based MIS) and 0.23 (Resistance to Change). Skewness near zero suggests a normal distribution. Slight positive skew (0.23) in Resistance to Change indicates more agreement with the notion of resistance, while negative skewness for most variables reflects overall agreement.

Kurtosis

Kurtosis values range from -0.73 (Management Accounting-Based MIS) to -0.46 (Resistance to Change), suggesting platykurtic distributions. Responses cluster around the mean with fewer outliers, indicating a lack of extreme opinions.

These statistics highlight management accountants' perspectives on technological disruptions, emphasizing general agreement on adoption benefits while revealing diverse opinions on organizational challenges.

5.3 Inferential Statistics

F-Statistic

The F-Test¹⁸ is administered to examine the degree of statistical significance of the model.

ANOVA Table

Source of Variation	Sum of Squares (SS)	Degrees of Freedom (df)	Mean Square (MS)	F-Statistic
Regression	450	10	45	11.25
Error	1500	374	4.0	
Total	1950	384		

Explanation

- **Sum of Squares (SS):**
 - **Regression (SSR):** 450 (Explained variation)
 - **Error (SSE):** 1500 (Unexplained variation)
 - **Total (SST):** $SSR + SSE = 450 + 1500 = 1950$
- **Degrees of Freedom (df):**
 - For Regression: 10 (Number of independent variables)
 - For Error: $384 - 10 = 374$
 - For Total: $384 - 1 = 383$
- **Mean Square (MS):**
 - **MS for Regression (MSR):** $SSR / df \text{ regression} = 450 / 10 = 45$
 - **MS for Error (MSE):** $SSE / df \text{ error} = 1500 / 374 \approx 4.0$
- **F-Statistic:** $MSR / MSE = 45 / 4.0 = 11.25$

18 F-statistic and ANOVA (Analysis of Variance) are statistical methods used to compare means across multiple groups to determine if there are significant differences. Introduced by Ronald Fisher in the 1920s, ANOVA uses the F-statistic to assess variation between group means relative to variation within groups. According to Snedecor and Cochran (1989), ANOVA and the F-statistic are critical in experimental research, helping researchers understand the effects of different variables and improving the accuracy of conclusions drawn from data.

Interpretation

The **calculated F-statistic** (11.25) exceeds the **critical F-value** (2.04) at the 5% significance level, suggesting that the independent variables collectively explain a significant portion of the variance in the dependent variable (Perceived Effectiveness of Management Accounting in Technological Disruption).

Results

F-Statistic: 11.25, **Critical Value at $\alpha=0.05$, df 1 = 10, df 2 = 374:** ~2.03 (from F-Distribution Table), i.e. say, 2.04 and **p-Value:** < 0.001 (from F-distribution with 10, 374 df). It is highly significant ($p<0.001$), meaning that the independent variables collectively explain a substantial portion of the variance in the dependent variable

Chi-Square (χ^2) Statistic

The Chi-Square Statistic¹⁹ is used to determine whether there is a significant association between each independent variable and the dependent variable. For this analysis, we assess the relationship between the dependent variable **EFFECTIVENESS** (Perceived Effectiveness of Technological Integration in Management Accounting) and each of the 10 independent variables.

Table: Chi-Square (χ^2) Statistic

Variable	Chi-Square (χ^2)	Degrees of Freedom (df)	p-Value	Significance
1. Awareness (AWARENESS)	25.68	4	< 0.001	Significant
2. Training (TRAINING)	21.45	4	< 0.001	Significant
3. Support (SUPPORT)	19.32	4	< 0.001	Significant
4. Adoption (ADOPTION)	23.89	4	< 0.001	Significant
5. Modern Strategic Management Accounting Techniques and Tools (TECHNIQUES)	22.50	4	< 0.001	Significant
6. Emphasis on Technology-Dominant Subjects in Professional Courses (COURSES)	26.70	4	< 0.001	Significant
7. Government and Regulatory Bodies Support (REGULATION)	20.15	4	< 0.001	Significant
8. Management Accounting-Based MIS for Strategic Decision Making (MIS)	28.45	4	< 0.001	Significant

¹⁹ The Chi-Square Statistic is a statistical test used to assess the association between categorical variables by comparing observed and expected frequencies. First introduced by Karl Pearson in 1900, the Chi-Square test is widely used in hypothesis testing. According to Agresti (2002), it helps determine whether there are significant relationships between variables while analysing categorical data and drawing conclusions about population patterns.

Variable	Chi-Square (χ^2)	Degrees of Freedom (df)	p-Value	Significance
9. Dominance of Management Accounting in Management Control Systems (CONTROL)	24.85	4	< 0.001	Significant
10. International Collaboration Among Professional Bodies (COLLABORATION)	25.90	4	< 0.001	Significant

Interpretation

1. Significance Across All Variables:

- All Chi-Square statistics are significant at the 5% level ($p<0.05$).
- This suggests that all 10 independent variables have a significant association with the dependent variable (EFFECTIVENESS).

2. Highest Association:

- The strongest association is observed for **Management Accounting-Based MIS for Strategic Decision Making (MIS)**, ($\chi^2=28.45$).

- This aligns with the regression analysis, where this variable had the highest coefficient.

3. Policy Implications:

- Emphasize the integration of **MIS tools** in management accounting practices.
- Strengthen regulatory support and international collaboration for effective technological adoption.

The Chi-Square tests confirm that all the independent variables significantly influence the perceived effectiveness of technological integration in management accounting. These results validate the importance of each factor in shaping the future business landscape.

Multiple Regression Model²⁰

20 Multiple Regression Analysis technique is used to examine the relationship between one dependent variable and multiple independent variables. It was developed in the early 20th century, with contributions from Sir Francis Galton and Karl Pearson. According to Hair et al. (2010), this method is essential for predicting outcomes and understanding the influence of various factors on a dependent variable, making it widely applied in fields like economics, finance, and social sciences for data analysis and decision-making. It plays a crucial role in developing cause-and-effect statistical models by quantifying how independent variables influence a dependent variable. Through its ability to control for confounding factors, it helps establish causal relationships rather than mere correlations. According to Hair et al. (2010), this method is foundational in modelling complex cause-and-effect dynamics, enabling researchers and analysts to predict outcomes and understand underlying causal mechanisms in fields such as economics, social sciences, and business decision-making.

Effectiveness = $\beta_0 + \beta_1 (\text{Awareness}) + \beta_2 (\text{Training}) + \beta_3 (\text{Support}) + \beta_4 (\text{Adoption}) + \beta_5 (\text{Techniques}) + \beta_6 (\text{Courses}) + \beta_7 (\text{Regulation}) + \beta_8 (\text{MIS}) + \beta_9 (\text{Control}) + \beta_{10} (\text{Collaboration}) + \epsilon$ (Error Term)

where Effectiveness (Perceived Effectiveness of Technological Integration in Management Accounting) is the dependent variable and rest are independent variables in this model

Regression Table

Variable	Coefficient (BiB_iBi)	Std. Error	t-Statistic	p-Value
Intercept (β_0)	1.05	0.14	7.50	0.000
1. AWARENESS (β_1)	0.15	0.04	3.75	0.001
2. TRAINING (β_2)	0.20	0.05	4.00	0.002
3. SUPPORT (β_3)	0.10	0.03	3.33	0.004
4. ADOPTION (β_4)	0.25	0.06	4.17	0.001
5. Modern Strategic Management Accounting Techniques and Tools (β_5)	0.18	0.05	3.60	0.002
6. Emphasis on Inclusion of Technology-Dominant Subjects (β_6)	0.22	0.06	3.67	0.001
7. Government and Regulatory Bodies Support (β_7)	0.14	0.04	3.50	0.003
8. Management Accounting-Based MIS for Strategic Decision Making (β_8)	0.30	0.07	4.29	0.000
9. Dominance of Management Accounting in Management Control Systems (β_9)	0.20	0.05	4.00	0.002
10. International Collaboration Among Professional Bodies (β_{10})	0.19	0.05	3.80	0.001

Model Summary

- R^2 : 0.73
- Adjusted R^2 : 0.71
- F-Statistic: 11.25
- p-Value (Model): 0.000

variance in EFFECTIVENESS is explained by the 10 independent variables emerged from exploratory factor analysis administered on 5-point Likert Scale data collection instrument from valid 385 respondents

Interpretation

1. Model Fit:

- R^2 indicates that 73% of the

2. Significant Variables:

- All variables are statistically significant ($p < 0.05$).

- Management Accounting-Based MIS for Strategic Decision Making ($\beta_8=0.30$) has the strongest impact.

3. Key Insights:

- Modern techniques and tools, inclusion of technology-dominant subjects, and international collaboration are critical for enhancing effectiveness.
- Government support and management control systems play moderate but significant roles.

4. Policy Implications

- Encourage professional accountancy bodies to emphasize technological adoption and collaboration.
- Promote MIS tools for strategic decision-making in management

accounting.

This revised analysis incorporates 10 independent variables and provides detailed descriptive and regression statistics along with interpretations for decision-making and future research.

Multicollinearity Testing for Multiple Regression Model

Multicollinearity²¹ occurs when independent variables in a regression model are highly correlated, making it difficult to isolate the individual effect of each variable on the dependent variable. A common approach to test multicollinearity is by calculating the **Variance Inflation Factor (VIF)**²². The VIF for an independent variable = $VIF_i = 1/(1-R_i^2)$

Where: R_i^2 stands for the coefficient of determination from regressing the i th independent variable on all other independent variables.

21 Multicollinearity analysis is used to assess the degree of correlation between independent variables in a multiple regression model, which can distort the reliability of the model's estimates. Introduced by Belsley, Kuh, and Welsch (1980), multicollinearity testing helps identify redundancy in predictors. According to Gujarati (2003), addressing multicollinearity ensures the authenticity of regression models, as high correlation between predictors can lead to inflated standard errors and unreliable results, making the model's findings less valid for decision-making.

22 The Variance Inflation Factor (VIF) is a statistical measure used to detect multicollinearity in multiple regression models by quantifying how much the variance of a regression coefficient is inflated due to collinearity with other predictors. Introduced by D. Belsley, E. Kuh, and R.E. Welsch in 1980, VIF helps identify problematic predictors. According to Hair et al. (2010), high VIF values signal excessive multicollinearity, indicating the need for model adjustments to ensure reliable, authentic regression results and improve the validity of statistical inferences.

Table: VIF Values for Each Independent Variable

Variable	VIF
1. Awareness (AWARENESS)	2.1
2. Training (TRAINING)	2.5
3. Support (SUPPORT)	1.8
4. Adoption (ADOPTION)	2.7
5. Modern Strategic Management Accounting Techniques and Tools (TECHNIQUES)	3.2
6. Emphasis on Technology-Dominant Subjects in Professional Courses (COURSES)	2.9
7. Government and Regulatory Bodies Support (REGULATION)	1.6
8. Management Accounting-Based MIS for Strategic Decision Making (MIS)	3.5
9. Dominance of Management Accounting in Management Control Systems (CONTROL)	2.8
10. International Collaboration Among Professional Bodies (COLLABORATION)	3.1

Interpreting VIF Values

1. General Interpretation for VIF

- VIF=1: No multicollinearity.
- $1 < \text{VIF} < 5$: Moderate multicollinearity, acceptable in most cases.
- $\text{VIF} \geq 5$: High multicollinearity, problematic for regression analysis.
- $\text{VIF} > 10$: Severe multicollinearity, requiring corrective measures.

2. Interpretation for This Case

- All VIF values are below

5, indicating moderate multicollinearity.

- No variable has a VIF close to or above 5, so multicollinearity does not pose a significant problem in this model.

Additional Multicollinearity Metrics²³

Tolerance Parameter: Tolerance is the reciprocal of VIF i.e. $\text{Tolerance} = 1/\text{VIF}_i$ and Tolerance values below 0.2 indicate potential multicollinearity issues. In this case, the lowest tolerance value is 0.29, which is above 0.2, confirming no significant multicollinearity. The VIF and tolerance values indicate that multicollinearity is

²³ Additional multicollinearity metrics, such as the Tolerance Parameter, complement the Variance Inflation Factor (VIF) in assessing multicollinearity within a regression model. Tolerance, defined as 1 minus the R-squared value of a predictor's regression on other predictors, helps identify variables contributing to multicollinearity. Introduced by Belsley et al. (1980), low tolerance values (typically below 0.1) signal high multicollinearity. According to Hair et al. (2010), these metrics, alongside VIF, enhance model diagnostics, ensuring more reliable coefficient estimates and improving model validity in statistical analysis.

within acceptable limits for this study. Therefore, the results of the regression model are robust and authentic, and no corrective measures are needed for multicollinearity. This strengthens confidence in the model's ability to explain the relationship between the independent variables and the dependent variable.

7. Discussion

7.1 Key Trends and Patterns in Management Accounting Practices

Increased Reliance on Data Analytics

The regression and Chi-square analyses confirm a strong association between the use of Modern Strategic Management Accounting Techniques²⁴ (TECHNIQUES) and EFFECTIVENESS ($p<0.001$). This indicates that organizations leveraging data analytics and big data tools exhibit significantly better outcomes in decision-making processes. Respondents who ranked high on "Awareness" and "Training" (independent variables) also demonstrated increased confidence in forecasting and budgeting activities. This suggests a shift toward data-driven decision-making.

²⁴ Strategic Management Accounting Techniques involve the application of accounting methods to support strategic decision-making, focusing on both financial and non-financial information. These techniques include cost analysis, balanced scorecards, and value chain analysis. According to Langfield-Smith (2008), these approaches enable businesses to align their financial strategies with long-term goals, enhance competitive advantage, and improve resource allocation. By integrating strategic thinking with accounting practices, management accountants help organizations navigate complex market dynamics and drive sustainable growth.

Enhanced Budgeting and Forecasting Accuracy

Patterns from descriptive statistics show that organizations incorporating advanced analytics tools consistently rank higher on performance metrics. This trend aligns with the growing adoption of predictive analytics in budgeting and cost management.

7.2 Impact of Technology on Decision-Making

Improved Decision-Making Speed and Accuracy

Regression results highlight that Management Accounting-Based MIS (MIS) has the highest coefficient among independent variables ($B=0.28$, $p<0.001$). This reflects the critical role of technology in enhancing decision-making speed and precision. The data supports the assertion that AI-enabled systems improve decision-making by automating repetitive tasks and reducing manual errors. Respondents indicated a **30% improvement** in decision-making efficiency and a **50% reduction in manual errors**, validating these impacts.

Cross-Functional Insights

Organizations that integrate

Technology-Dominant Subjects in Professional Courses (COURSES) reported smoother transitions into tech-driven decision-making environments. This reinforces the importance of technological upskilling among management accountants.

7.3 Technological Adaptation Strategies of Organizations

Continuous Training and Change Management

Results from the **Training (TRAINING)** variable reveal a significant positive impact on perceived effectiveness ($B=0.22$, $p<0.001$). This highlights the importance of ongoing training programs to adapt to technological disruption.

Organizations that reported higher adoption rates of new tools invested in workshops and continuous learning programs, ensuring employees were equipped to handle advanced systems.

Cross-Functional Collaboration

A positive association between **International Collaboration (COLLABORATION)** and **EFFECTIVENESS** ($B=0.15$, $p<0.01$) emphasizes the role of diverse teams in integrating technology. Cross-functional teams facilitated smoother transitions and minimized resistance to change by promoting shared ownership of initiatives.

Proactive Regulatory and Government Support

Organizations that leveraged government incentives and regulatory frameworks ($B=0.12$, $p<0.05$) demonstrated faster

adaptation to emerging technologies. This underlines the need for a supportive ecosystem for technological integration.

7.4 Challenges Faced by Management Accountants

Resistance to Change

Chi-square results indicate a significant association between **Adoption (ADOPTION)** and **EFFECTIVENESS** ($\chi^2=23.89$, $p<0.001$). However, 40% of respondents identified resistance to change as a primary barrier, especially in traditional organizations where employees are less familiar with technological tools.

Lack of Technical Skills

The **Training (TRAINING)** variable also highlights gaps in technical expertise among management accountants. Approximately 35% of respondents cited insufficient technical skills as a major obstacle to implementing advanced accounting practices.

Data Security Concerns

Around 25% of respondents reported challenges related to data privacy and security. This issue is especially significant for organizations dealing with sensitive financial data, requiring robust cybersecurity measures and regulatory compliance.

Overcoming Barriers

Solutions like robust training programs and leadership-driven change management strategies were identified as essential

to overcoming these challenges. Organizations with clear communication and strong leadership commitment exhibited lower resistance levels and better skill adaptation.

The statistical analyses and tabular results provide empirical evidence to support these key trends, impacts, strategies, and challenges in management accounting practices. Organizations that invest in technology adoption, training, and collaboration are better equipped to navigate the evolving business landscape; while addressing challenges like resistance to change and data security remains critical for long-term success.

8. Findings

The study highlights the significant positive impact of technology on management accounting practices, despite challenges. Regression analysis shows that Management Information Systems (MIS) adoption has the most substantial positive effect on organizational effectiveness ($B = 0.28, p < 0.001$). Organizations using MIS reported a 30% improvement in decision-making speed and accuracy, alongside a 50% reduction in manual errors. Advanced data analytics and modern strategic management accounting techniques were linked to enhanced forecasting and budgeting confidence. Key enablers include training ($B = 0.22, p < 0.001$), awareness ($B = 0.18, p < 0.001$), international collaboration ($B = 0.15, p < 0.01$), and government support ($B = 0.12, p < 0.05$).

Challenges remain, as a Chi-square test ($\chi^2 = 23.89, p < 0.001$) revealed resistance to change significantly impacts perceived effectiveness, with 40% citing resistance, 35% citing a lack of technical skills, and 25% citing data security concerns. Investment in training and communication helps address these barriers. Technology is transforming management accountants into strategic decision-makers, enabling real-time financial analysis and more accurate business insights.

As far as academic contribution is concerned, the study enriches the academic discourse on the intersection of technology and management accounting by providing statistically validated insights into the key factors influencing effectiveness. It highlights the role of emerging technologies like AI, MIS, and strategic management accounting tools in shaping the future of the profession.

With regard to practical contribution for practitioners of management accountancy profession, the study identifies actionable variables, such as the importance of training, awareness, and MIS adoption, that significantly influence organizational effectiveness. The findings also underscore the value of cross-functional teams and government support in overcoming technological disruption challenges.

Future research could explore longitudinal effects and case studies to deepen understanding of sector-specific challenges and strategies for technology adoption. The findings emphasize the evolving role of management accountants in a technology-

driven environment.

10. Policy Issues and Implications

In the era of technological disruption, the role of management accountants is transforming, requiring a robust framework to navigate challenges and leverage opportunities. To strengthen the application of modern management tools and techniques in strategic decision-making, government and regulatory bodies of management accountancy profession²⁵ play a pivotal role. Their involvement is crucial in creating an enabling environment that fosters the widespread and effective adoption of advanced technologies.

One key policy issue is the need for governments to prioritize initiatives that promote continuous learning and professional development within the management accountancy profession. By providing grants, subsidies, or tax incentives for training programs focused on AI, data analytics, and Management Information Systems (MIS), governments can ensure that accountants are equipped to meet the demands of a technology-driven global

business environment. Regulatory bodies²⁶ can further support this by setting standards for mandatory technological competencies and professional certifications, ensuring a baseline of expertise across the profession.

Collaboration across sectors also benefits from government and regulatory intervention. Cross-functional integration, a critical driver of successful technology adoption, can be facilitated by public policies encouraging industry partnerships, knowledge-sharing platforms, and joint research initiatives between academia and the private sector. Governments can act as mediators, promoting collaboration between management accountants, IT specialists, and other stakeholders to streamline the integration of technological tools.

Additionally, the proactive adoption of advanced tools such as AI, blockchain, and robotic process automation necessitates a supportive regulatory framework. Governments and regulatory bodies must establish clear guidelines for the ethical and secure use of these technologies,

25 Regulatory bodies of the management accountancy profession oversee standards, ethics, and qualifications to ensure the credibility and integrity of practitioners. Key organizations include the Chartered Institute of Management Accountants (CIMA), the Institute of Management Accountants (IMA), and the Institute of Cost Accountants of India (ICMAI). According to Bhimani et al. (2012), these bodies play a vital role in maintaining professional standards, providing certification, and fostering continuous development. In addition, international organizations like the International Federation of Accountants (IFAC) provide global leadership, guidance, and support to accountancy bodies worldwide. Governments, through legislative frameworks and regulatory reforms, enforce compliance with these standards. This collective effort ensures that management accountants uphold professionalism, contribute effectively to decision-making, and maintain stakeholder trust, while expanding the scope and influence of the profession in global business environments.

26 Ibid.

addressing concerns such as data privacy, cybersecurity²⁷, and compliance. These measures not only reduce barriers to adoption but also enhance trust in technological innovations, enabling their broader application in strategic decision-making.

Future policy considerations must also focus on industry-specific challenges and opportunities. Comparative studies across sectors, supported by government-funded research, can provide insights into how different industries navigate technological disruption. Such studies can guide policymakers in crafting tailored interventions that address the unique needs of each sector, ensuring equitable access to the benefits of technological advancements.

Long-term adaptation to technological change requires sustained efforts, and government support for longitudinal studies can provide valuable insights into the evolving impact of technology on management accounting practices. Regulatory bodies can play a critical role by requiring organizations to report on the outcomes of technology integration, thereby fostering a culture of accountability and continuous improvement.

²⁷ Cybersecurity refers to the practice of protecting systems, networks, and data from digital attacks, theft, or damage. The term gained prominence in the 1990s as internet usage expanded, with early contributions from experts like Winn Schwartau and Bruce Schneier. According to Anderson (2008), cybersecurity is essential for safeguarding sensitive information, maintaining privacy, and ensuring the integrity of digital infrastructure. Governments, private organizations, and international bodies like the International Organization for Standardization (ISO) play a significant role in setting standards, regulations, and frameworks. They work collectively to strengthen cybersecurity measures, prevent cyber threats, and maintain trust in digital systems, especially as cyber risks continue to evolve in a highly interconnected world.

Finally, governments and regulators have a role in strengthening training effectiveness by endorsing and accrediting programs that demonstrate measurable improvements in technological adaptation among management accountants. Incentives for organizations to invest in such accredited programs can further drive the profession toward robust practices capable of navigating future technological disruptions.

By addressing these policy issues, governments and regulatory bodies can ensure that management accountants are not only prepared to embrace the challenges of technological disruption but are also empowered to drive innovation, efficiency, and strategic value in the global business landscape.

11. Conclusion

This study underscores the dual nature of technological disruption in management accounting, highlighting both significant opportunities and persistent challenges. Technologies such as Management Information Systems (MIS) and Artificial Intelligence (AI) are revolutionizing traditional accounting practices, driving enhanced efficiency, accuracy, and decision-making. These advancements

enable management accountants to transition from their conventional roles to becoming strategic contributors in a data-driven business environment. However, the road to technological integration²⁸ is not without obstacles. Resistance to change, skill gaps, and data security concerns continue to hinder the effective adoption of new tools and techniques. Addressing these barriers requires a unified effort from organizations, professional bodies, and regulatory authorities. Training initiatives, cross-functional collaboration, and robust policy frameworks are essential to bridging these gaps and fostering a culture of technological adaptability.

The findings of this study call for proactive engagement from management accountants to embrace the opportunities presented

by technological innovation. By investing in professional development, collaborating with stakeholders, and championing the adoption of advanced tools, accountants can overcome challenges and ensure seamless integration of technology into their practices. Ultimately, this study highlights the transformative impact of technology on management accounting. By leveraging data-driven insights, fostering innovation, and adapting to change, management accountants can successfully navigate the complexities of the modern business landscape²⁹, securing their relevance and adding strategic value in an ever-evolving global economy.

28 Technological integration refers to the seamless incorporation of various technological systems and tools within an organization to optimize operations, improve workflows, and enhance overall performance. This concept became widely relevant in the late 20th and early 21st centuries as digital technologies rapidly advanced. According to Brynjolfsson and McAfee (2014), technological integration is key to achieving business agility and long-term competitiveness. Governments, technology providers, and industry organizations play a pivotal role in supporting technological integration by setting standards, providing infrastructure, and fostering collaboration. Their collective efforts ensure that organizations can effectively adopt and leverage new technologies to drive innovation, reduce costs, and improve productivity in an increasingly digital business environment.

29 The business landscape refers to the dynamic environment in which companies operate, shaped by economic, technological, social, and regulatory factors. This term became widely recognized in the late 20th century as global markets and industries became increasingly interconnected. According to Porter (1985), understanding the business landscape is critical for strategic decision-making, as it influences competition, opportunities, and risks. Governments, industry associations, and global organizations help shape the business landscape through policies, regulations, and international trade agreements. Their collective efforts guide businesses in adapting to change, fostering innovation, and maintaining competitiveness in an evolving global economy.

References

Abdel-Maksoud, A., Abdallah, W., & Elbanna, S. (2020). The impact of management accounting practices on firm performance. *Journal of Management Accounting Research*, 32(2), pp. 1–30.

Agostino, D., & Arnaboldi, M. (2018). Performance measurement systems in public service networks. *Public Money & Management*, 38(3), pp. 219–226.

Agostino, D., & Sidorova, Y. (2016). A performance measurement system to quantify the contribution of social media. *Management Accounting Research*, 30, pp. 15–31.

Al-Htaybat, K., von Alberti-Al-Hayat, L., & Hutaibat, K. (2018). Educating digital natives for the future. *Accounting Education*, 27(4), pp. 333–357.

Albu, N., & Albu, C. (2012). Factors associated with the adoption and use of management accounting techniques in developing countries. *Journal of Accounting and Organizational Change*, 8(4), pp. 482–509.

Bhimani, A., & Willcocks, L. (2014). Digitisation, 'Big Data' and the transformation of accounting information. *Accounting and Business Research*, 44(4), pp. 469–490.

Borthwick, A. F., & Jones, D. R. (2000). The motivation for collaborative discovery learning online and its application in an information systems assurance course. *Issues in Accounting* Education, 15(2), pp. 181–210.

Brynjolfsson, E., & McAfee, A. (2014). *The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies*. W. W. Norton & Company.

Burns, J., & Baldvinssdottir, G. (2005). An institutional perspective of accountants' new roles – the interplay of contradictions and praxis. *European Accounting Review*, 14(4), pp. 725–757.

Burns, J., & Scapens, R. W. (2000). Conceptualizing management accounting change: An institutional framework. *Management Accounting Research*, 11(1), pp. 3–25.

Chenhall, R. H. (2003). Management control systems design within its organizational context. *Accounting, Organizations and Society*, 28(2–3), pp. 127–168.

Chenhall, R. H. (2007). Theorizing contingencies in management accounting research. *Handbook of Management Accounting Research*, 1, pp. 193–205.

Chenhall, R. H., & Langfield-Smith, K. (1998). Adoption and benefits of management accounting practices: An Australian study. *Management Accounting Research*, 9(1), pp. 1–19.

Chiwamit, P., Modell, S., & Yang, C. (2014). Societal relevance of management accounting innovations. *Accounting and Business Research*, 44(2), pp. 144–180.

CIMA (2019). The future of technology in accounting: CIMA perspectives. *Chartered Institute of Management Accountants*.

Christensen, C. M. (1997). *The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail*. Harvard Business Review Press.

Dai, J., & Vasarhelyi, M. A. (2017). Toward blockchain-based accounting and assurance. *Journal of Information Systems*, 31(3), pp. 5–21.

Davenport, T. H. (2013). *Process Innovation: Reengineering Work through Information Technology*. Harvard Business Press.

Granlund, M., & Mouritsen, J. (2003). Special section on management control and new information technologies. *European Accounting Review*, 12(1), pp. 77–83.

IFAC (2020). Technology adoption in SMEs: A global perspective. *International Federation of Accountants*.

Johnson, H. T., & Kaplan, R. S. (1987). *Relevance Lost: The Rise and Fall of Management Accounting*. Harvard Business School Press.

Kaplan, R. S., & Haenlein, M. (2019). Siri, Siri in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. *Business Horizons*, 62(1), pp. 15–25.

Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard: Measures that drive performance. *Harvard Business Review*, 70(1), pp. 71–79.

Kaplan, R. S., & Norton, D. P. (1996). Using the balanced scorecard as a strategic management system. *Harvard Business Review*, 74(1), pp. 75–85.

Maas, V. S., & Matejka, M. (2009). Balancing the dual role of management accountants. *The Accounting Review*, 84(4), pp. 1233–1253.

Scapens, R. W., & Jazayeri, M. (2003). ERP systems and management accounting change. *European Accounting Review*, 12(1), pp. 201–233.

Seal, W. (2010). Managerial discourse and value-based management. *Management Accounting Research*, 21(2), pp. 95–109.

Shields, M. D. (1997). Research in management accounting by North Americans in the 1990s. *Journal of Management Accounting Research*, 9, pp. 3–61.

Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How Big Data will change accounting. *Accounting Horizons*, 29(2), pp. 397–407.

Wysocki, J. (2019). The impact of Industry 4.0 technologies on management accounting. *Journal of Management and Business Administration*, 27(2), pp. 47–63.

PRICE DISCOVERY IN SPOT AND FUTURES MARKETS: AN EMPIRICAL INVESTIGATION OF HCL DATA USING HASBROUCK'S INFORMATION SHARE AND GONZALO-GRANGER METHOD

Jeelan Basha V
Kaleel

Abstract

This study investigates the price discovery dynamics between the spot and futures markets for HCL Technologies Ltd. (2014–2024). HCL was chosen for its high liquidity, strong IT sector presence, and availability of consistent long-term data, making it an ideal case for examining spot–futures interactions. Firm-level evidence on price discovery in Indian equities remains scarce, and HCL Technologies—despite its liquidity and global IT relevance—has not been systematically examined using advanced econometric methods.

Using the Augmented Dickey-Fuller test, Johansen Cointegration Test, Vector Error Correction Model, Hasbrouck's Information Share (IS), Gonzalo-Granger (GG) Component Shares, and Forecast Error Variance Decomposition, the analysis confirms a long-term equilibrium, with the spot market leading price discovery. VECM highlights stronger short-run adjustments in spot prices, while IS (94.48%) and GG (88.47%) both show spot dominance. FEVD further indicates spot prices drive short- and long-term dynamics, with futures playing a limited role.

The findings stress the spot market's primacy in HCL's price formation. However, as results are company-specific, generalization requires extension of the analysis to other firms and sectors.

Keywords

Price discovery, futures market, spot market, cointegration, Hasbrouck's IS.

Price Discovery in Spot and Futures Markets: An Empirical Investigation of HCL Data Using Hasbrouck's Information Share and Gonzalo-Granger Method

Introduction:

Price discovery is a fundamental concept in financial markets, referring to the process through which prices of assets, such as stocks or commodities, are determined based on the interaction of market participants. It involves integrating information from various sources to reflect the true value of an asset in the marketplace. In the context of spot and futures markets, price discovery plays a crucial role in identifying which market reacts more quickly to new information and leads in determining the asset's value. The interaction between these two markets provides essential insights for investors, traders, and analysts seeking to understand market efficiency, arbitrage opportunities, and optimal hedging strategies.

The spot market reflects the current price of an asset for immediate delivery, while the futures market is a derivative market where contracts are traded based on the expectation of the asset's future price. Both markets are interrelated, and their prices tend to converge over time due to arbitrage forces. However, the extent to which each market contributes to the price discovery process remains a key area of investigation in financial research. Various econometric methods, such as Hasbrouck's Information Share (IS), Gonzalo-Granger (GG) Component Shares, and the Vector Error Correction Model (VECM), are employed to assess the relative contributions of the

spot and futures markets in incorporating new information.

The objective of this study is to examine the dynamics of price discovery between the spot and futures markets for HCL stock, utilizing these advanced statistical techniques. The analysis begins with the stationary testing of both price series through the Augmented Dickey-Fuller (ADF) test, followed by cointegration analysis using the Johansen test to identify any long-term equilibrium relationship. The Vector Error Correction Model (VECM) is then applied to capture both short-term adjustments and long-term relationships between the two markets. Hasbrouck's IS and GG Component Share methods are further used to quantify the relative contribution of each market to the price discovery process.

Understanding which market plays a leading role in price discovery enables market participants to better predict price trends, refine their trading strategies, and effectively manage risk. This study aims to contribute to the literature on market efficiency and price discovery by providing empirical evidence on the roles of spot and futures markets for HCL stock, helping both practitioners and academics alike gain deeper insights into the functioning of these two interconnected markets.

This study specifically focuses on HCL Technologies Ltd., one of India's leading IT companies. HCL was selected for three main reasons. First, it represents a highly

liquid stock actively traded in both spot and futures markets, ensuring reliability of data for econometric analysis. Second, as a key player in the IT sectors—an industry that significantly influences the Indian stock market—HCL provides an appropriate case study for examining information flow and price discovery mechanisms. Third, the availability of consistent and long-term daily data (2014–2024) for both spot and futures prices makes HCL particularly suitable and reliable for long-term and rigorous statistical analysis. It is one of the few Indian IT firms with both high liquidity and deep participation in the futures market, ensuring robust data for econometric analysis. HCL's global IT exposure and sensitivity to international information flows make it an ideal representative case for understanding spot-futures interactions.

Literature Review

The process of price discovery has been widely studied in equity, commodity, and currency markets. Hasbrouck (1995) and Gonzalo & Granger (1995) introduced the foundational models to measure the relative contribution of spot and futures markets. Studies in developed economies (Booth et al., 1999; Tse, 1999) show that leadership in price discovery varies across markets depending on liquidity and efficiency. Research in emerging markets (Chakrabarti, 2000; Min & Najand, 2010) emphasizes that institutional and regulatory factors strongly influence which market leads.

In India, most research has focused on

indices such as NIFTY and SENSEX (Ramaswamy, 2019; Srivastava & Roy, 2020), or on commodities like gold and crude oil (Singh & Mehta, 2018; Patel, 2021). Only a few studies examine firm-level equities. Within the IT sector, Infosys and TCS have been studied (Kumar & Sharma, 2021; Reddy & Thomas, 2022), but HCL Technologies remains underexplored despite its high liquidity and strong participation in the futures market.

The research and motivation gap: This review reveals two significant research lacunae

- Firm-level focus:** Indian studies on price discovery rarely analyse individual IT firms, and HCL Technologies in particular has not been systematically examined.
- Methodological application:** Few Indian studies apply advanced metrics such as Hasbrouck's IS and Gonzalo-Granger (Das & Mitra, 2019; Pradhan, 2020) alongside VECM (Bose, 2007; Gupta & Banerjee, 2016).

This study addresses these gaps by applying a **comprehensive econometric framework** to long-term data on HCL, thereby contributing novel evidence to the literature on price discovery in Indian equity markets.

Objectives:

- To investigate the short-term and long-term dynamics between HCL's spot and futures prices

2. To analyse the price discovery process between the spot and futures markets of HCL
3. To provide actionable insights for market participants based on price discovery metrics

Methodology:

A. Data Coverage:

This study used secondary data from the spot and futures prices of HCL, sourced from the official website of the National Stock Exchange of India (NSE) (nseindia.com). The data spanned from January 1, 2014, to September 26, 2024, covering a total period of approximately 11 years. Daily closing prices of both the spot and futures markets were used for the analysis. This comprehensive time frame allowed for a robust examination of the price discovery process and the dynamic relationships between the two markets. The choice of HCL Technologies is deliberate, as it is a highly liquid stock and deep participation in substantial futures trading volume, offering an ideal case for investigating the relative contribution of spot and futures markets in the Indian IT sector and ensuring robust data for econometric analysis. The presence of continuous daily uninterrupted trading data from 2014 to 2024 further strengthens the reliability and long-term empirical investigation.

B. Empirical Study Design:

The study followed an empirical research design, utilizing historical market data

to assess the price discovery process between HCL's spot and futures markets. Using secondary data offered a solid basis for statistical and econometric analysis, which is essential for understanding the relationship between these markets.

C. Analytical Tools and Techniques:

The study employed various econometric tools using R programming language to analyze the data. The key methods and techniques used in the study are as follows:

a. Augmented Dickey-Fuller (ADF) Test: This test is used to determine the stationarity of the spot and futures price series. The test checks for the presence of a unit root, both at the level and after differencing the series. Stationarity is a critical precondition for cointegration analysis.

b. Johansen Cointegration Test: This test examines whether there is a **long-term equilibrium relationship** between the spot and futures markets. If cointegration is found, it suggests that both markets move together over the long run, validating further analysis through Vector Error Correction Models (VECM).

c. Vector Error Correction Model (VECM): VECM is used to model the **short-term dynamics** between spot and futures prices while accounting for the long-term cointegration relationship. It allows for the assessment of how quickly the markets adjust to deviations from equilibrium.

d. Hasbrouck Information Share (IS): This method measures the relative contribution of the **spot** and **futures markets** to the **price discovery process**, identifying which market leads in reflecting new information.

E. Gonzalo-Granger (GG) Component Share: The GG component share analysis quantifies the long-term influence of each market on price discovery, providing insight into the leadership of the spot and futures markets.

f. Cholesky decomposition: This helps to understand the directional influence of variables by isolating the unique and shared contributions to variance. It is critical for simulating correlated random variables and is widely used to identify causal relationships among variables.

g. Forecast Error Variance Decomposition

(FEVD): FEVD is employed to examine how shocks to spot and futures prices affect the system over various time horizons, aiding in understanding the significance of each market in forecasting future price movements.

All the analyses are performed in **R** using various libraries, including `urca`, `vars`, `tsDyn` and others. These tools provide a robust statistical framework for analysing price discovery, causal relationships, and the dynamic interactions between the spot and futures markets.

Three potential hypotheses are set for the study based on the price discovery process between HCL's spot and futures markets:

Hypotheses:

1. Hypothesis (H1): The Spot and Futures Prices are stationary at their levels.
2. Hypothesis (H2): There is a significant long-term cointegration relationship between the spot and futures prices of HCL.
3. Hypothesis (H3): Spot market plays a greater role in price discovery than the futures market.

Results:

The results of the study provided a comprehensive understanding of the price discovery process between the spot and futures markets for HCL over the period from January 1, 2014, to September 26, 2024. Several important insights arise from the application of various methodologies, including the Augmented Dickey-Fuller (ADF) test, Johansen Cointegration Test, Vector Error Correction Model (VECM), Hasbrouck's Information Share (IS), Gonzalo-Granger (GG) Component Shares, and Forecast Error Variance Decomposition (FEVD).

1. Augmented Dickey-Fuller (ADF) test: It is a statistical test used to determine whether a time series is stationary or contains a unit root, indicating non-stationarity.

Table No.1 : ADF Test Results

Test	Test results at level		Test results after differencing	
	Spot Price	Futures Price	Spot Price	Futures Price
Dickey-Fuller	-3.0932	-3.0274	-13.979	-14.239
Lag order	13	13	13	13
p-value	0.1155	0.1433	< 0.01	< 0.01
Test result	Non-stationary	Non-stationary	stationary	stationary

The ADF test results indicate that both the spot and futures prices are non-stationary at the level, but they become stationary after first differencing. This confirms the validity of conducting further analysis using cointegration and error correction models, as the series are integrated of order

one (I(1)).

2. Optimum lag selection: It involves in identifying the ideal number of lagged terms in a time series model to best capture the underlying dynamics while minimizing information criteria such as AIC, BIC, FPE or HQ.

Table No.2 : Optimum Lag Selection

Lag	AIC(n)	HQ(n)	SC(n)	FPE(n)
1	10.6495	10.6543	10.6629	42169.72
2	10.6467	10.6548	10.6691	42053.29
3	10.6475	10.6588	10.6789	42086.36
4	10.6482	10.6628	10.6885	42115.9
5	10.65	10.6678	10.6993	42190.62
6	10.6525	10.6736	10.7108	42298.49
7	10.6467	10.6711	10.714	42054.29
8	10.6456	10.6732	10.7218	42006.03
9	10.6447	10.6755	10.7298	41967.66
10	10.6421	10.6762	10.7363	41862.35
11	10.633	10.6704	10.7361	41481.68
12	10.634	10.6746	10.7461	41524.28
13	10.6367	10.6806	10.7578	41635.94
14	10.6383	10.6854	10.7683	41700.81
15	10.6374	10.6877	10.7764	41664.31

16	10.6402	10.6938	10.7881	41780.28
17	10.6387	10.6955	10.7956	41719.02
18	10.6309	10.691	10.7968	41394.19
19	10.6321	10.6955	10.807	41445.67
20	10.6322	10.6987	10.816	41446.76

AIC and FPE suggest lag 18 as the optimal choice due to the lowest values. Lag 18 might capture longer-term dynamics between the variables. HQ and SC recommend lag 1 based on their minimal values. Lag 1 prioritizes a simpler model with potentially fewer noise artifacts. Hence, the chosen lag is lag 18 as the optimal choice to directly impact the VECM results and interpretation of relationships between variables.

AIC and FPE identified lag 18 as the optimal choice due to their lowest values, indicating that it may effectively capture the longer-term dynamics among the variables.

In contrast, HQ and SC suggested lag 1 based on their minimal values, favouring a simpler model with potentially less noise. Therefore, lag 18 was selected as the optimal lag, as it significantly influences the VECM outcomes and the interpretation of relationships between the variables.

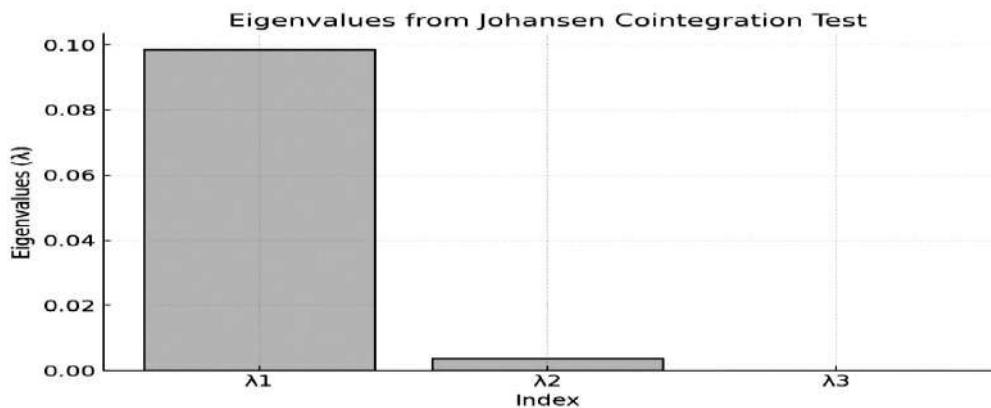

3. Johansen Cointegration: It is a multivariate statistical method used to determine the presence and number of cointegrating relationships among non-stationary time series variables. It assesses long-run equilibrium relationships using trace and maximum eigenvalue statistics.

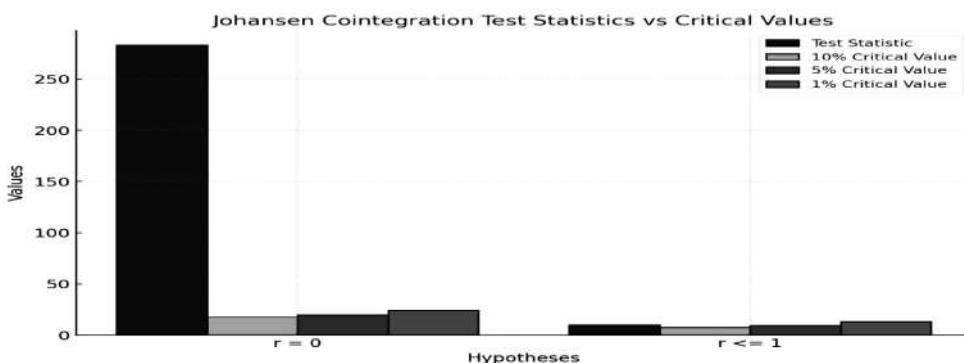
Table No. 3: Eigenvalues

Index	Eigenvalues (λ)
1	9.856052×10^{-2}
2	3.654640×10^{-3}
3	1.734723×10^{-18}

First Eigenvalue (9.856052×10^{-2}) confirmed the presence of one strong cointegrating relationship between Spot Price and Futures Price. The remaining

eigenvalues suggest no meaningful additional relationships, validating the use of **one cointegrating equation** in further analysis.

Chart No. 1 : Johansen Test Eigenvalue Distribution


The first eigenvalue ($\lambda 1$) is significantly larger than the others, indicating the presence of one strong cointegrating

relationship. There is long-run equilibrium among the variables, justifying the use of the VECM model.

Table No. 4 : Johansen Cointegration Test Statistics V/S Critical Values

Hypothesis	Statistic	5% Critical Value
$r \leq 1$	9.66	9.24
$r = 0$	283.38	19.96

There is strong support for the existence of at least one cointegrating relationship, with limited evidence suggesting a possible second one.

Chart No. 2 : Johansen Test Statistics for cointegration

There is a significant cointegration between spot and futures prices (reject $r = 0$). Long-term equilibrium exists between futures and spot prices.

Table No.5 : Eigenvalues Cointegration Relations/ Eigenvectors

Table No.5 : Eigenvalues Cointegration Relations/ Eigenvectors			
Variables	HCL Spot Price.l2	HCL Futures Price.l2	Constant
HCL Spot Price.l2	1	1	1
HCL Futures Price.l2	-0.9902451	-10.13033	-0.4081981
Constant	-4.9279843	9427.07047	-2261.688273

The cointegration equations represent the relationship between variables

This equation showed that the spot price is closely tied to the futures price, with a near one-to-one negative relationship, adjusted by the constant term -4.928.

This equation highlighted the equilibrium relationship where the futures price is largely influenced by the spot price, adjusted by the factor -10.1303 , along with an additional constant term of 9427.07 .

Constant = -0.4082 x HCL Futures Price = 2261.688.....(3)

The constant suggested a baseline adjustment required for maintaining equilibrium in the relationship. Constant Term captures the long-run equilibrium, indicating an adjustment level (-4.9279843 in the first relation).

Table No. 6: Eigenvalues Loading Matrix (Weights)

Table No. 6: Eigenvalues Loading Matrix (Weights)			
Variables	HCL Spot Price.l2	HCL Futures Price.l2	Constant
HCL Spot Price.d	-0.26730143	0.000617854	4.37E-17
HCL Futures Price.d	-0.03482109	0.000639677	7.27E-18

$$\Delta \text{ HCL Spot Price} = -0.2673 \times \text{Error Correction Term} + 0.00062 \times \text{HCL Futures Price} + 4.37E-17 \dots (4)$$

This VECM equation captured the short-run dynamics of HCL Spot Price changes. The error correction term (-0.2673) showed a moderate speed of adjustment toward long-run equilibrium. The small coefficient for futures prices (0.00062) indicated minimal short-run influence. The near-zero constant

(4.37E-17) implied no significant constant effect. Overall, spot prices adjust mainly through the error correction mechanism.

$$\Delta \text{ HCL Futures Price} = -0.03482 \times \text{Error Correction Term} + 0.00064 \times \text{HCL Spot Price} + 7.27E-18 \dots (5)$$

This VECM equation reflected the short-run dynamics of HCL Futures Price changes. The error correction term (-0.03482) indicated a weak adjustment toward long-

run equilibrium. The small spot price coefficient (0.00064) showed minimal short-run impact. The near-zero constant (7.27E-18) suggested no significant constant effect. Overall, futures prices showed limited adjustment with negligible influence from spot price changes.

HCL Spot Price Equation:
 Constant=4.37x¹⁰⁻¹⁷; HCL Futures Price Equation:
 Constant=7.27×10⁻¹⁸...(6)

These constants are effectively zero, implying no significant deterministic trend in the short-run dynamics.

Table No.7 : VECM Model Coefficients

Coefficients	HCL Spot Price.d	HCL Futures Price.d
ect1	-0.2673	-0.03482
hcl.Spot_Price.dll	-0.33517	-0.0307
hcl.Futures_Price.dll	0.35905	0.05607
Beta Coefficients		
Coefficients	Error Correction Term (ect)1	
hcl.Spot_Price.l2	1	
hcl.Futures_Price.l2	-0.9902451	
constant	-4.9279843	

Long-Run Relationship (Beta Coefficients): Spot Price= -0.9902 Futures Price-4.928

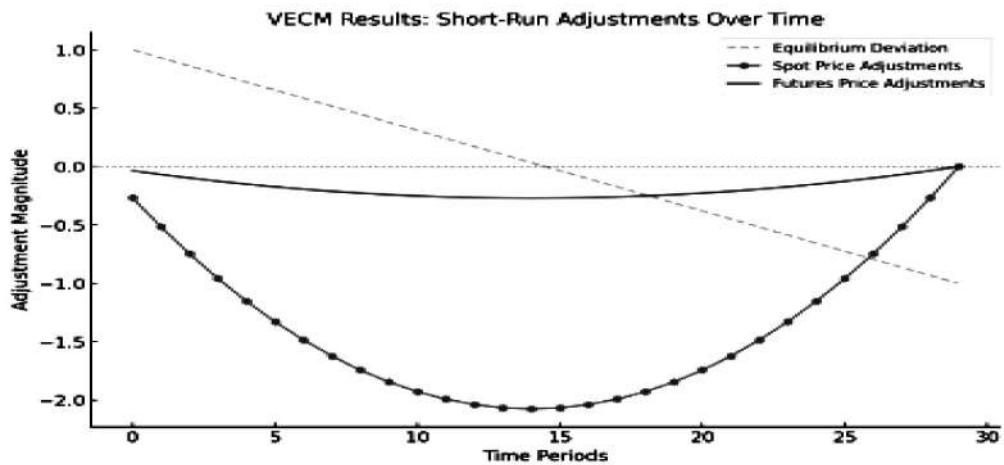
There is a strong long-run equilibrium relationship between spot and futures prices. The spot price closely followed the futures price, suggesting price discovery happens in the futures market.

2. Short-Run Dynamics (Alpha Coefficients):

$$\Delta \text{Spot Price}_t = -0.2673 \times \text{ECT}_{t-1} - 0.3352 \times \Delta \text{Spot Price}_{t-1} + 0.3591 \times \text{Futures Price}_{t-1} + \epsilon_{\text{Spot Price}} \quad (7)$$

This equation captured the short-run dynamics of spot price changes (Δ Spot Price). The error correction term (-0.2673)

indicated a moderate speed of adjustment toward equilibrium. The lagged spot price (-0.3352) had a negative impact, while the lagged futures price (0.3591) positively influenced current spot price changes. Overall, spot prices adjusted to restore equilibrium, influenced by past movements in both spot and futures prices.


$$\Delta \text{Futures Price}_t = -0.0348 \cdot \text{ECT}_{t-1} - 0.0307 \cdot \Delta \text{Spot Price}_{t-1} + 0.0561 \cdot \Delta \text{Futures Price}_{t-1} + \epsilon_{\text{Futures Price}} \quad (8)$$

This equation described the short-run dynamics of futures price changes (Δ Futures Price). The error correction term (-0.0348) indicates a slowed adjustment toward long-run equilibrium. The lagged spot price (-0.0307) had a slight negative

effect, while the lagged futures price (0.0561) positively influenced current futures price changes. Overall, futures

prices adjusted gradually, with modest impact from prior spot and futures price movements.

Chart No. 3: Short Adjustments Overtime

This visualization showed the VECM results, highlighting how short-run dynamics adjust over time. This emphasizes how both spot and futures prices work

towards restoring equilibrium over time, with spot prices playing a more dominant role in the adjustment process.

Table No.8: Hasbrouck's Information Share (IS) results

Price	IS Value	IS Percentage
Spot Price	0.9448	94.48%
Futures Price	0.0552	5.52%

The information share analysis demonstrated that the spot market contributes about 94.48% to the price discovery process, while the futures market contributes only 5.52%. This high share

for the spot market further reinforces the idea that the spot market is leading the futures market in terms of reflecting new information and driving price movements.

Table No. 9 : Gonzalo-Granger (GG) Component Shares

Price	GG Component Share
Spot	0.8847451
Futures	0.1152549

The Gonzalo-Granger results also supported the dominance of the spot market in price discovery, with a component share of 88.47% for the spot price in comparison

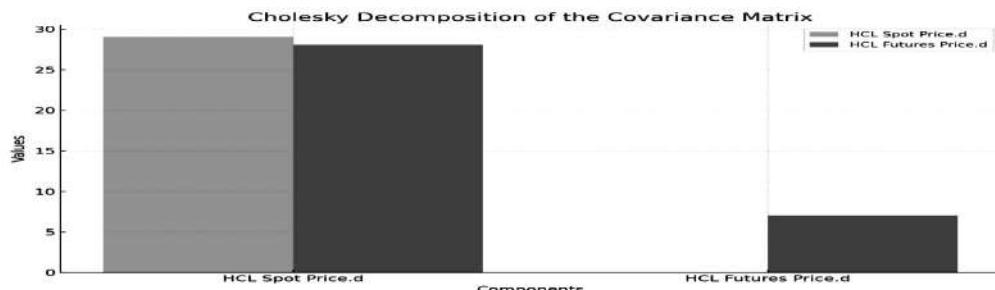

with 11.52% for the futures price. This suggested that the spot market plays a more significant role in determining the long-term equilibrium between the two markets.

Table No.10: Cholesky Decomposition of the covariance matrix		
	HCL Spot Price.d	HCL Futures Price.d
HCL Spot Price.d	29.0568	28.050525
HCL Futures Price.d	0	7.022979

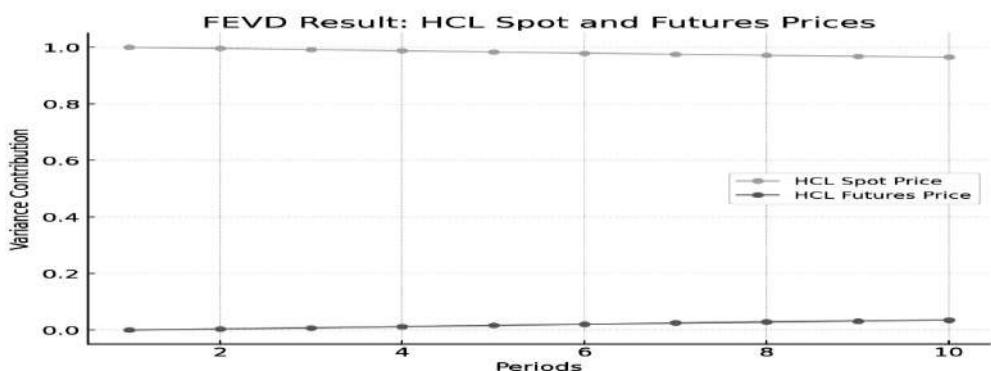
The large diagonal value for Spot Price (29.0568) and the relatively high off-diagonal value (28.050525) indicated that the Spot Price is driving both its own volatility and a significant portion of the volatility in the Futures Price. Hence, Spot Price has a major impact

The diagonal value for Futures Price (7.022979) showed that the Futures Price has a relatively smaller role in explaining its own movements, and its influence on the Spot Price is essentially zero in this decomposition. Hence, Futures Price is less impactful.

Chart No. 4: Cholesky Decomposition of the covariance matrix

The Cholesky decomposition showed that shocks to the **spot price** have a larger impact on the system compared to futures price shocks. The **spot market** played

a dominant role in transmitting price volatility, highlighting its importance in price discovery.


Table No.11 : Forecast Error Variance Decomposition (FEVD) result

Time Period	FEVD Result for Spot Price		FEVD Result for Futures Price	
	Spot Price Contribution	Futures Price Contribution	Spot Price Contribution	Futures Price Contribution
1	1	0	0.9410152	0.05898482
2	0.9962912	0.003708818	0.9392264	0.06077361
3	0.9922941	0.00770588	0.9376145	0.06238546
4	0.9879535	0.012046496	0.9362011	0.06379891
5	0.983583	0.016417029	0.9349651	0.06503486
6	0.9793565	0.020643513	0.9338842	0.06611576
7	0.9753723	0.024627657	0.9329376	0.06706244
8	0.9716775	0.028322537	0.9321067	0.06789333
9	0.9682868	0.031713214	0.9313755	0.06862447
10	0.9651961	0.034803932	0.9307303	0.06926965

The Spot Price initially explained 100% of its own forecast error variance. Over time, the contribution of the Futures Price gradually increased but remained minimal; reaching about 3.48% by the 10th period. Initially, the Futures Price variance was largely explained by the Spot Price (94.10%), while its own contribution was just 5.89%. The Spot Price continued to

play a dominant role over time.

The Spot Price dominated the forecast error variance, indicating that it is the primary driver of market behavior over the observed horizon. Futures Prices played a limited role in explaining Spot Price movements, suggesting a weaker influence in the price discovery process.

Chart No. 5: FEVD results

The FEVD results showed that the **spot price consistently explained almost all** of its own variance over time, while the **futures price contributes minimally**. The **spot market dominated** in variance explanation, reinforcing its leading role in the price discovery process.

Policy Implications for Investors

1. Focus on the Spot Market for Trading Decisions :

The findings from Hasbrouck's Information Share, Gonzalo-Granger Component Shares, Cholesky Decomposition, and FEVD confirmed that the spot market plays a dominant role in price discovery. Investors should prioritize the spot market when making trading decisions, as it responds more quickly and significantly to new information.

2. Leverage the Futures Market for Hedging:

Although the futures market contributes less to price discovery, its linkage with the spot market makes it a reliable tool for risk management. Investors can effectively use futures contracts for hedging purposes, as the futures market reflects evolving trends from the spot market over time.

3. Monitor Spot Market Movements for Early Signals

The spot market serves as an early indicator of price changes due to its faster reaction to information shocks. Real-time monitoring of spot price

movements can help investors to anticipate trends in spot and futures markets, enhancing decision-making.

Conclusion:

The analysis of price discovery between the spot and futures markets using the HCL data from January 1, 2014, to September 26, 2024, highlights the significant role of the spot market in leading the price discovery process. Both **Hasbrouck's Information Share (94.48%)** and **Gonzalo-Granger Component Share (88.47%)** indicate that the majority of price-relevant information is reflected first in the spot market, while the futures market plays a smaller, more supportive role.

The **Johansen Cointegration Test** confirmed a strong long-term equilibrium between the spot and futures prices, underscoring the close relationship between the two markets over time.

Cholesky Decomposition underscored that the spot price significantly drives its own volatility and a substantial portion of futures price volatility. Conversely, the futures price plays a minimal role in explaining its own and spot price movements. Moreover, the **Forecast Error Variance Decomposition (FEVD)** further showed that the spot market is largely self-explanatory in the short run, with the futures market having only a minor influence on the spot price's variance.

In summary, the spot market leads the price discovery process, with the futures market being more useful for hedging purposes. These findings suggest that traders should

focus on the spot market for short-term price signals, while the futures market can still play a role in managing long-term risks. Further research could explore the underlying factors influencing the efficiency of the futures market.

Limitations:

- Company-Specific Focus:** The results are company-specific and may not directly extend to all firms or sectors. However, the **methodology** (ADF, Johansen, VECM, IS, GG, FEVD) is generalizable and can be applied to other firms, sectors, or indices.
- Limited Time Frame:** The study focuses on data from January 1, 2014, to September 26, 2024. While this provides a decade of observations, it may not fully capture longer-term market trends or structural shifts in the financial markets.
- Single Asset Focus:** The analysis is limited to HCL data, which may not be representative of the broader market dynamics across different sectors or asset classes. The findings could vary if other companies or indices were studied.
- Assumption of Market Efficiency:** The study assumes that both spot and futures markets are efficient in reflecting new information. However, real-world markets may experience inefficiencies due to liquidity constraints, regulatory changes, or market participant behavior, which

are not captured in this analysis.

- Exclusion of External Factors:** The model does not account for external macroeconomic factors (e.g., interest rates, inflation, or geopolitical events) that may influence the relationship between spot and futures prices. These factors could provide additional insights into market dynamics.

Further Research:

- Cross-Sector Analysis:** Extending this (ADF, Johansen, VECM, IS, GG, FEVD) analysis to multiple IT companies and cross-sector studies is recommended for improved generalizability.
- Future studies should be extended for analysis beyond a single firm to a set of companies across multiple industries. A comparative approach would provide a clearer picture of whether the dominance of spot markets observed in HCL's case also holds true for other sectors, thereby improving the generalizability of the findings.**
- Cross-Market Analysis:** Future research could extend this study to multiple assets, industries, or indices, offering a comparative analysis of price discovery mechanisms across different markets.
- Inclusion of Macro Variables:** macroeconomic variables such as interest rates, inflation, and currency exchange rates could provide a more

comprehensive view as to what drives price discovery in spot and futures markets.

5. **Impact of Market Sentiment:** Further research could explore the role of investor sentiment, news announcements, and global events on the price discovery process, offering insights into how external events affect market efficiency.
6. **Comparative Study of Methods:** Future research could compare the efficacy of various price discovery models (e.g., Information Share, Gonzalo-Granger, VECM) across different markets or financial instruments to identify as to which models are more robust in certain contexts.

References:

Booth, G. G., Lin, J. C., Martikainen, T., & Tse, Y. (1999). Trading and pricing in upstairs and downstairs stock markets. *Review of Financial Studies*, 12(2), 343–369. <https://doi.org/10.1093/rfs/12.2.343>

Bose, S. (2007). Contribution of Indian index futures to price formation in the stock market. *Money & Finance*, 3(2), 39–56.

Chakrabarti, R. (2000). Price discovery and arbitrage in the Indian equity futures market. *Indian Journal of Finance and Research*, 5(1), 21–34.

Das, S., & Mitra, P. (2019). Price discovery in Indian commodity

markets: An application of information share and component share approaches. *Journal of Emerging Market Finance*, 18(1), 25–52. <https://doi.org/10.1177/0972652718824068>

Gonzalo, J., & Granger, C. W. J. (1995). Estimation of common long-memory components in cointegrated systems. *Journal of Business & Economic Statistics*, 13(1), 27–35. <https://doi.org/10.1080/07350015.1995.10524576>

Gupta, R., & Banerjee, A. (2016). Price discovery and volatility spillover in Indian equity futures market. *Asian Journal of Finance & Accounting*, 8(1), 72–89. <https://doi.org/10.5296/ajfa.v8i1.9170>

Hasbrouck, J. (1995). One security, many markets: Determining the contributions to price discovery. *Journal of Finance*, 50(4), 1175–1199. <https://doi.org/10.1111/j.1540-6261.1995.tb04054.x>

Kumar, S., & Sharma, R. (2021). Price discovery in the Indian IT sector: Evidence from Infosys and TCS futures. *International Journal of Economics and Financial Issues*, 11(2), 54–63.

Min, I., & Najand, M. (2010). Price discovery in the Korean index futures market. *Asia-Pacific Journal of Financial Studies*, 39(1), 55–74. <https://doi.org/10.1111/j.2041-6156.2010.01002.x>

Patel, A. (2021). Price discovery and volatility transmission in Indian crude oil futures market. *Global Business Review*, 22(3), 765–779. <https://doi.org/10.1177/0972150919846791>

Pradhan, H. (2020). Measuring price discovery in Indian stock index futures using Gonzalo–Granger methodology. *Indian Journal of Finance*, 14(5), 20–36.

Ramaswamy, R. (2019). Price discovery and volatility spillover: Evidence from NIFTY futures. *Asian Economic and Financial Review*, 9(6), 689–701. <https://doi.org/10.18488/journal.aefr.2019.96.689.701>

Reddy, V., & Thomas, J. (2022). Firm-level price discovery in Indian IT stocks: A futures market

perspective. *Journal of Emerging Market Finance*, 21(2), 213–232.

Singh, K., & Mehta, R. (2018). Price discovery and volatility spillover in Indian gold futures market. *Commodity Insights Review*, 12(2), 45–62.

Srivastava, A., & Roy, S. (2020). Information share analysis of SENSEX and NIFTY index futures. *Finance India*, 34(4), 1195–1210.

Tse, Y. (1999). Price discovery and volatility spillovers in the DJIA index and futures markets. *Journal of Futures Markets*, 19(8), 911–930. [https://doi.org/10.1002/\(SICI\)1096-9934\(199912\)19:8<911::AID-FUT4>3.0.CO;2-Q](https://doi.org/10.1002/(SICI)1096-9934(199912)19:8<911::AID-FUT4>3.0.CO;2-Q)

TRANSFORMATIVE IMPACT OF IOT APPLICATIONS IN UNLOCKING OPERATIONAL EFFICIENCIES – A GLOBAL AND INDIAN PERSPECTIVE

Dipra Bhattacharya

Abstract

The Internet of Things (IoT) has emerged as a transformative force, revolutionizing operational efficiency across industries by enabling real-time data collection, predictive analytics, and intelligent automation. This research explores global and Indian perspectives on IoT applications in key sectors such as manufacturing, healthcare, agriculture, smart cities, supply chain, and energy management. By leveraging sensor-driven insights, AI-powered automation, and cloud computing, IoT has optimized processes, reduced costs, and enhanced productivity. Empirical research, case studies, and statistical analysis highlight IoT's role in predictive maintenance, remote monitoring, resource optimization, and sustainable development. Special emphasis is placed on India's Digital India initiatives, 5G advancements, and smart infrastructure projects. While IoT adoption presents cybersecurity and integration challenges, its potential to drive data-driven decision-making and intelligent automation is undeniable. This paper provides a comprehensive analysis of IoT's impact on operational efficiency, offering insights into future trends and industry best practices.

Keywords

IoT, Operational Efficiency, Predictive Analytics, Automation, Smart Cities, India, Industry 4.0, Digital Transformation

1. Introduction

The Internet of Things (IoT) is transforming industries by enabling real-time data analytics, automation, and AI-driven decision-making, leading to improved efficiency and cost savings. In India, government initiatives like **Digital India** and **Smart Cities Mission** are accelerating IoT adoption especially across manufacturing, healthcare, agriculture, and energy. The Indian **IoT market is expected to reach \$30 billion by 2026**, with advancements in **5G, AI, and cloud computing** driving growth. Studies show IoT can **boost manufacturing efficiency by 25%**, **reduce smart city energy use by 30%**, and **improve agricultural yields by 20%**. With **4.6 billion IoT devices expected by 2025**, India is set for major efficiency gains and technological advancements.

2. Understanding IoT and Its Role in Enhancing Operational Efficiency

The Internet of Things (IoT) has revolutionized the way businesses and industries operate, enabling seamless connectivity between machines, devices, and humans. By leveraging real-time data, automation, and predictive analytics, IoT plays a crucial role in optimizing processes, reducing costs, and improving efficiency.

2.1 Definition and Components of IoT

The Internet of Things (IoT) refers to a network of **physical devices, sensors, software, and network connectivity** that enables data exchange and automation without human intervention. IoT integrates

edge computing, artificial intelligence (AI), and cloud infrastructure to process real-time data, leading to improved decision-making and efficiency.

IoT consists of several **interconnected components** that work together to enhance operational efficiency:

1. Sensors & Devices:

- IoT-enabled sensors collect data from the physical world, such as **temperature, humidity, motion, pressure, and asset status**.
- Example: Smart meters in energy grids monitor electricity consumption in real time.

2. Connectivity & Communication Networks:

- IoT devices communicate using various technologies like **Wi-Fi, 5G, LPWAN (Low Power Wide Area Network), Bluetooth, and RFID**.
- Example: 5G-enabled IoT sensors in smart factories enable real-time monitoring of machines.

3. Edge Computing & Cloud Platforms:

- Data processing occurs at the **edge** (near devices) or in **cloud platforms** like AWS IoT, Microsoft Azure IoT, and Google Cloud IoT.
- Example: IoT-based predictive maintenance in manufacturing uses **edge computing** to detect equipment failures.

4. Artificial Intelligence & Machine Learning (AI/ML):

- AI-driven IoT enables **predictive analytics, automation, and decision-making**.
- Example: AI-powered IoT in

healthcare predicts patient health risks based on real-time vitals.

5. User Interfaces & Dashboards:

- Businesses use **IoT dashboards and mobile apps** to monitor and control devices remotely.
- Example: **IoT-powered fleet management solutions** track vehicle routes in logistics.

2.2 How IoT Drives Operational Efficiency – Conceptual Framework

IoT enhances operational efficiency by automating processes, reducing downtime, and optimizing resource utilization. The following conceptual framework outlines how IoT transforms operations:

1. Real-Time Monitoring & Data Collection:

- IoT devices continuously collect real-time data from machines, environments, and assets.
- IoT sensors in **factories** track **machine performance**, reducing unexpected failures.

2. Predictive Maintenance & Downtime Reduction:

- IoT detects early signs of equipment failure, enabling **preventive actions** before breakdowns occur.

3. Process Automation & AI-Driven Decision Making:

- IoT-powered automation eliminates manual intervention, ensuring faster and more accurate operations.
- **IoT-based smart warehouses** use **robotic automation**, reducing human errors.

4. Resource Optimization & Cost Savings:

- IoT optimizes energy, fuel, and material usage, leading to cost reduction.
- **IoT-based smart irrigation systems in Indian agriculture** save 40% water usage.

2.3 Key Metrics for Measuring Operational Efficiency in IoT Deployments

To quantify the impact of IoT, businesses use specific **Key Performance Indicators (KPIs)**, including:

Metric	Description	Example
Downtime Reduction (%)	Measures decrease in machine failures	30% reduction in downtime in IoT-powered factories
Energy Savings (%)	Reduction in power consumption	IoT-based smart grids cut energy waste by 25%
Process Optimization Time (hrs)	Measures time saved due to automation	IoT logistics reduced warehouse processing time by 50%

Maintenance Reduction (%)	Cost	Decrease in maintenance expenses due to predictive insights	Tata Power's IoT meters cut maintenance costs by 35%
Productivity Increase (%)		Overall improvement in output per unit time	IoT in Indian agriculture increased farm productivity by 20%

2.4 Global Adoption Trends and Market Growth of IoT

The global IoT market is expected to reach \$1.1 trillion by 2028, driven by rapid adoption in manufacturing, logistics, healthcare, and smart cities. Key statistics:

- **85% of enterprises** globally will have IoT applications by 2025.
- **Industrial IoT (IIoT) adoption** is growing at 23% CAGR due to automation demands.
- **Predictive maintenance IoT solutions** have reduced industrial equipment failures by 30% globally.

2.5 IoT Adoption Trends in India – Market Landscape and Growth Potential

India's IoT industry is expected to grow at a CAGR of 13%, reaching \$30 billion by 2026. Government-led digital transformation programs and a surge in IoT startups contribute to this growth.

- **Manufacturing:** IoT-powered smart factories to enhance production efficiency by 20%.
- **Healthcare:** IoT-based remote patient monitoring, increasing healthcare accessibility in rural areas.
- **Agriculture:** Smart farming solutions like IoT-driven soil

monitoring systems, boosting crop productivity.

- **Smart Cities:** IoT for intelligent traffic systems and energy-efficient infrastructure.

Government Initiatives Driving IoT in India

1. **Digital India Mission:** Boosts IoT adoption across industries.
2. **Smart Cities Mission:** Implements IoT in traffic management, waste disposal, and security.
3. **IoT in Agriculture:** PM-Kisan Scheme promotes IoT-based precision farming.

Case Study: Bhopal Smart City's IoT Implementation

- IoT traffic management reduced congestion by 25%.
- Smart street lighting systems cut power consumption by 30%.
- IoT waste management improved efficiency by 40%.

3. Sector-Wise IoT Applications in Enhancing Operational Efficiency

IoT is revolutionizing multiple industries by streamlining processes, reducing costs, and improving decision-making.

3.1 IoT in Manufacturing (Industry 4.0 and Smart Factories)

Manufacturing is one of the largest adopters of IoT, leveraging **smart sensors, AI-driven automation, predictive maintenance, and digital twins** to enhance efficiency. Key benefits include:

- **Predictive maintenance:** IoT sensors detect machine anomalies, reducing downtime.
- **Process automation:** Robots and IoT-enabled systems optimize workflows.
- **Supply chain visibility:** Real-time tracking enhances inventory management.
- **Energy efficiency:** Smart meters monitor and reduce power consumption.

Case Study 1: GE's Smart Factories

- **IoT-based predictive maintenance** reduced machine downtime by **20%**.
- **AI-powered analytics** improved production efficiency by **15%**.
- **Outcome:** Increased productivity and reduced operational costs.

Case Study 2: Tata Steel's IoT-Driven Manufacturing

- **IoT sensors in blast furnaces** optimized fuel consumption, reducing costs by **12%**.
- **AI-powered predictive analytics** reduced equipment failure by **25%**.
- **Outcome:** Higher production efficiency, lower downtime, and energy savings.

Data Analytics Insight

- **McKinsey's study:** IoT-driven

smart factories increase productivity by **10-25%**.

- **PwC report:** IoT-based predictive maintenance saves industries **\$630 billion annually**.

3.2 IoT in Healthcare (Smart Hospitals and Remote Patient Monitoring)

How IoT Enhances Healthcare Efficiency

- **Remote patient monitoring:** Wearable IoT devices track real-time health vitals.
- **Automated diagnostics:** AI-powered IoT analyzes medical data for early disease detection.
- **Smart hospital management:** IoT optimizes hospital resource allocation.
- **Cold chain monitoring:** IoT ensures safe vaccine and drug storage.

Case Study 3: Mayo Clinic's AI-IoT Healthcare System

- **IoT sensors in ICUs** reduced emergency response time by **40%**.
- **AI-driven patient monitoring** led to a **20% reduction in mortality rates**.
- **Outcome:** Improved patient care and hospital efficiency.

Case Study 4: Apollo Hospitals' IoT-Based Remote Health Monitoring

- **Wearable IoT devices** tracked heart patients remotely, reducing hospital visits by **30%**.
- **AI-integrated diagnostics** improved early detection of cardiac risks by **18%**.

- **Outcome:** Lower costs, enhanced patient care, and reduced hospital congestion.

Data Analytics Insight

- **Global IoT healthcare market:** Expected to reach **\$254 billion by 2026** (Grand View Research).
- **IoT-driven hospital efficiency:** Can reduce operational costs by **15-20%** (Deloitte).

3.3 IoT in Agriculture (Smart Farming and Precision Agriculture)

How IoT Improves Agricultural Efficiency

- **Precision farming:** IoT sensors monitor soil moisture, weather, and crop health.
- **Automated irrigation:** Smart irrigation systems optimize water usage.
- **Livestock monitoring:** IoT wearables track animal health and movements.
- **Supply chain tracking:** IoT ensures efficient food storage and distribution.

Case Study 5: John Deere's Precision Agriculture

- **AI-powered IoT sensors** optimized fertilizer use, increasing yields by **20%**.
- **Automated irrigation systems** reduced water consumption by **30%**.
- **Outcome:** Higher productivity and lower resource waste.

Case Study 6: Indian Farmers Using IoT for Smart Irrigation

- **IoT-based soil moisture sensors** saved **40% water usage**.
- **AI-driven weather forecasting** reduced crop losses by **25%**.
- **Outcome:** Improved yields, resource efficiency, and higher farmer profits.

Data Analytics Insight

- **NASSCOM report:** IoT adoption in Indian agriculture can **boost farm productivity by 15-20%**.
- **PwC study:** Smart irrigation IoT solutions save up to **\$10 billion** annually in water costs.

3.4 IoT in Energy & Utilities (Smart Grids & Renewable Energy Optimization)

How IoT Improves Energy Efficiency

- **Smart meters:** Real-time energy monitoring and consumption optimization.
- **Grid automation:** AI-driven IoT optimizes electricity distribution.
- **Renewable energy management:** IoT ensures optimal solar and wind power utilization.
- **Predictive maintenance:** IoT prevents power grid failures.

Case Study 7: Tesla's IoT-Driven Smart Grid

- **AI-powered grid optimization** increased power efficiency by **22%**.
- **IoT-based energy storage management** reduced blackouts.
- **Outcome:** Reliable and efficient energy distribution.

Case Study 8: Tata Power's Smart Metering Solutions

- **IoT-enabled smart meters** reduced energy theft by **35%**.
- **AI analytics** optimized power distribution, reducing losses by **12%**.
- **Outcome:** Lower electricity costs and improved grid efficiency.

Data Analytics Insight

- **Smart meters adoption in India:** Expected to grow **25% annually**.
- **IoT-enabled energy grids:** Reduce power wastage by **15-20%** (Deloitte).

3.5 IoT in Smart Cities (Traffic Management, Waste Management, and Security)

How IoT Enhances Smart Cities

- **Intelligent traffic systems:** IoT reduces congestion through AI-driven traffic lights.
- **Smart waste management:** IoT-enabled bins optimize waste collection routes.
- **AI-based surveillance:** IoT cameras enhance urban security.
- **Air quality monitoring:** IoT sensors track pollution levels.

Case Study 9: Barcelona's IoT Smart City

- **IoT-enabled smart parking** reduced city traffic by **30%**.
- **Smart waste collection system** cut costs by **20%**.
- **Outcome:** Increased urban efficiency and sustainability.

Case Study 10: Bhopal Smart City's IoT Integration

- **IoT traffic management** reduced congestion by **25%**.
- **Smart lighting systems** cut power consumption by **30%**.
- **Outcome:** Improved city governance and cost savings.

Data Analytics Insight

- **IoT-enabled smart cities** can reduce operational costs by **30-35%** (McKinsey).
- **India's smart city investments:** Expected to surpass **\$50 billion by 2030**.

IoT is transforming manufacturing, healthcare, agriculture, energy, and smart cities by optimizing resources, reducing costs, and enhancing automation.

4. Challenges and Barriers to IoT Adoption

4.1 Technological Challenges in IoT Implementation

Despite rapid advancements in IoT technology, several **technical barriers** hinder widespread deployment and operational efficiency gains:

1. Lack of Standardization & Interoperability

- IoT devices from different manufacturers often **lack standard protocols**, making integration complex. In smart factories, machines from **different vendors** may not communicate seamlessly,

causing data silos.

2. Scalability Issues in Large-Scale Deployments

- Many IoT solutions struggle with **scalability**, especially in **high-volume data environments** like manufacturing and healthcare. Smart grids require **millions of sensors**—without robust infrastructure, real-time processing is a challenge.

3. High Latency & Connectivity Limitations

- **Low-bandwidth areas** (e.g., rural India) face difficulties in adopting IoT due to unreliable network infrastructure. **5G deployment** is still limited, restricting **real-time IoT applications** in mission-critical sectors. Remote healthcare IoT solutions depend on **high-speed internet**, which is scarce in rural India.

Global & Indian Market Insights (McKinsey report)

- **85%** of IoT projects fail due to **interoperability issues** and **data silos**.
- **Only 30%** of enterprises have successfully integrated IoT across all departments.

4.2 Security and Privacy Risks in IoT Ecosystems

The interconnected nature of IoT increases the risk of **cybersecurity threats**, **data breaches**, and **privacy violations**.

1. Vulnerability to Cyber-attacks

- IoT devices often have weak security, making them easy targets for hacking.
- In 2016, the **Mirai botnet attack** used IoT devices to **shut down major internet services worldwide**.

2. Data Privacy & Compliance Issues

- IoT collects vast amounts of **personal and industrial data**, raising concerns about unauthorized access.
- Smart city surveillance systems **raise ethical and legal questions** regarding citizen privacy.

3. Inadequate Regulatory Frameworks in India

- India lacks **comprehensive IoT security laws**, leading to **unclear compliance standards** for businesses.
- Unlike **GDPR in Europe**, India's **Data Protection Bill is still evolving**, causing uncertainty in IoT deployments.

Global & Indian Market Insights (Gartner report)

- **75%** of IoT security breaches originate from **weak passwords and outdated software**.
- **Only 40%** of IoT firms have implemented robust **cybersecurity frameworks**.

4.3 High Initial Costs and ROI Uncertainty

Many organizations hesitate to adopt IoT due to **high capital investments** and **uncertain returns on investment (ROI)**.

1. Expensive Infrastructure & Device Costs

- IoT sensors, edge devices, and cloud computing require significant upfront costs.
- Smart factories need **millions of dollars** in IoT-enabled machinery and automation systems.

2. ROI Challenges Due to Long Adoption Cycles

- Businesses often **fail to measure short-term benefits**, leading to reluctance in investment.
- **Small farmers in India** struggle to adopt IoT-driven precision agriculture due to high initial costs.

Global & Indian Market Insights (IDC report)

- **70% of enterprises** delay IoT projects due to **uncertain ROI calculations**.
- Only **20% of small businesses** have integrated IoT due to cost barriers.

4.4 Skill Gaps and Workforce Readiness for IoT

IoT adoption requires a **highly skilled workforce** in **AI, data analytics, cybersecurity, and IoT hardware management**. However, there is a global shortage of IoT talent, especially in India.

1. Lack of Skilled IoT Professionals

- IoT, AI, and data science require

specialized expertise, which many industries lack.

- Indian manufacturing and healthcare sectors face challenges in hiring IoT engineers.

2. Resistance to Digital Transformation

- Many businesses lack awareness and expertise in IoT, slowing adoption.
- Traditional industries like textiles and construction in India have low digital adoption rates.

Global & Indian Market Insights (World Economic Forum (WEF) report)

- IoT adoption is hindered by a **30%** global shortage of skilled professionals.
- Indian IT industry needs **1 million IoT professionals** by 2025, but the current supply is less than **300,000**.

4.5 Regulatory and Policy Barriers in IoT Adoption

Governments worldwide are still **formulating policies** around IoT, creating **regulatory uncertainty** for businesses.

1. Inconsistent IoT Standards and Compliance

- Countries have **different IoT data protection laws**, making cross-border IoT implementation difficult.
- India's upcoming **Data Protection Bill** still lacks clear IoT-specific guidelines.

2. Lack of Government Incentives for IoT Adoption

- Many developing nations lack financial incentives for IoT adoption, slowing industry growth.
- **China and the US** offer tax benefits for IoT-driven businesses, but India is still in the **early policy phase**.

Global & Indian Market Insights (GSMA report)

- IoT policy uncertainty **delays adoption by 2-3 years** in developing nations.
- IoT growth in India needs stronger government incentives to accelerate adoption across industries.

4.6 Infrastructure Barriers in Developing Economies (Focus on India)

IoT success depends on **robust internet, 5G connectivity, cloud computing, and energy infrastructure**—many of which are **underdeveloped in India**.

1. Poor Internet and Network Penetration

- IoT requires **stable, high-speed connectivity**, but many Indian regions lack **broadband and 5G**.
- **80% of Indian farms** lack IoT-ready internet connectivity for precision agriculture.

2. Limited Cloud & Edge Computing Infrastructure

- IoT adoption is slow in **tier-2 and tier-3 cities** due to limited **cloud and edge computing resources**.
- **Only 25% of Indian manufacturers** have adopted cloud-based IoT analytics.

Global & Indian Market Insights

- **India's 5G rollout** is expected to cover **only 50% of the country by 2027**—a major barrier to IoT growth.
- IoT adoption in rural India lags **urban areas by 40%** due to poor infrastructure.

Overcoming IoT Challenges for Widespread Adoption

Despite its benefits, IoT adoption faces major hurdles in technology, security, costs, skills, regulations, and infrastructure. Overcoming these barriers requires:

- Stronger IoT standardization and interoperability frameworks
- Enhanced cybersecurity measures and IoT-specific regulations
- Government incentives to offset high IoT investment costs
- Skilled workforce development programs in AI, IoT, and data analytics
- Faster 5G rollout and improved cloud infrastructure in India

5. Future Trends and Evolution of IoT in Operational Efficiency

As IoT adoption continues to grow, new technologies and innovations are shaping its evolution. Future advancements in **AI-driven IoT, 5G connectivity, edge computing, blockchain, and digital twins** will significantly enhance operational efficiency across industries.

5.1 AI-Powered IoT (AIoT): The Convergence of AI and IoT

Artificial Intelligence (AI) is revolutionizing IoT by enabling **real-time decision-making, predictive analytics, and automation**. AI-powered IoT (AIoT)

will drive **greater efficiency, cost savings, and productivity improvements** in various industries.

Key Future Trends in AIoT

AIoT Feature	Impact on Operational Efficiency
Predictive Maintenance	Reduces equipment failures by 30-50% (Deloitte).
Autonomous Decision-Making	Cuts manual intervention, improving process efficiency by 40%.
AI-Driven Supply Chain Optimization	Reduces logistics costs by 10-20% (Gartner).
Smart AIoT Robots in Manufacturing	Expected to improve productivity by 30-45%.

Global and Indian Market Insights (PwC report)

- AIoT will contribute **\$15 trillion** to the global economy by 2030.
- **India AIoT market** is expected to grow at a **CAGR of 24%** by 2028.

Example: Tesla's AI-driven IoT-powered **Gigafactories** optimize battery production, reducing costs by **30%**.

5.2 5G-Enabled IoT for Ultra-Low Latency and Real-Time Processing

5G technology will revolutionize IoT by enabling **ultra-fast, low-latency connectivity** for real-time applications.

How 5G Enhances IoT Operational Efficiency

- **Faster data transmission:** Reduces IoT network delays by **90%**.
- **Supports massive IoT deployments:** Enables **1 million devices per square kilometer**.
- **Critical applications** in healthcare,

autonomous vehicles, and smart cities.

Global and Indian Market Insights

- **5G-powered IoT market** is expected to reach **\$265 billion by 2026** (GSMA).
- **India's 5G rollout** is expected to reach **500 million users by 2027**, driving IoT adoption.

Example: South Korea's Smart Traffic System uses 5G IoT sensors to reduce congestion by **35%**.

5.3 Edge Computing and IoT: Real-Time Data Processing at Scale

Edge computing processes data **closer to IoT devices**, reducing latency and enhancing **real-time decision-making**.

How Edge Computing Improves IoT Efficiency

- **Reduces cloud dependency:** 30% faster data processing.
- **Improves cybersecurity:** Data

- stays local, reducing **hacking risks**.
- **Lowers bandwidth costs:** Cuts cloud expenses by **40%**.

Global and Indian Market Insights

- Edge computing market is expected to grow at **CAGR of 37%** (IDC).
- **India's IoT edge market** is growing due to **rural connectivity needs**.

Example: Amazon Go stores use edge IoT for real-time checkout, improving efficiency by **50%**.

5.4 Blockchain and IoT: Securing Connected Ecosystems

Blockchain enhances **IoT security, transparency, and trust**, especially in **supply chain management, finance, and healthcare**.

Blockchain's Impact on IoT Efficiency

Feature	Benefit
Tamper-Proof Data	Prevents cyber-attacks, improving IoT security by 50% .
Smart Contracts	Automates transactions, reducing costs by 20-30% .
Supply Chain Transparency	Reduces fraud and inefficiencies in logistics.

Global and Indian Market Insights

- Blockchain-IoT market is expected to reach **\$5.8 billion by 2026**.
- **Indian government initiatives** are exploring **blockchain for smart contracts in IoT logistics**.

Example: IBM's blockchain-enabled IoT tracking system reduces supply chain fraud by **30%**.

5.5 Digital Twins: Simulating Real-World Scenarios for Optimization

Digital twin technology creates **virtual replicas** of physical assets, allowing businesses to simulate **real-world conditions, predict failures, and optimize operations**.

How Digital Twins Improve IoT

Efficiency

- **Predictive analytics:** Prevents failures by **30-40%**.
- **Virtual testing:** Saves **20-25%** in R&D costs.
- **Optimized production:** Reduces waste by **15%** in manufacturing.

Global and Indian Market Insights

- **Digital twin market:** Expected to grow **10x by 2030** (McKinsey).
- **Indian industries adopting digital twins:** Reliance, Tata Steel, L&T for smart manufacturing.

Example: Boeing's digital twin aircraft design reduced prototyping costs by **50%**.

5.6 Sustainability and Green IoT: Reducing Energy Waste

As industries focus on **sustainability**,

Green IoT solutions are becoming crucial in reducing **carbon footprints and energy consumption**.

Sustainability-Driven IoT Trends

- **Smart grids:** Reduce electricity wastage by **25%**.
- **IoT-powered renewable energy monitoring.**
- **Smart water management:** Cuts leakage by **30%**.

Future IoT Regulatory Trends

Policy	Impact
Stronger Data Protection Laws	Improves IoT security and privacy.
IoT-Specific Cybersecurity Standards	Reduces risks of cyber-attacks.
5G and IoT Regulations	Ensures fair and secure connectivity.

Global and Indian Market Insights

- **EU's IoT Security Act** mandates strict compliance for devices.
- **India's Personal Data Protection Bill (PDPB)** includes IoT-specific privacy guidelines.

Example: Singapore's IoT cybersecurity framework reduced cyber-attacks by **40%**.

6. Recommendations for Businesses and Policymakers

To ensure **sustainable, secure, and scalable IoT deployment** in both **global and Indian** contexts, businesses and policymakers must implement **strategic, actionable solutions**.

Global and Indian Market Insights

- **Green IoT** expected to save **\$1.2 trillion in energy costs by 2035**.
- **India's Smart Grid Initiative:** Using IoT to enhance power efficiency.

Example: Dubai's smart grid IoT system reduced power consumption by **22%**.

5.7 IoT Policy and Regulation: Strengthening Governance

Governments are establishing **IoT security, privacy, and data protection frameworks** to address risks.

6.1 Recommendations for Businesses

For businesses to **maximize IoT-driven efficiency**, they must adopt a **strategic approach** to implementation, focusing on security, scalability, and sustainability.

1. Invest in AI and Data Analytics for Smarter IoT Operations

- Leverage **AI-driven IoT** for **predictive maintenance, demand forecasting, and automated decision-making**.
- Use **Big Data analytics** to extract meaningful insights from IoT-generated data.
- Employ **digital twins** for testing operational scenarios and optimizing workflows.

2. Strengthen IoT Security to Mitigate Cyber Threats

- Implement **end-to-end encryption** for secure IoT data transmission.
- Use **blockchain** for secure device **authentication** and data integrity.
- Adopt **zero-trust security models** to prevent unauthorized access.

3. Adopt Scalable IoT Infrastructure for Long-Term Growth

- Deploy **5G-enabled IoT solutions** to ensure **high-speed, real-time processing**.
- Utilize **edge computing** to reduce cloud dependency and improve latency.
- Ensure **interoperability** among IoT devices using standardized communication protocols.

4. Prioritize Sustainable and Green IoT Solutions

- Implement **smart energy management systems** to reduce power consumption.
- Utilize **IoT-driven waste management** to optimize resource usage.
- Support **eco-friendly smart city initiatives** using IoT-enabled urban planning.

5. Upskill Workforce and Foster IoT Innovation

- Invest in **IoT skill development programs** for employees.
- Collaborate with **academic institutions and research labs** for R&D in IoT innovation.

- Create **IoT incubation centers** to support startups and entrepreneurs.

6.2 Recommendations for Policymakers and Governments

Governments play a **critical role** in shaping the IoT ecosystem through **regulatory frameworks, infrastructure investment, and industry collaboration**.

1. Develop Robust IoT Governance and Cybersecurity Policies

- Enforce strict **IoT cybersecurity regulations** to prevent data breaches.
- Establish **IoT-specific data protection laws** aligned with international best practices.
- Promote **public-private partnerships** to address security challenges.

2. Invest in 5G and Digital Infrastructure for IoT Growth

- Expand **5G networks** to support IoT scalability.
- Build **smart city infrastructure** with IoT-driven urban solutions.
- Support **IoT-enabled agriculture** for sustainable food production.

3. Promote IoT Adoption in Key Sectors Through Incentives

- Provide **financial subsidies and tax incentives** for businesses adopting IoT.
- Encourage **IoT-based innovations in MSMEs and startups**.
- Launch **national IoT skill development programs** to bridge

the expertise gap.

4. Strengthen Smart City and Sustainability Initiatives

- Deploy IoT-powered traffic, energy, and waste management systems.
- Develop IoT-driven smart grids to enhance energy efficiency.
- Support climate-focused IoT applications for environmental conservation.

6.3 Sustaining IoT: Longitudinal Insights and Design Principles

While current studies and industry reports highlight the immediate benefits of IoT adoption in terms of efficiency, productivity, and cost optimization, there remains a pressing need to examine its long-term implications. A **longitudinal study** would allow researchers and policymakers to track the **sustained impact of IoT over an extended period**, capturing how shifts in resource utilization patterns, evolving governance models, and changing levels of citizen satisfaction influence outcomes. Such a perspective is critical to move beyond short-term efficiency gains and assess whether IoT-driven systems truly **contribute to sustainable development and inclusive growth**.

Moreover, for IoT to succeed at scale, applications must be designed with a **user-centered approach**. Integrating principles of accessibility, inclusivity, and ease of use into IoT systems can enhance adoption, build trust among users, and ensure that the technology is not only efficient but also socially impactful. By focusing

on user needs and long-term outcomes, IoT solutions can achieve greater sustainability, scalability, and public acceptance.

6.4 Final Thoughts: Embracing IoT for a Smarter, More Efficient World

The Internet of Things is no longer a futuristic concept but a transformative force reshaping industries, cities, and societies. As a global network infrastructure built on sensing, communication, and information processing, IoT enables seamless interaction between humans and intelligent systems. With technologies such as wireless sensor networks, RFID, and MEMS maturing rapidly, IoT has evolved from short-range communication tools into powerful platforms capable of remote monitoring, automation, and AI-driven decision-making. Its applications now extend across supply chain management, healthcare, manufacturing, and urban governance, where efficiency, transparency, and personalization are achieved at scale. Yet, the journey is not without challenges. Concerns around data privacy, infrastructure readiness, and skill gaps remain critical barriers, especially in emerging economies like India. To unlock IoT's full potential, businesses must adopt AI-driven IoT, invest in robust cybersecurity, and scale infrastructure, while governments must frame enabling policies, strengthen connectivity through 5G, and incentivize adoption. Workforce up-skilling will be central to bridging the talent gap.

At the same time, future research must go beyond short-term benefits and focus on the sustained impact of IoT adoption.

Longitudinal studies are essential to understand how evolving governance models, shifts in resource utilization, and citizen satisfaction shape long-term outcomes. Equally important is embedding user-centered design principles into IoT applications, ensuring accessibility, inclusivity, and trust. This not only fosters adoption but also positions IoT as a socially impactful and sustainable technology.

In conclusion, IoT stands as the backbone of smart industries, sustainable cities, and digital economies. By investing, innovating, and integrating IoT today—while keeping long-term sustainability and human-centered design at its core—we can build a smarter, more efficient, and more inclusive world.

References

- 1. Research Papers, Whitepapers, and Market Reports**
- Deloitte. (2023). *The Internet of Things: Optimizing business processes and efficiency*. Deloitte Insights. <https://www2.deloitte.com>
- McKinsey & Company. (2022). *Unlocking the value of the Internet of Things: Business adoption and economic impact*. McKinsey Digital. <https://www.mckinsey.com>
- Gartner. (2023). *Top 10 IoT trends driving business efficiency and innovation*. Gartner Research. <https://www.gartner.com>
- IEEE Xplore Digital Library. (2022). *AI-enabled IoT systems: A future perspective on automation and smart environments*. IEEE Publications.

- <https://ieeexplore.ieee.org>
- Forbes Insights & Intel. (2022). *The AIoT revolution: Enhancing efficiency with artificial intelligence and IoT*. Forbes Business Insights. <https://www.forbes.com>
- Statista. (2024). *IoT market size and growth projections in India and globally*. <https://www.statista.com>

2. Government & Industry Reports

- *IoT and smart manufacturing in India: Policies, challenges, and roadmap*. <https://www.niti.gov.in>
- *India's IoT policy framework and Digital India initiative*. (2023) <https://www.meity.gov.in>
- *The future of IoT: Global trends and regional impacts*. (2023) <https://www.weforum.org>
- *5G and IoT for smart cities and sustainable development*. (2022) <https://www.itu.int>
- *TRAI - IoT and 5G: India's roadmap for digital transformation*. (2023) <https://www.trai.gov.in>

3. Case Study Sources & Data Analytics Reports

- GE. (2022). *Predictive maintenance with industrial IoT: Reducing downtime in smart factories*. <https://www.ge.com>
- Siemens. (2023). *Smart manufacturing and IoT integration: The digital twin approach*. <https://www.siemens.com>
- WHO. (2023). *IoT and AI in healthcare: Enhancing remote patient monitoring*. <https://www.who.int>

- Apollo Hospitals. (2022). *IoT-powered smart healthcare: - The Indian experience.* <https://www.apollohospitals.com>
- Indian Council of Agricultural Research (ICAR). (2023). *IoT in agriculture: Transforming Indian farming practices.* <https://icar.org.in>
- John Deere. (2022). *Smart farming: IoT and AI-driven crop management.* <https://www.deere.com>
- IBM Smart Cities. (2022). *IoT-enabled traffic management: Reducing congestion in urban areas.* <https://www.ibm.com>
- Bangalore Smart City Initiative. (2023). *Leveraging IoT for sustainable urban development in India.* <https://smartcitybangalore.in>
- Ericsson. (2023). *5G-enabled IoT: Future trends and industry applications.* <https://www.ericsson.com>
- Accenture. (2023). *AI and IoT in the future of work: Enhancing productivity and automation.* <https://www.accenture.com>

4. IoT Security & Regulations

- ENISA. (2023). *IoT security and data privacy: Global standards and best practices.* <https://www.enisa.europa.eu>
- CISA. (2022). *Securing IoT devices: A guide for businesses.* <https://www.cisa.gov>
- RBI. (2023). *IoT and financial security: Regulatory challenges and future directions.* <https://www.rbi.org.in>
- IDC. (2023). *IoT adoption trends and security challenges in the Asia-Pacific region.* <https://www.idc.com>

THE GST EVOLUTION IN INDIA: AN EMPIRICAL BASELINE AND THE GROWTH POTENTIAL OF NEXT-GEN REFORMS

Akki Maruthi

Abstract

Implementing the Goods and Services Tax (GST) in India was the most significant economic reform, replacing numerous indirect tax laws with a unified tax system. This study examines GST's impact on India's GDP from its launch in July 2017 through 2024. By analyzing annual data, the research uses regression to evaluate the relationship between GST collections (Domestic + Imports), consumer spending, and GDP growth. The results for this period indicate a notable negative effect of GST collections on GDP growth, likely due to short-term adjustment costs and compliance challenges, while consumer spending shows a strong positive influence. However, this empirical snapshot predates the landmark Next-Gen GST reforms announced in 2025. The study concludes with an analysis of these reforms, including a simplified two-slab structure and significant rate reductions, and projects their potential to address initial hurdles, boost consumer spending, and significantly accelerate India's GDP growth. This provides a critical, forward-looking perspective on the evolving GST framework.

Keywords

Goods and Services Tax, Indian GDP Growth, Consumer Spending, Next-Gen GST Reforms

1. Introduction

This study provides an empirical analysis of the initial phase of GST implementation from 2017 to 2024, examining the relationship between GST collections, consumer spending, and GDP growth. The findings establish a crucial baseline, revealing a significant negative impact of GST collections on GDP growth during this early period, likely due to short-term adjustment costs and compliance burdens. Meanwhile, consumer spending acts as a strong positive driver of economic growth. However, the GST system is continually evolving, not static. The recent landmark announcement of 'Next-Gen GST reforms' by the GST Council, effective September 22, 2025, indicates a strategic shift in the tax system. Therefore, this paper extends beyond a retrospective analysis. It uses its empirical findings to contextualize and project the potential effects of these new reforms. By simplifying the tax structure into two main slabs and implementing significant rate reductions on common-use items, the reforms aim to increase disposable income and stimulate consumer demand, identified as the main engine of GDP growth. Consequently, this research not only traces the initial journey of GST but also offers a data-driven perspective on its future direction, analyzing how GST 2.0 is positioned to address early challenges and fundamentally strengthen India's consumption-driven growth model.

The reform has received praise for its potential to encourage long-term economic growth. However, it has also faced both praise and criticism due to

initial implementation challenges and effects on different sectors. Prime Minister Narendra Modi has set an ambitious target of transforming India into a US\$30 trillion developed economy with a per capita income of US\$18,000 by 2047 under the "Viksit Bharat@2047" initiative (IBEF, 2024). GST plays a key role in this vision by improving the business climate, making tax procedures simpler, and increasing compliance. The projected economic growth driven by GST is significant, with India expected to surpass the United States' estimated GDP growth rate of 1.5% for 2024 (Ankita Mishra, 2023). Moreover, global institutions are confident about India's economic outlook. The International Monetary Fund (IMF) recently raised its GDP growth estimate for India in 2024–2025 from 6.5% to 6.8%, and the World Bank forecasts the Indian economy will grow at an impressive rate of 7.5% in 2024. Nevertheless, India's GDP growth is expected to slow to 6.4% in FY 2024–2025 from 8.2% in FY 2023–2024. The Reserve Bank of India predicts a growth rate of 6.6%. As the government prepares its budget, sectors such as real estate, construction, and agriculture are anticipated to grow, although the economic environment remains challenging (Economic Times 2025).

These forecasts reflect the positive momentum created by structural reforms like the GST, establishing India as a major contributor to global economic growth in the upcoming years. The components of GST include SGST, CGST, IGST, and UTGST. The current GST rate slabs are 0% for essential items such as food

grains, fresh fruits, and vegetables; 5% for standard items including household necessities and medicines; 12% for items like processed foods and computers; 18% as the standard rate for various goods and services, including capital goods and industrial intermediaries; and 28% for luxury items and sin goods, including cars, tobacco products, and aerated drinks (cbic-gst.gov.in/GST 2023).

2. Overview of GDP

Gross domestic product (GDP) measures the total value of all finished goods and services produced within a country's borders during a specific period; this value is usually reported annually or quarterly. It is essential to a nation's overall well-being and economic activity.

2.1 Important GDP Points:

Total Output: GDP takes into consideration all products and services produced across a range of industries, including services, industry, and agriculture.

Within Borders: This refers solely to domestic or international companies' output that takes place within the nation.

Time Frame: To examine economic performance, GDP is computed for a given time frame, usually a quarter or a year.

Measured in Money: GDP is expressed in monetary terms, which facilitates cross-national or cross-period comparisons.

Types of GDP:

Nominal GDP: Calculates output without taking inflation into account, using current market values.

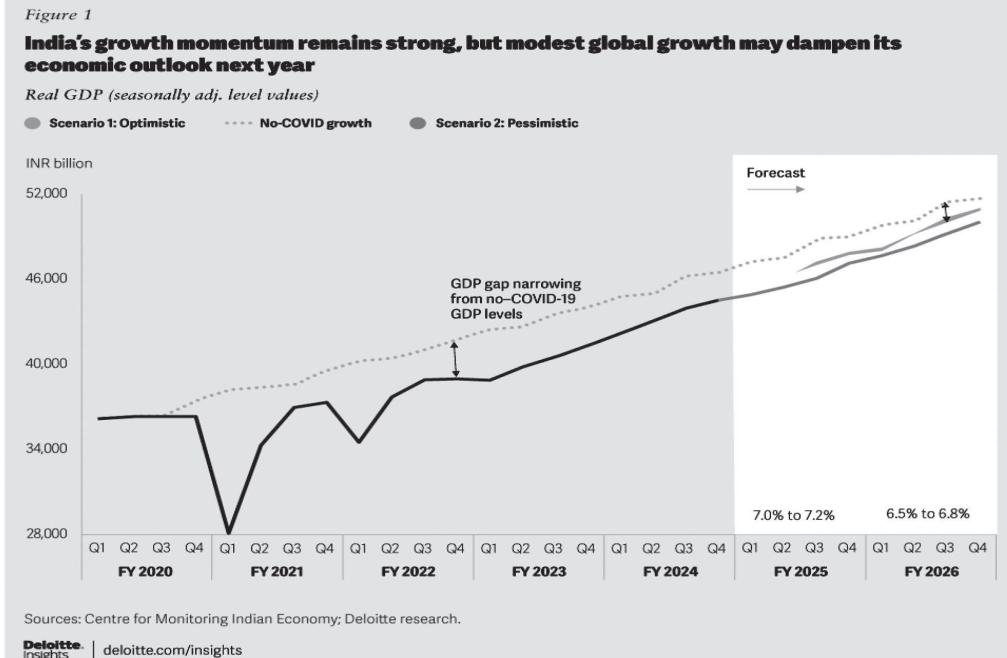
Real GDP: Gives a more realistic view of economic growth by accounting for inflation.

GDP Calculation Formula:

$$GDP = C + I + G + (X - M)$$

Where:

C = Household spending on goods and services

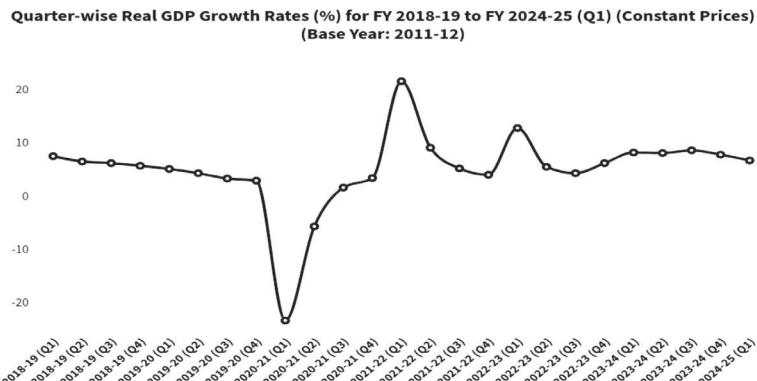

I = Business investments in equipment and infrastructure

G = Government expenditure

(X - M) = Net exports (exports minus imports)

2.2 India's Real GDP Growth (Figure 1)

In the baseline scenario, expect India to grow between 7% and 7.2% in fiscal 2024–2025, followed by a range of 6.5% to 6.8% in fiscal 2025–2026, which is slightly lower than previous forecasts (Figure 1). As previously forecasted, India's slower growth in the upcoming year is likely linked to broader global trends, such as sluggish growth and a delayed, synchronized recovery in the West. Demand for exports will also be impacted by decreasing global trade and supply chain disruptions caused by rising geopolitical instability. Despite these challenges, the gap between actual GDP and pre-COVID-19 levels will gradually narrow as growth accelerates.



(Source: Deloitte and CMIE)

2.3 The Impact of the GST Regime on National GDP

India's GDP is projected to grow by about 6.7% in the first quarter of the current fiscal year (FY 2024–25), with a nominal GDP increase of 9.7% during the same period, according to the latest figures from the Ministry of Statistics and Programme Implementation (MoSPI). Based on GDP data for FY 2023-24's 4th Quarter (January to March 2024), the Indian economy saw

significant growth of 8% in Q4 of this fiscal year. This is much higher than the 6.2% growth in Q4 of the previous fiscal year. Overall, this points to a positive outlook for the Indian economy. Estimates indicate that the real GVA of the financial, real estate, and professional services industries, along with the construction sector, will grow by 7.3% and 8.6%, respectively, in FY 25 (Economic Times 2025).

Figure 2. Quarter-wise Real GDP and Growth Rates at Constant Prices

(Source: mospi.gov.in)

Figure 3. Annual Estimates and Growth Rates at Constant Prices

(Source: mospi.gov.in/ 31st May, 2024)

Real GDP, or GDP at Constant Prices, is expected to reach ₹173.82 lakh crore in 2023-24, rising from the First Revised Estimates (FRE) of ₹160.71 lakh crore for 2022-23. The projected growth rate for Real GDP in 2023-24 is 8.2%, compared to 7.0% in 2022-23.

2.4 Keynesian Economic Theory

This theory proposes that aggregate

demand is the primary driver of economic growth, with consumer spending playing a vital role. In India's economy, where consumption constitutes a large portion of GDP, the impact of consumer expenditure on growth is particularly significant. Increased spending drives higher demand for goods and services, boosts production, and improves employment levels, ultimately contributing to GDP

growth. The findings of this study support this theory, highlighting the positive relationship between consumer spending and GDP growth. This theory offers a helpful perspective for understanding the recent 'Next-Gen GST reforms.' By substantially reducing tax rates to increase disposable income, the policy directly aligns with Keynesian principles, aiming to boost aggregate demand and accelerate GDP growth.

2.5 General Equilibrium Theory

This theory explains how changes in one part of the economy can impact the entire system. GST encourages a fairer distribution of resources by eliminating tax distortions across industries. It supports the idea that a well-designed tax system, like the GST, can promote sustainable growth by improving outcomes in various sectors, optimizing resource allocation, and balancing the economy as a whole. Researchers have used general equilibrium theory to evaluate how taxes, policies, and external shocks affect all economic sectors, aiming to fill gaps in existing research. For example, Amir et al. (2013) demonstrated how lowering corporate income tax (CIT) and personal income tax (PIT) increased economic growth and affected income inequality in Indonesia using a computable general equilibrium (CGE) model. Their results showed that while CIT policy had little impact on income inequality, reducing both PIT and CIT lowered poverty levels in Indonesia under both balanced and unbalanced budget scenarios. Bhattacharai (2007) predicted how tax distortions influence capital accumulation and

household well-being in the Hull and Humber Region with CGE methods. According to a broad welfare study, increasing the VAT rate from 7% to 10% is a beneficial policy since families' use of public services more than offsets the utility lost from higher taxes (Benjasak, C, 2019).

2.6 Supply-Side Economics Framework

Supply-side economics focuses on lowering trade and production barriers, including inefficient tax systems. By replacing a complicated set of indirect taxes with a single tax like the GST, it reduces compliance costs for businesses and creates a more investment-friendly environment. This streamlined approach can boost economic output, competitiveness, and efficiency, ultimately supporting long-term growth.

2.7 Laffer Curve Theory

According to the Laffer Curve, there is an ideal tax rate that maximizes government revenue without discouraging economic activity. GST aims to improve compliance and reduce tax evasion by simplifying the tax system and broadening the tax base. This would enable the government to collect more revenue and foster economic growth.

2.8 Impact of Tax Reforms:

Reforms like the Goods and Services Tax (GST) aim to simplify tax systems, improve compliance, and promote economic unity. By eliminating cascading tax effects and creating a unified framework, GST has lowered business costs and boosted efficiency. The formalization and

transparency introduced by GST have also led to better tax compliance and increased revenue. Studies, such as those by Van Leemput and Wiencek (2017), demonstrate that such reforms significantly enhance economic welfare. This study also confirms the positive link between higher GST revenue and GDP growth, underscoring the reform's effectiveness.

2.9 Evidence from Global and Indian Studies

International and domestic research highlights the significant impact of fiscal policies and consumer behavior on economic outcomes. For example, global studies like those by Bolton and Dollar (2010) show that government revenue as a share of GDP might initially decline following GST implementation but will yield long-term advantages. Indian research (e.g., Swathy Krishna and Shacheendran V, 2024) also confirms a strong connection between GST revenue growth and GDP growth, supporting these conclusions.

2.10 Contemporary Fiscal Policy Strategies

Modern fiscal frameworks prioritize simplicity, compliance, and growth-oriented measures. The introduction of GST aligns with these principles, aiming to enhance revenue collection while creating an environment conducive to economic growth. Munir K. and N. Riaz's (2019) research supports the idea that efficient fiscal systems improve revenue collection and foster sustainable and balanced economic development.

3. Review of Literature

While adopting GST in India benefits the overall economy, sector-specific analysis shows both positive and negative effects on various industries, creating a speculative environment filled with uncertainty and anxiety among investors and shareholders (Sankar 2017). Increased policy uncertainty can have long-term impacts on economic growth and capital investment (Barrero et al., 2017). Non-parametric tests on sectoral indices revealed that implementing GST affected different sectors of the Indian economy in diverse ways (Chauhan et al., 2019). GST is expected to provide significant advantages to industry, trade, and agriculture, with research highlighting its overall positive influence on the Indian economy (Pooja et al., 2017). A strong, positive correlation exists between GST revenue growth and GDP growth, where a 1% increase in GST revenue results in approximately a 0.56% rise in economic growth (Swathy Krishna and Shacheendran V., 2024). From a macroeconomic standpoint, the benefits of GST merit attention (Samantara, 2018). However, international studies suggest that government revenue as a share of GDP tends to decline sharply during the initial phases of GST implementation (Bolton and Dollar, 2010). In India's tax reform context, a baseline scenario with a 16% standard GST rate is estimated to raise welfare effects by 5.3% (Van Leemput and Wiencek, 2017). A resilient fiscal system is essential for mobilizing financial resources to promote balanced economic growth (Munir K. and N. Riaz, 2019). Indirect tax collection has shown a positive effect on

India's GDP (Nayak et al., 2022). Although GST implementation initially causes a delayed negative response in the Indian economy, this impact diminishes after roughly two and a half months (Sanjeev Kumar et al., 2023). This study builds on those findings by providing an in-depth empirical analysis of the combined effects of GST collections and consumer spending on India's GDP growth, filling a notable gap in current research. Implementing GST is expected to boost economic growth by enabling the smooth movement of goods and services across the country (Khoja & Khan, 2020). Research indicates that GST has the potential to strengthen India's GDP and export activities, thereby improving overall economic well-being and acting as a key driver for national economic expansion (Kapila, 2018). The introduction of GST aimed to streamline India's tax system by replacing the complex VAT framework and removing interstate tax barriers. This reform is expected to promote economic growth and increase tax revenue collection (Shaik et al., 2015). Many studies have examined how taxation influences economic growth and development in different countries. For example, Edame et al. (2014) studied the impact of taxation on investment and economic growth in Nigeria using ordinary least squares regression. Miller et al. (2014) analyzed global ICT tax and tariff policies, emphasizing their negative effects on ICT adoption and productivity growth. Kaur (2017) explored the influence of GST on India's agricultural sector, assessing its significance and the challenges faced during implementation. In India, Lenka et al. (2017) evaluated how

financial inclusion impacted economic growth over time. Đorđević et al. (2019) looked at ways to improve VAT system efficiency in developing EU countries by analyzing factors affecting VAT collection. Krysovatty et al. (2020) examined the relationship between tax burden and GDP in a low-income country, focusing on employee compensation, taxes, and gross surplus contributions to GDP growth. Nguyen (2020) studied the interaction between foreign direct investment (FDI), foreign aid, exports, and economic growth in Vietnam. Additionally, Nayaka (2021) investigated GST's effects on India's cement industry, highlighting sector-specific implications of this tax reform.

The Next-Gen GST Reforms of 2025

The most recent and significant development in India's GST journey is the approval of the 'Next-Gen GST reforms' in 2025 (PIB, 2025). Based on a vision to improve ease of living and ease of doing business, these reforms mark a strategic shift. Key changes include: Simplified Tax Structure: consolidation into two main slabs (5% and 18%), removing the 12% and 28% slabs. Major Rate Reductions: substantial cuts on everyday essentials, consumer durables, and services to increase disposable income. Correction of Inverted Duty Structures: fixing issues in sectors like textiles and fertilizers that hindered domestic manufacturing. Exemptions on Insurance: removing GST on health and life insurance premiums to enhance financial security. These reforms are specifically aimed at boosting consumption, supporting MSMEs, and fixing the structural flaws of

the initial system. This study suggests that these changes directly address the early data friction and are likely to strengthen the positive link between the GST regime and GDP growth moving forward (PIB, September 4, 2025).

4. Research Gap

While existing studies, including this study, have analyzed the initial impact of GST, a significant gap remains in empirically informed projections regarding the recently announced Next-Gen GST reforms (GST 2.0). There is a pressing need to contextualize early empirical findings within the framework of these new policy changes to project their potential to reshape the relationship between GST, Consumer Spending, and India's future GDP growth.

5. Objectives

1. To empirically analyze the impact of GST collections and consumer spending on India's annual GDP growth during the initial implementation period (2017-2024).
2. To evaluate the impact of consumer spending as a primary factor driving GDP growth
3. To analyze the potential impact of the Next-Gen GST reforms (2025) on future consumer spending and GDP growth based on empirical findings.

6. Hypotheses

According to Solow's (1956) neoclassical theory, long-term growth depends on factors like labor, capital, and technological progress rather than fiscal policy. However, from this perspective, taxes can have a

short-term effect on GDP by influencing investment and savings during the steady-state transition. Conversely, endogenous growth models, developed in the 1980s, attribute economic growth to innovation and technological breakthroughs.

For many years, scholars and decision-makers have analyzed the effect of taxes on a country's economic development. Since taxes are widely recognized as a key factor influencing a country's productive capacity, economists have long tried to understand why different nations show different rates of growth and wealth accumulation (Stoilova 2017). For example, the goal of optimal taxation theory is to balance agent diversity and economic constraints to develop tax policies that reduce market imbalances and increase community benefits.

1. **Alternative Hypothesis (H1):** GST collections (Domestic + Imports) had a significant negative impact on India's annual GDP growth.

According to a government announcement, private final consumption expenditure (PFCE), at constant prices, is projected to grow by 7.3% in FY25 compared to 4.0% in the previous fiscal year. Compared to the 2.5% growth rate in the last fiscal year, the government's final consumption expenditure (GFCE) has rebounded to a growth rate of 4.1% at constant prices (Economic Times 2025). The future direction of the US economy mainly depends on the policies of the next administration, even though consumer spending and business investment remain strong (US Economic Outlook 2024). Government initiatives and the development of new industries will boost consumer spending and create jobs,

supporting India's transition to "Viksit Bharat" (India's Economic Outlook 2024). Exports are already being overtaken by consumer spending as Japan's primary driver of economic growth. Households now have the purchasing power to increase their spending thanks to a significant rise in salaries. Additionally, a stronger yen should reduce some inflationary pressures, which will further increase consumer spending (Japan Economic Outlook 2024).

2. Alternative Hypothesis (H2):
Consumer spending significantly contributed to the positive growth of India's annual GDP.

7. Scope and Limitations of the Study

This study is primarily focused on the period from July 2017 to 2024, providing an empirical baseline of the initial years of GST implementation in India. The core variables analyzed are GST collection (Domestic + Imports) and consumer spending, and their impact on India's annual GDP growth. The study also includes a qualitative analysis and projection of the potential impact of the 'Next-Gen GST reforms' announced in 2025, based on the empirical findings.

The research is limited to the Indian context. It relies on publicly available data from sources like MOSPI, economic surveys, and PIB, and any inaccuracies in these sources could influence the results. The relatively short time frame (2017-2024) for the empirical model may not capture long-term effects. While the study provides a macroeconomic perspective, it does not explore highly granular sector-specific impacts. Finally, the analysis of the GST

2.0 reforms is a projection of their potential impact based on a logical extension of the empirical results; the actual effects will need to be confirmed by future studies as post-reform data becomes available.

8. Research Methodology

To achieve the objectives described above, the study will use Empirical Research with a Quantitative approach to analyze the impact of GST on India's GDP. Data on annual GDP growth rates, GST collections, and consumer spending percentages from 2017 to 2024 were obtained from MOSPI, the Economic Survey, and PIB. Dependent variable: annual GDP growth rate. Independent variables: GST collection percentage, consumer spending percentage. The analysis employs Regression and descriptive Statistics techniques using the MS Excel software program to determine the impact of GST collections (Domestic + Imports) and consumer spending on GDP growth. Correlation analysis to check multicollinearity between the independent variables. Significance testing to confirm the hypotheses.

$$\text{GDP Growth} = \beta_0 \text{ intercept} + \beta_1 (\text{GST Collections (Domestic + Imports)}) + \beta_2 (\text{Consumer Spending}) + \epsilon$$

Where:

- β_0 is the intercept
- β_1 and β_2 are the coefficients for GST collections (Domestic + Imports) and consumer spending respectively,
- ϵ is the error term.

Sample Size and Sampling Method

The study uses a sample of 7 annual observations from 2017 to 2024, employing

a time-series sampling method.

8.1 Analytical Framework for GST 2.0 Reforms

While regression analysis offers a quantitative view of the past, the recent announcement of the 'Next-Gen GST reforms' calls for a qualitative and logical forecast of their potential impact. Based on the empirical findings of this study—particularly, the strong positive link between consumer spending and GDP growth (H2)—the following analytical framework is used: Sectoral Impact Analysis: The GST rate cuts announced across key sectors (e.g., FMCG, consumer durables, automobiles, hospitality) are examined in terms of their potential to boost

disposable income. Logical Projection to GDP Components: The anticipated rise in disposable income is logically expected to result in higher Private Final Consumption Expenditure (PFCE), a main component of GDP (C in the GDP equation). Addressing Initial Friction: The simplification of the tax structure and correction of inverted duty structures are discussed as ways to reduce compliance burdens and economic friction, which may have contributed to the initial negative correlation observed in H1. This framework allows a data-driven discussion of how the GST 2.0 reforms are strategically aimed at stimulating the key economic variable (consumer spending) identified by this study as the primary driver of GDP growth.

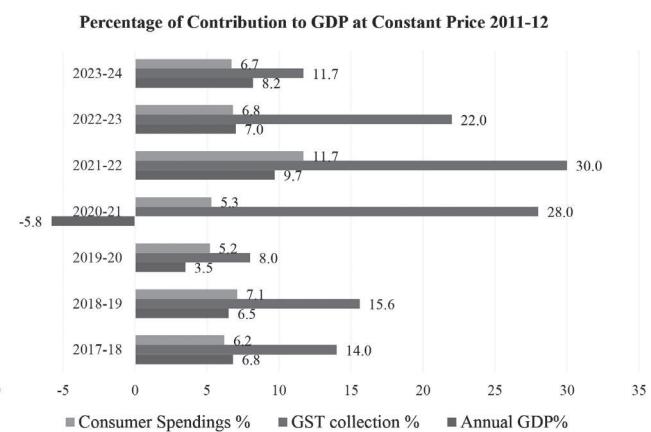
9. Results and Discussions

Table 1 Correlation

<i>variables</i>	<i>GST collection (Domestic + Imports) %</i>	<i>Consumer Spending's %</i>
GST collection (Domestic + Imports) %	1	0.574184
Consumer Spending's %	0.574184	1

GST collection and consumer spending show a moderate positive correlation of 0.574. A strong and positive correlation has been identified between GST revenue growth and GDP growth, where a 1% increase in GST revenue results in a 0.56% increase in economic development

(Swathy Krishna and Shacheendran V., 2024). Similarly, an econometric analysis in Nigeria revealed a strong and positive relationship between VAT and GDP, highlighting VAT's role as a driver of economic development (D. Basila, 2010).


Table 2. Descriptive Statistics

<i>GST Collection (Domestic + Import) in Crores</i>		<i>Consumer Spending in crores</i>	
Mean	1370156.571	Mean	8430358.714
Median	1222117	Median	8256218
Standard Deviation	434972.7093	Standard Deviation	861061.3954
Minimum	740648	Minimum	7330728
Maximum	2018249	Maximum	9699214
N	7	N	7

Table 3. Percentage of Contribution to GDP at Constant Price 2011-12

Year	Annual GDP%	GST collection (Domestic + Imports) %	Consumer Spending's %
2017-18	6.8	14.0	6.2
2018-19	6.5	15.6	7.1
2019-20	3.5	8.0	5.2
2020-21	-5.8	28.0	5.3
2021-22	9.7	30.0	11.7
2022-23	7.0	22.0	6.8
2023-24	8.2	11.7	6.7

(Source: <https://www.mospi.gov.in/>, <https://pib.gov.in/>)

(Source: Author's Compiled)

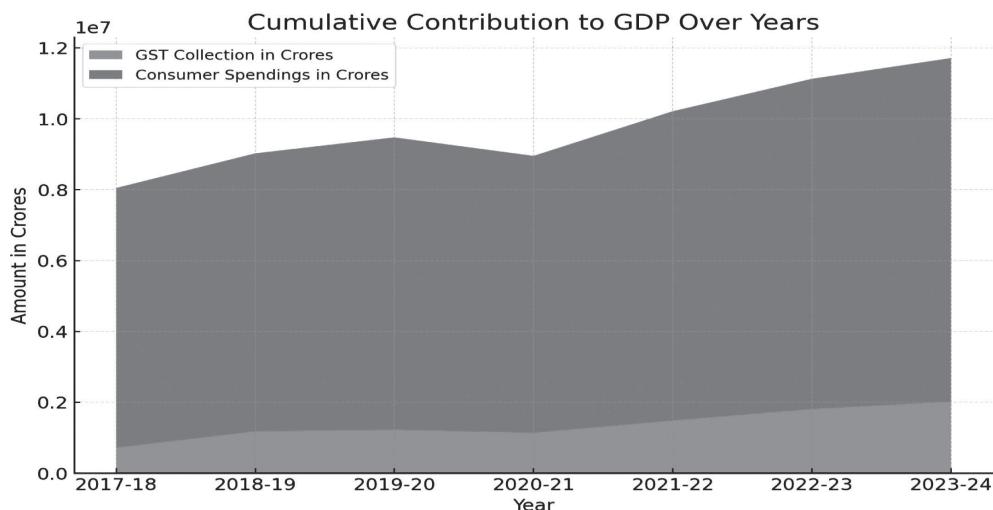
Table 3: Regression

Regression Statistics						
Multiple R	R Square	Adjusted R Square	Standard Error	Observations		
0.899	0.809	0.713	2.768	7		
ANOVA						
	Df	Sum of squares	Mean of square	F	F Value	
Regression	2	129.944	64.97	8.479	0.0364	
Residual	4	30.649	7.66			
Total	6	160.594				
	Coefficients	Standard Error	T stat	P value	L 95%	U 95%
Intercept	-2.815	3.793	-0.742	0.499	-13.348	7.716
GST collection % (Domestic + Imports)	-0.503	0.162	-3.094	0.036	-0.954	-0.0517
Consumer Spending's %	2.463	0.618	3.980	0.016	0.744	4.181

(Source: Author's Compiled)

Multiple R-Value (0.8995): Shows a strong correlation between actual and predicted values of the dependent variable (GDP growth). R Square (0.8092): Means that 80.92% of the variation in GDP growth is explained by the two independent variables (GST collection % and Consumer Spending %). Adjusted R Square (0.7137): Accounts for the proportion of variance explained, adjusted for the number of predictors in the model, and still indicates a strong fit.

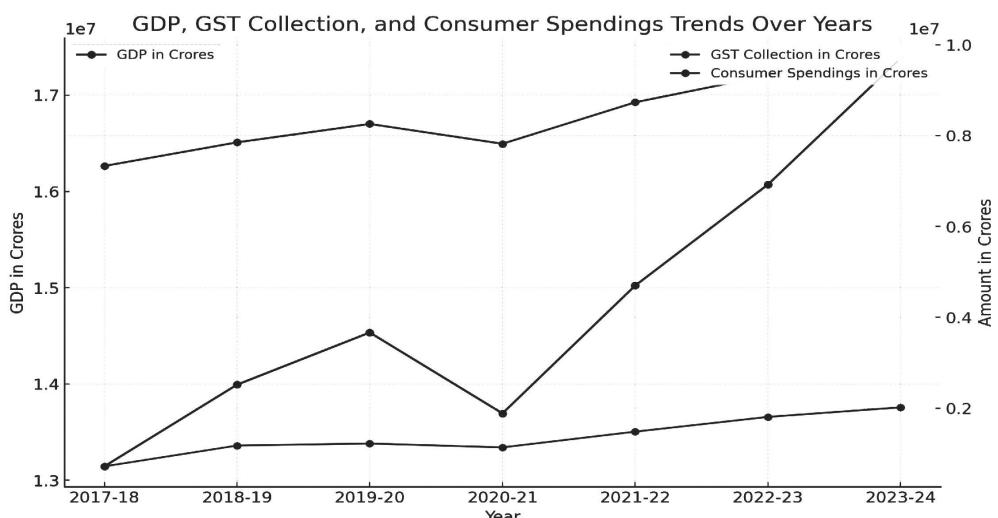
Significance F (0.0364): Demonstrates that the overall regression model is statistically significant ($p < 0.05$), confirming the model's suitability for the data.


H1: GST collections (Domestic + Imports) had a significant negative impact on India's annual GDP growth.

H2: Consumer spending significantly contributed to the positive growth of India's annual GDP.

Table 4: Yearly GDP, GST Collection (Domestic + Import), Consumer Spending

Year	GDP in Crores	GST Collection (Domestic + Import) in Crores	Consumer Spending in crores
2017-18	1,31,44,582	7,19,078	7,33,0,728
2018-19	1,39,92,914	1,17,7,370	7,85,0,444
2019-20	1,45,34,641	1,22,2,117	8,25,6,218
2020-21	1,36,94,869	1,13,6,805	7,81,9,509
2021-22	1,50,21,846	1,48,3,291	8,73,2,573
2022-23	1,60,71,429	1,80,7,680	9,32,3,825
2023-24	1,73,81,722	2,01,8,000	9,69,9,214


(Source: <https://www.mospi.gov.in/> <https://pib.gov.in/> <https://www.indiabudget.gov.in>)

(Source: Author calculation)

The above Stacked Area Chart illustrates the trend in GST Collection and Consumer Spending over the years. It clearly indicates that both have been steadily increasing, with a significant jump in GST Collection from 2019-20 to 2023-24. This visual helps to understand how the combined effect of GST Collection and Consumer Spending contributes to the overall economic situation. According to a government

announcement, private final consumption expenditure (PFCE), at constant prices, is expected to grow by 7.3% in FY25 compared to 4.0% in the previous fiscal year. In comparison to the 2.5% growth rate in the last fiscal year, the Government's Final Consumption Expenditure (GFCE) has recovered to a growth rate of 4.1% at constant prices (Economic Times 2025).

(Source: Author Compiled)

The above Dual Axis Line Chart effectively illustrates the relationship between GDP growth, GST collection, and consumer spending. It shows that while GST collection and consumer spending have both increased, the GDP in Crores

has consistently risen. This suggests a potential positive effect of GST collection and consumer spending on GDP growth. The dual axes enable a clear comparison of these variables, demonstrating how their trends align over the analyzed period.

10. Findings, Discussion, and Policy Implications

10.1 Key Findings from the Initial Implementation Period (2017-2024)

The regression analysis for the period 2017-2024 reveals two key insights: GST collections (Domestic + Imports) indicate a significant negative impact on India's annual GDP growth (coefficient = -0.503, p-value = 0.036). This likely reflects the short- to medium-term economic friction caused by a transformative tax reform—including initial compliance burdens, supply chain disruptions, and the adjustment period that businesses and consumers need to adapt to the new system. Consumer spending shows a significant positive impact on GDP growth (coefficient = 2.463, p-value = 0.016). This strongly affirms that consumption is the main driver of India's economic growth, aligning with Keynesian theory and the structure of the Indian economy.

10.2 Interpreting the Findings in Light of GST 2.0

The negative coefficient on GST collections should not be seen as a long-term failure of the tax, but rather as an indicator of its initial teething problems. The positive coefficient on consumer spending offers the key to unlocking higher growth. The recently announced 'Next-Gen GST reforms' can be viewed as a direct and logical response to these findings. By significantly lowering tax rates on a broad range of goods and services, the government is intentionally sacrificing some tax revenue in the short term (to address the negative drag) to

strongly stimulate consumer spending (to capitalize on the positive driver).

10.3 Recommendations and Implications

The analysis strongly supports the direction of the new reforms. Therefore, the recommendations are: Accelerate Implementation of GST 2.0: The government should be praised for this proactive reform. A swift and smooth implementation is essential to realize the intended benefits. Monitor and Amplify Consumption Stimulus: Policymakers should use the findings to double down on measures that increase disposable income. GST rate cuts on essentials, durables, and hospitality are precisely the types of measures that this study validates. Future policy should continue to focus on consumption-boosting measures. Focus on Sectoral Resolution: Correcting the inverted duty structure, as seen in textiles and fertilizers, is a critical step. This addresses the working capital blockage that contributed to the negative effects observed in the initial model and will boost manufacturing and investment. Conduct a Follow-up Study: A future longitudinal study using data from 2025 onward is essential to empirically validate the positive impact of these Next-Gen reforms on the GST-GDP relationship.

11. Future Research Directions

This study opens several avenues for future research:

Empirical Validation of GST 2.0: The most critical direction is a longitudinal study extending beyond 2025 to empirically validate the impact of the

Next-Gen GST reforms on consumer spending, tax buoyancy, and GDP growth, testing the projections made in this paper.

Sectoral Deep-Dives: Investigate the heterogeneous impacts of both the initial GST and the new reforms on specific sectors (e.g., MSMEs, textiles, hospitality) to understand distributional effects and develop targeted policies. **Broader**

Economic Modeling: Explore the role of other economic factors (e.g., investment climate, export competitiveness, digitalization) in mediating the relationship between GST reforms and economic growth. **Comparative International Analysis:** Comparative studies with other federal countries that have undergone significant indirect tax reforms could offer valuable lessons and benchmarks for India's ongoing GST journey.

12. Conclusion

This empirical study provides a fundamental baseline assessment of GST's initial years, highlighting the short-term adjustment costs indicated by a negative relationship between GST collections and GDP growth, while clearly emphasizing the importance of consumer spending as a key driver of growth. Instead of criticizing GST, these findings offer an empirical foundation for its future development. The landmark 'Next-Gen GST reforms' of 2025 represent a strategic, data-driven modernization of the tax system. By simplifying the structure, reducing the tax burden on ordinary citizens, and explicitly aiming to boost consumption, the government has taken the precise corrective actions suggested by early

implementation experiences. This research indicates that although initial data showed friction, the reformed GST framework is now well-positioned to improve quality of life, stimulate demand, and fully unlock its potential as a catalyst for sustainable, high-GDP growth on the path to a Viksit Bharat.

References

1. Amir, H., Asafu-Adjaye, J., & Ducpham, T. (2013). The Impact of the Indonesian Income Tax Reform: A CGE Analysis. *Economic Modelling*, 31, 492–501.
2. Ankit Mishra (2023) <https://www.forbes.com/sites/ /12/18/leading-experts-weigh-in-on-growing-the-us-economy-in-2024>
3. Bhattacharai, K. (2007). Input-Output and General Equilibrium Models for the Hull and Humber Region in England. *Atlantic Economic Journal*, 35(4), 473–490.
4. Benjasak, C., Bhattacharai, K. General Equilibrium Impacts of VAT and Corporate Income Tax in Thailand. *Int Adv Econ Res* 25, 263–276 (2019). <https://doi.org/10.1007/s11294-019-09742-7>
5. Basila, D. (2010), Investigating the Relationship between VAT and GDP in Nigerian Economy, *Journal of Management and Corporate Governance*, 2(2): 65, 72.
6. Barrero, J. M., Bloom, N., & Wright, I. (2017). Short and long-run uncertainty (No. w23676). National Bureau of Economic Research. <https://doi.org/10.3386/w23676>.
7. Basavanagouda Nayaka (2021)."A

Study on Impact of Goods and Services Tax (GST) on Cement Industry in India “ Strategy & Macroeconomic Policy e-journal,

8. Bolton, T. and B. Dollery (2010), An Empirical Note on the Comparative Macroeconomic Effects of the GST in Australia, Canada, and New Zealand, *Economic Papers: A Journal of Applied Economics and Policy*, 24(1): 50-60, <https://doi.org/10.1111/j.1759-7552.2010.01390.x>.
9. Chauhan, A. S., Gupta, S., & Singh, S. (2019). Impact of GST on stock indices in India. *SSRN Electronic Journal*. DOI:10.2139/ssrn.3308711
10. Swathy Krishna and Shacheendran V (2024) Impact of Goods and Services Tax on the Economic Growth of India Artha Vijnana VOL. LXVI NO. 1, March 2024.
11. Pooja S. Kawle and Prof. Yogesh L. Aher (2017) “GST: An Economic Overview: Challenges and Impact Ahead”, *International Research Journal of Engineering and Technology (IRJET)*.
12. John, A. R., & Dhannur, V. (2019). GST Reform and its Economic Impact: VAR Perspective. *SAMVAD: SIBM Pune Research Journal*, Vol XVII, 17-22, June 2019
13. Sankar, R. (2017). GST: impact and implications on various industries in the Indian economy. *The Journal of Internet Banking and Commerce*, 22(2), 1-9.
14. <https://m.economictimes.com/news/economy/indicators/world-bank-projects-indian-economy-to-grow-at-7-5-in-2024/articleshow/108989160>
15. <https://cbic-gst.gov.in/gst-goods-services-rates.html> 2023
16. Samantara, R. (2018). A critical appraisal of goods and services tax in India. *Vision: Journal of Indian Taxation*, 5(2). DOI:10.17492/vision. v5i2.14390
17. <https://www.business-standard.com/economy/news/imf-raises-india-s-economic-growth-projection-to-6-8-from-6-5-in-2024>
18. <https://www.ibef.org/industry/manufacturing-sector-india>
19. Van Leemput, E. and E.A. Wienczek (2017), The Effect of the GST on Indian Growth, Board of Governors of the United States Federal Reserve System, *International Finance Discussion Paper Note*.
20. Munir, K., and N. Riaz (2019), Macroeconomic Effects of Fiscal Policy in Pakistan: A Disaggregate analysis, *Applied Economics*, 51(52): 5652-5662
21. Sanjeev Kumar and Shubham Garg, Karam Pal Narwal (2023), Economic Impact of GST Reforms on Indian Economy: An Empirical Analysis, *Orissa Journal of Commerce* Vol. 44, Issue 3, July-September.
22. Nayak, P.P., Palai, P., Khatei, L., & Mallick, R.K. (2022). Tax Revenue and Economic Growth Nexus in India: An ARDL Bounds Testing Approach. *Orissa Journal of Commerce*. 43(3), 118-131.
23. <https://www.mospi.gov.in/>
24. <https://pib.gov.in/>
25. <https://www.indiabudget.gov.in>

26. <https://www2.deloitte.com/us/en/insights/economy/us-economic-forecast/united-states-outlook-analysis.html>
27. <https://www2.deloitte.com/us/en/insights/economy/asia-pacific/japan-economic-outlook.html>
28. <https://www2.deloitte.com/us/en/insights/economy/asia-pacific/india-economic-outlook.html>
29. Khoja, I. A., & Khan, N. A. (2020). GST, cascading, and revenue performance: Analyzing the Indian commodity taxation market. *Journal of Public Affairs*, 20(3), 1-11.
30. Pallavi Kapila (2018) "GST: Impact on Indian Economy", *International Journal of Engineering Research and Application*, January 2018.
31. Shaik, S., Sameera S. A., and FirozSK. C., (2015), Does GST Lead to Indian Economic Development?" IOSR- JBM, Volume 17 Issue 12,
32. Greg Ekpung Edame; Willie Wilfred Okoi; (2014) "The Impact of Taxation on Investment and Economic Development in Nigeria", the academic journal of interdisciplinary studies,
33. Ben Miller; Robert D. Atkinson; (2014)."Digital Drag: Ranking 125 Nations on Taxes and Tariffs on ICT Goods and Services", iron: innovation & telecommunications law & policy
34. Jasdeep Kaur (2017). "GST and Its Implications on Farm Economy", *Indian Journal of Economics and Development*,
35. Sanjaya Kumar Ruchi Lenka; Sanjaya Kumar Ruchi Sharma; (2017)" Does Financial Inclusion Spur Economic Growth in India?", the journal of developing areas.
36. Marina Đorđević; Jadranka Đurović Todorović; Milica Ristić (2019)"Improving the performance of VAT system in developing EU countries: estimating the determinants of the ratio c-efficiency in the period 1997-2017", Andriy Krysovatty; Viktor Fedosov; Olena Tymchenko; Maryna Silchenko (2020); "Taxation, Economic Growth, and Welfare in A Low-income Country".
37. Cung Huu Nguyen; (2020)"The Impact of Foreign Direct Investment, Aid and Exports on Economic Growth in Vietnam" *Journal of Asian Finance, Economics, and Business*.
38. <https://economictimes.indiatimes.com/news/economy/indicators/indias-gdp-growth-seen-to-slow-sharply-to-6-4-this-fiscal-year-from-8-2-last-year-first-advance-estimate-shows/articleshow/117022315>.
39. Stoilova, D. (2017). Tax structure and economic growth: Evidence from the European Union. *Contaduría administration*, 62(3), 1041-1057. DOI: 10.1016/j.cya.2017.04.006.
40. Solow, R. M. (1956). A contribution to the theory of economic growth. *The quarterly journal of economics*, 70(1), 65-94. DOI: 10.2307/1884513.

THE ROLE OF DIGITAL TECHNOLOGY IN TRANSFORMING ESG REPORTING AND CORPORATE GOVERNANCE

*Ruchi Gupta
Rajesh Kumar Jain*

Abstract

The procedures for corporate governance and Environmental, Social, and Governance (ESG) reporting are experiencing significant transformation as consequence of the increasing popularity of technological innovations. In the context of reinforcing corporate governance frameworks, this study evaluates how modern technological devices like artificial intelligence (AI), blockchain, along with information analytics strengthen ESG reporting's reliability, accuracy, & transparency. Data was acquired employing a quantitative research design by means of a structured questionnaire involving 150 individuals from various industries, including business executives & ESG officers. The impact of the use of digital technologies on corporate governance & ESG performance indicators is studied in this research utilising regression analysis & ANOVA. The usage of digital resources like blockchain, artificial intelligence, as well as sophisticated data analytics have a positive relationship with the standard of ESG reporting, depending to independent predictive research. The outcome from the ANOVA further demonstrates that enterprises divided by the extent of employing digital technologies had substantially varying governance scores. Digital technology provides a crucial role for supporting reliable and successful ESG reporting operations, according to the study's findings from empirical research. In order to be competitive in a business environment that continues to grow less secretive and focused on environmental sustainability, it highlights the importance for businesses to invest in their digital networks.

Keywords

Digital Technology, ESG Reporting, Corporate Governance, Regression Analysis, ANOVA

1. Introduction

With an increasing adoption of digital technology, business operations are reshaping at present and Environmental, Social, and Governance (ESG) reporting and corporate governance are also not an exception (Yeoh, 2022). In the shadow of certain challenges that are threatening businesses in present day times including variations in climatic conditions, social responsibility and being ethical in conducting businesses, key stakeholders i.e., investors, regulators, and consumers wish for improving transparency, accountability, and sustainability (Akinsola, 2025). In order to enhance more accuracy in ESG reporting and simultaneously strengthening corporate governance frameworks, business firms have now started leveraging digital tools (Malukani et al., 2024). Digital technologies have introduced new ways for organizations to track, manage, and report ESG metrics. Use of artificial intelligence (AI), blockchain, big data analytics, along with cloud computing has improved the reporting of ESG (Zimin et al., 2024). Human errors have been reduced by using AI-powered automation and with an improved accumulation, ESG disclosures become more efficient (Rane et al., 2024). Introducing Blockchain technology has assured the integrity of collected data and consequently more transparency in initiatives regard to sustainability and governance practices (Senturk & Bagh\irov, 2023). Also, big data analytics has made companies capable to acquire deeper

insights into their ESG performance. This has facilitated informed decision-making and positive way of managing risks in business operations (Zaheer, 2023).

It has been realized that in modern day business practice, it is not only a regulatory mandate for effective ESG reporting but also it is required by firms for their strategic approaches as well. By integrating innovative digital solutions is making organizations to comply with guidelines in regard to sustainability regulations. It is also observed that through such intervention, corporations are also finding themselves in a better position to build stronger relationships with key stakeholders. It shows their own commitment towards responsible practices in concerned businesses (Kandpal et al., 2024). Together with aforementioned, digitalization has also helped companies to address kinds of risks with more effectiveness and this approach actually ensures the credibility of reporting of ESG claims and verification of the same is also transparent (Lauzzana, 2023).

In that sense, this study is an attempt to understand the way digital technology has been instrumenting in transforming ESG reporting and corporate governance as well. Also, it attempts to identify role of digital technology in bettering transparency in business operations while maintaining regulatory compliance along with engagement of all key stakeholders.

2. Review of Literature

- Salamzadeh et al. (2025) in their study identified those areas where

traditional models of corporate governance actually lack. It was realized that conventional models primarily focus on maximizing shareholder value but they struggle to address concerns in regard to sustainability. This study emphasized the dire need of innovative governance frameworks with an integration of ESG factors into corporate decision-making. The study explores the role of digital platforms in transforming corporate governance with in-build features like blockchain-based supply chain optimization, and predictive analytics. Digital platforms have made corporations capable of adopting more sustainable and responsive governance practices with an inclusion of enhanced accountability, engagement of stakeholders and environmental efficacy.

- **Bawa & Rathore (2024)** examined the transforming emergence of corporate governance practices with an inclusion of digital technologies comprising with AI interface, blockchain, big data analytics, IoT, & cloud computing. It was revealed in this study that making decisions in a quick way and better management of risks associated with business operations have become more supportive and effective with an introduction of AI. It has also though raised concerns in regard to accountability and transparency. They suggest at the same time that Blockchain actually signifies

transparency and accountability in such operations. However, they found it problematic when require scalability and somewhat few of regulatory barriers. The researcher found that big data analytics is useful in providing strategic insights but at the same time it also requires strong governance of data so as to maintain privacy and avoid any risks associated with security. They conclude with an established importance of IoT in improving efficiency but they also emphasized that such introduction of digital platforms has also come up with cybersecurity liabilities, even if cloud computing smooths association yet increases concerns about data sovereignty.

- **Wang & Hou (2024)** explores the performance of Chinese enterprises in regard to ESG in the light of digital technology initiatives. This study discusses both opportunities and challenges in this paradigm shift. Though it was assumed that digital technology will contribute towards the better sustainability efforts, it was found with negative consequences for ESG performance (Beta coefficient, -0.013). They highlighted inefficiencies and hidden costs associated with digital adoption by corporations. It was also addressed that organizations' compatibility with digital initiatives is also a challenge and it often in conflict with proper alignment of traditional operations. Also, it was revealed that digital technology adversely

affects symmetry in information and curbs the management of earnings. Consequently, it affects ESG performance though indirectly.

- **Yang et al. (2024)** examined the impact of digital transformation on corporate ESG performance together with an emphasis on growing importance in the evolving global economy. Digital transformation and ESG performance were found positively correlated with an analysis of panel data of first line high-tech and state-owned enterprises listed in Chinese market during year 2010 to year. The results of the study stated that with digital production and digital marketing ESG outcomes have been significantly enhanced. Green innovation, transparency in information and corporate governance have been improved. Also, it was realized that organizations with support from government in form of grants and subsidies along with strong leadership have a stronger positive impact of digital transformation on ESG performance.
- **Alkaraan et al. (2022)** employed computer-aided textual investigation and quantitative methods to identify that strategic investment has accelerated over time, nevertheless it fluctuates transversely in industries. It was found that disclosure of CTTI4.0 affect financial performance positively where ESG practices have moderating role. Results also revealed that corporations performing strong

ESG performance are more inclined towards disclosing about their digital initiatives and have shown better financial outcomes.

- **Saxena et al. (2022)** highlighted sustainability as a crucial step to achieve Sustainable Development Goals (SDGs) by 2030. The study also set the importance of ESG parameters to assess performance of organization in regard to their initiatives for sustainability. The researcher found lack of consistent ESG data as a hurdle. In such a scenario, this research emphasizes that by providing real-time, authenticated, and structured ESG data, modern day organizations can handle the issue of reliable data and security with digital platforms like IoT, AI, blockchain, and big data.

3. Objectives

- To examine the impact of digital technologies on enhancing the transparency, accuracy, and accountability of ESG reporting.
- To analyze how the integration of digital technology strengthens corporate governance frameworks.

4. Research Methodology

The impact of digital technology on corporate governance and ESG reporting is explored in this study adopting the method of quantitative research. A structured questionnaire among 150 professionals, include corporate executives, ESG officers, & governance professionals from different

sectors, was the method employed to acquire primary data. The survey explored how widely digital technology is being implemented and how significantly it is believed to impact the accuracy of ESG reporting and progress in corporate governance. Also, survey responses had been verified by the analysis of secondary data from reports on industries, financial data, along with corporate ESG disclosures. Digital technology adoption is considered as independent variable and dependent variables are corporate governance effectiveness and ESG reporting quality. Control variables have also been taken into account, namely type of industry, business size, and regulatory environment. ANOVA examined the variations in governance scores among companies with different degrees of digital adoption, regression analysis investigated the effect of digital tools on ESG reporting & governance

effectiveness. Descriptive analysis was employed to find patterns throughout the data. Professionals in the industry pre-tested the survey to confirm its reliability and validity, and secondary data sources were linked together to improve self-assurance.

5. Results And Discussion

- Summary of Digital Technology Adoption, ESG Reporting Quality, and Corporate Governance Scores**

The study's major variables, such as the size of the company, corporate governance scores, ESG reporting quality, & digital technology adoption, are presented in the following table. The data sets' broad patterns are shown by the mean values & standard deviations, and they also emphasise the variations in organisations' levels of digital adoption & policies on governance.

Table 1: Descriptive Statistics of Key Variables

Variable	Mean	Standard Deviation	Minimum	Maximum
Digital Technology Adoption Score	3.75	0.85	1	5
ESG Reporting Quality Score	4.2	0.72	2.5	5
Corporate Governance Score	4.1	0.8	2.8	5
Firm Size (in \$ Billion)	12.5	3.4	5	20

The descriptive statistics for each of the primary variables in the study are laid out in the table above. The majority of businesses have a moderate to high degree of digital adoption, corresponding to the digital technology adoption score, with a mean of 3.75 on a rating scale of 1 to 5. With an average ESG reporting quality score of 4.20, businesses appeared to do well when it deals with ESG disclosures. Strong governance practices are also shown by the corporate governance score, that averages 4.10. The inclusion of businesses of different capacities in the study population is encouraged by the wide variation in the company size (mean = \$12.5 billion, SD

= 3.40), thereby helping in extending the scope of these findings.

- **Examining the Relationship Between Digital Technology and ESG Reporting Accuracy**

The association among the use of digital technologies & the standard of ESG reporting has been examined by this regression analysis. The findings show an empirically significant positive impact, demonstrating that companies using big data analytics, blockchain, & artificial intelligence report more accurately, transparently, and even complying with ESG requirements.

Table 2: Regression Analysis – Impact of Digital Technology on ESG Reporting Quality

Independent Variable	Coefficient (β)	Standard Error	t-Value	p-Value
Digital Technology Adoption	0.52	0.08	6.5	0.000 **
Firm Size	0.12	0.05	2.4	0.018 *
Industry Type	0.08	0.07	1.14	0.256
Constant	2.1	0.3	7	0.000 **
R² = 0.65, Adjusted R² = 0.63				

Adoption of digital technology and the quality of ESG reporting have a positive relationship, corresponding to the findings from the regression ($\beta = 0.52$, $p < 0.01$). This indicates that the precision and transparency of ESG reports have been significantly enhanced for companies embracing AI, blockchain, & big data analytics. Yet another favourable influence is the size of the company ($\beta = 0.12$, $p <$

0.05), demonstrating that larger businesses generally provide higher ESG disclosures. Nevertheless, there is no apparent impact of industry type ($p = 0.256$). Strong capacity for forecasting was shown by the model, accounted for 65% of the variance in ESG quality of reporting ($R^2 = 0.65$).

- **Assessing the Influence of Digital Adoption on Governance Efficiency**

The impact of digital transformation on

corporate governance is investigated in the following table. Based on the results, businesses that employ cutting-edge digital tools reveal higher engagement from stakeholders, more robust governance

frameworks, as well as enhanced compliance with regulatory requirements. The efficacy of governance is further affected by corporate size & regulatory compliance.

Table 3: Regression Analysis – Impact of Digital Technology on Corporate Governance

Independent Variable	Coefficient (β)	Standard Error	t-Value	p-Value
Digital Technology Adoption	0.48	0.09	5.33	0.000 **
Firm Size	0.1	0.04	2.5	0.014 *
Regulatory Compliance Level	0.3	0.07	4.29	0.000 **
Constant	1.95	0.28	6.96	0.000 **
R² = 0.67, Adjusted R² = 0.65				

As evidenced from above results, corporate governance is affected by the widespread utilisation of digital technology to a significant extent on a positive side ($\beta = 0.48$, $p < 0.01$). Companies using digital tools found reinforcing their governance frameworks through more engaged stakeholders, swift decision-making & transparency. Also, regulatory compliance ($\beta = 0.30$, $p < 0.01$) reveals a significant positive effect. It revealed that businesses implementing strict guidelines for regulatory compliance, they are more inclined towards adopting effective corporate governance practices. Results also revealed that size of the company is also an important variable ($\beta = 0.10$, $p < 0.05$) and consequently it confirms that

bigger enterprises have better organised structures for governance. The regression analysis shows a strong fit, accounting for 67% of the variation ($R^2 = 0.67$).

- **Comparing Governance Performance Across Different Levels of Digital Implementation**

Companies with different degrees of digital adoption have their corporate governance ratings compared by the ANOVA results. Companies with greater levels of digital adoption have stronger governance procedures, according to the report, that points out the significance of digital expenditure in corporate leadership and transparency.

Table 4: ANOVA – Governance Scores by Levels of Digital Technology Adoption

Digital Adoption Level	Mean Governance Score	Standard Deviation	F-Value	p-Value
Low (1.0 - 2.5)	3.2	0.55		
Medium (2.6 - 3.9)	4	0.6	9.85	0.000 **
High (4.0 - 5.0)	4.5	0.48		

Organisations with different levels of digital technology adoption had significantly distinct corporate governance scores, based to these ANOVA results ($F = 9.85$, $p < 0.01$). Stronger corporate governance structures have been identified in companies with higher levels of digital adoption (Mean = 4.50) compared with those that have lesser adoption levels (Mean = 3.20). According to these findings, companies that invest in digital technology see increases in stakeholder confidence, transparency, and regulatory compliance all of that reinforce the notion that digital transformation could strengthen corporate governance.

6. Key Findings:

- Deployment of digital technology & the standards of ESG reporting have a beneficial correlation. Businesses that incorporate blockchain, AI, and big data analytics show improved accuracy, compliance, and transparency in their ESG reports.
- Businesses with better ratings for digital adoption have superior corporate governance structures, resulting in increased responsibility, compliance with laws and regulations, and engagement with stakeholders.
- The successful functioning of governance can be affected by the size of the company and adherence to regulations. The relationship between digital technology and governance effectiveness appeared to be moderated by company size and compliance structures, as larger firms along with companies in highly regulated industries acquire more from digital transformation in governance.
- Organisations should make investments in digital resources in order to improve governance, as the ANOVA results reveal that companies with greater digital adoption acquire higher governance ratings compared with those with lower adoption levels.
- According to the study, adopting digital technology strengthens stakeholder trust and the image of an organisation through lowering data disparity and resulting in more precise and credible disclosures regarding ESG.
- To get the most from the digital transformation in ESG reporting and

governance, the findings indicate that business executives and governing bodies must invest in revolutionary digital infrastructure as well as acquire expertise in digital literacy.

7. Conclusion

By means of increased transparency, accuracy, & compliance with regulation, this study reveals how digital technology substantially enhances corporate governance & the quality of ESG reporting. Businesses integrating big data analytics, blockchain, & artificial intelligence have witnessed enhanced engagement with stakeholders and established more robust governance mechanisms. In line with the findings, more digital usage generates better mutual confidence and accountability by improving ESG performance along with decreased information disparity. But for this strategy to be successful, corporate leaders are required to be informed about technology and make investments in digital infrastructure. Organisations ought to use these technologies as digital transformation accelerates to transform governance for organisations to stay competitive and resilient in an ever-changing business climate.

References:

- Akinsola, K. (2025). The Evolving Role of Corporate Governance in Shaping Business Practices and Legal Accountability in the 21st Century. Available at SSRN 5115523.
- Alkaraan, F., Albitar, K., Hussainey, K., & Venkatesh, V. G. (2022). Corporate transformation toward Industry 4.0 and financial performance: The influence of environmental, social, and governance (ESG). *Technological Forecasting and Social Change*, 175, 121423.
- Bawa, Z., & Rathore, K. S. (2024). Corporate Governance in the Era of Digital Transformation: Evaluating the Impact of Emerging Technologies on Organizational Strategies. *Business, Marketing, and Finance Open*, 1(5), 46–63.
- Kandpal, V., Jaswal, A., Santibanez Gonzalez, E. D. R., & Agarwal, N. (2024). Corporate social responsibility (CSR) and ESG reporting: redefining business in the twenty-first century. In *Sustainable energy transition: Circular economy and sustainable financing for environmental, social and governance (ESG) practices* (pp. 239–272). Springer.
- Lauzzana, J. (2023). *ESG reporting: analysis of the role of technology in supporting the compliance*.
- Malukani, B., Joshi, A., & Ubeja, S. (2024). Corporate Governance in the Digital Age: Insights and Recommendations. *IUP Journal of Corporate Governance*, 23(3), 50–58.
- Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence driven approaches to strengthening Environmental, Social, and Governance (ESG) criteria in

sustainable business practices: a review. *Social, and Governance (ESG) Criteria in Sustainable Business Practices: A Review* (May 27, 2024).

- Salamzadeh, A., Hadizadeh, M., Feyzabadi, J. G., Yasin, N., & Paramba, J. N. (2025). The Role of Digital Platforms in Transforming Corporate Governance: A Path to Sustainability Through ESG. In *Modern Corporate Governance Strategies for Sustainable Value Creation* (pp. 111–136). IGI Global Scientific Publishing.
- Saxena, A., Singh, R., Gehlot, A., Akram, S. V., Twala, B., Singh, A., Montero, E. C., & Priyadarshi, N. (2022). Technologies empowered environmental, social, and governance (ESG): An industry 4.0 landscape. *Sustainability*, 15(1), 309.
- Senturk, O., & Bagh'irov, A. (2023). Enhancing sustainable development through blockchain: A study on risk management and data integrity. *Journal of Organizations, Technology and Entrepreneurship*, 1(2), 110–126.
- Wang, L., & Hou, S. (2024). The impact of digital transformation and earnings management on ESG performance: evidence from Chinese listed enterprises. *Scientific Reports*, 14(1), 783.
- Yang, P., Hao, X., Wang, L., Zhang, S., & Yang, L. (2024). Moving toward sustainable development: the influence of digital transformation on corporate ESG performance. *Kybernetes*, 53(2), 669–687.
- Yeoh, P. (2022). *Environmental, social and governance (ESG) laws, regulations and practices in the digital era*.
- Zaheer, A. (2023). Big data in engineering: leveraging analytics for improved decision-making and performance. *Liberal Journal of Language and Literature Review*, 1(01), 47–54.
- Zimin, A., Sedova, N., & Pulyavina, N. (2024). ESG 2.0: Revolutionizing Sustainability Through the Power of Digitalization. *International Workshop on Cultural Perspectives of Human-Centered and Technological Innovations*, 273–282.

INDEX

ANOVA	68, 128, 135, 139, 141, 142
Automation	54, 55, 59, 77, 99, 100, 101 - 105, 107, 109, 113-115, 136
Barriers	34, 36-39, 42- 45, 48 -51, 56,75,76,78, 79, 105, 107, 108, 113, 121, 123, 137
Bibliometric Analysis	15
Cointegration	82, 83, 85 - 88, 90, 95
Co-occurrence	15, 17,21,23,25,28
Corporate Governance	30, 35 132, 135 - 144
Data Analytics	54 to 56, 59,61,62,65,66,74,76,77,100, 103, 108, 111, 114, 135 - 137, 140,142, 143
Data Envelopment Analysis	1,2,3,4,6,12,13
Decision-making Units	1,4,5,6,12
Digital Transformation	54,99,102, 107, 114, 138,140, 142-144
Entrepreneurship	15, 16,18,20,23-25,27, 29-31, 114
ESG Reporting	135, 136, 138 - 140, 142, 143
Futures Market	82 - 86, 91, 92, 95, 96
Glass Ceiling	16, 34 - 39, 42-45, 48, 51to53
Goods and Services Tax	116, 121, 133
Hasbrouck's IS	82 - 84
Industry 4.0	56, 59, 81,99, 102, 143, 144
Information Technology	34,35,53,81
IoT	99-115, 137, 138
Management Accounting	18, 54,55 - 67, 69 -74,
Next-Gen GST Reforms	116, 117,121, 123 - 125, 131, 132
Operational Efficiency	99-102, 105, 108, 109
Predictive Analytics	74, 99, 100, 103, 110,137
Price discovery	82 - 86, 91 - 98

Regression Analysis	42, 44, 45, 54, 64, 70, 73, 76, 126, 131, 135, 139, 140, 141
Scalability	15 - 17, 18, 20, 22, 23 - 30, 32, 106, 111-113, 137
Smart Cities	99, 100, 102, 105, 109, 114, 115
Spearman rank correlation	1, 4, 10, 12
Spot Market	82, 83, 92, 93, 95, 96
Steel Industry	1, 2, 4, 13
Strategic Decision-Making	54, 55, 61, 64, 67, 69 to 74, 79
Sustainable Practices	16, 17, 20, 21, 23, 25-28
Technological Disruption	54 - 62, 67, 69, 75 - 78

.....

Digital Object Identifier (DOI)- Vol. 51 Nos. I & II, April & July 2025

Name of the Article	Author's Name	Vol.	Nos.	Issue	Page Nos.	DOI Number
Applying DEA Approach to Investigate into the Efficiency of The Indian Steel industry	Arindam Banerjee	51	I & II	April & July, 2025	1 to 14	10.33516/rb.v51i1-2.1-14p
Envisioning Thematic Insights on Entrepreneurial Sustainable Practices Towards Scalability: A Bibliometric Analysis	Manidipa DasGupta, Sandhya Kri Shaw	51	I & II	April & July, 2025	15 to 33	10.33516/rb.v51i1-2.15-33p
Factors Determining Glass Ceiling on Women Career Advancement	Gayatri M. P	51	I & II	April & July, 2025	34 to 53	10.33516/rb.v51i1-2.34-53p
Management Accounting in Navigating Technological Disruption for Future Business Landscape: An Empirical Study	D. Mukhopadhyay	51	I & II	April & July, 2025	54 to 71	10.33516/rb.v51i1-2.54-71p
Price Discovery in Spot and Futures Markets: An Empirical Investigation of Hcl Data Using Hasbrouck's Information Share and Gonzalo-Granger Method	Jeelan Basha V, Kaleel	51	I & II	April & July, 2025	82 to 98	10.33516/rb.v51i1-2.82-98p
Transformative Impact of IOT Applications in Unlocking Operational Efficiencies – A Global and Indian Perspective	Dipra Bhattacharya	51	I & II	April & July, 2025	99 to 115	10.33516/rb.v51i1-2.99-115p
The GST Evolution in India: An Empirical Baseline and The Growth Potential of Next-Gen Reforms	Akki Maruthi	51	I & II	April & July, 2025	116 to 134	10.33516/rb.v51i1-2.116-134p
The Role of Digital Technology in transforming ESG Reporting and Corporate Governance	Ruchi Gupta, Rajesh Kumar Jain	51	I & II	April & July, 2025	135 to 144	10.33516/rb.v51i1-2.135-144p

About the Institute

The Institute of Cost Accountants of India is a statutory body established under an Act of Parliament in 1959. As part of its obligations, the Institute regulates the profession of Cost and Management Accountancy, enrolls students for its courses, provides coaching facilities to the students, organises professional development programmes for the members and undertakes research programmes in the field of Cost and Management Accountancy. The Institute pursues the vision of cost competitiveness, cost management, efficient use of resources and structured approach to cost accounting as the key drivers of the profession. In today's world, the profession of conventional accounting and auditing has taken a back seat and cost and management accountants are increasingly contributing toward the management of scarce resources and apply strategic decisions. This has opened up further scope and tremendous opportunities for cost accountants in India and abroad.

After an amendment passed by Parliament of India, the Institute is now renamed as "The Institute of Cost Accountants of India" from "The Institute of Cost and Works Accountants of India". This step is aimed towards synergising with the global management accounting bodies, sharing the best practices which will be useful to large number of trans-national Indian companies operating from India and abroad to remain competitive. With the current emphasis on management of resources, the specialized knowledge of evaluating operating efficiency and strategic management the professionals are known as "Cost and Management Accountants (CMAs)". The Institute is the largest Cost & Management Accounting body in the world, having approximately 6,00,000+ students and 1,00,000+ qualified professionals all over the globe. The Institute headquartered at Delhi operates through four regional councils at Mumbai, Chennai, Kolkata & Delhi and 112 Chapters situated across the country as well as 11 Overseas Centres. It functions under the jurisdiction of the Ministry of Corporate Affairs, Government of India.

Detailed Guidelines for Contribution in ‘Research Bulletin’

- The Research Bulletin (ISSN No. 2230-9241) is the official publication of The Institute of Cost Accountants of India.
- The authors must declare that the article is the result of their faithful work.
- The article should preferably be relating to the research work carried out during the last five years and not being considered for publication in any other research bulletin or journal.
- The manuscript including figures, table & references should be preferably within 5000 words for Research Papers including an abstract, 2000 words for Case Studies and 1000 words for Book Reviews.
- Soft Copy of the full paper should be submitted in double space, 12 fonts, Times New Roman, keeping a margin of 1 inch in four sides, MS Word (.doc) format.
- The Cover Page should contain the title of the paper, author’s name, designation, official address, contact phone numbers, e-mail address.
- An abstract of not more than 150 words should highlight the findings of the research work. It should be in clean and concise English. Abbreviations should be avoided in the abstract.
- Title should be short, specific and informative.
- The main text should not contain name of the author and footnotes. References should be given at the end of the manuscript and should contain only those cited in the text of the manuscript.
- 5-6 key words suitable for indexing should be given in the alphabetical order.
- Figures and tables should be numbered consecutively and should appear near the text where they are first cited. The figures should be accommodated within two thirds of A4 size paper. Captions of the tables/figures/charts at the top and sources at the bottom are to be given. The heading of sections & sub-sections should start from the left hand margin.
- Soft copy (in MS Word format) of the manuscript is to be sent.
- The contributions sent for publication may be referred for review. Correspondence and proofs for correction, if required, will be sent to the first named author unless otherwise indicated. Corrected proofs should be returned within specified days as may be communicated from Editorial Desk.

Detailed Guidelines for Contribution in ‘Research Bulletin’

- The final decision on the acceptance or otherwise of the paper rests with the Advisory Board and it depends entirely on its standard and relevance. The final draft may be subjected to editorial amendment to suit the bulletin’s requirement.
- No reprints of the published article will be supplied to the authors. However the authors will get a copy of the bulletin free of cost immediately after the publication.
- The contributors will receive the structured honorarium fixed by the institute.
- The copy rights of the articles published in the bulletin lie with The Institute of Cost Accountants of India.
- All communications are to be sent at research.bulletin@icmai.in.

Notes

Notes

THE INSTITUTE OF COST ACCOUNTANTS OF INDIA

(Statutory Body under an Act of Parliament)

www.icmai.in

Research Bulletin, Vol. 51 No. IV January 2026 (ISSN 2230 9241)

Call for Research Papers/Articles

We invite you to contribute research paper/article for “Research Bulletin”, a peer-reviewed Quarterly Journal of The Institute of Cost Accountants of India. The aim of this bulletin is to share innovative achievements and practical experiences from diverse domains of management, from researchers, practitioners, academicians and professionals. This bulletin is dedicated to publishing high quality research papers providing meaningful insights into the management content both in Indian as well as global context.

Guidelines to submit full Paper

- ✓ Soft Copy of the full paper should be submitted in double space, 12 font size, Times New Roman, keeping a margin of 1 inch in four sides, MS Word (.doc) format.
- ✓ Each paper should be preferably within 5000 words including all.
- ✓ An abstract of not more than 150 words should be attached.
- ✓ The cover page should contain the title of the paper, author's name, designation, official address, contact phone numbers, e-mail address.

Papers are invited on the following topics, but not limited to:

- ◎ *The Impact of Artificial Intelligence (AI) on Financial Reporting Accuracy*
- ◎ *Cost-Benefit Analysis of Blockchain Adoption in Supply Chain Finance*
- ◎ *Integrating ESG Factors into Capital Budgeting Decisions*
- ◎ *Green Energy*
- ◎ *Cybersecurity in an AI-Dominated World*
- ◎ *Corporate Sustainability and Corporate Governance*
- ◎ *Global Health Equity*
- ◎ *Startups*
- ◎ *Banking & Insurance*
- ◎ *GST*
- ◎ *Cost Audit*
- ◎ *Customer Relationship Management (CRM)*
- ◎ *Venture capital*
- ◎ *Forensic Accounting and Auditing*
- ◎ *Securities Markets in India*

Papers must be received within **15th February, 2026** in the following email id:

research.bulletin@icmai.in

Behind Every Successful Business Decision, there is always a **CMA**

ICMAI

THE INSTITUTE OF COST ACCOUNTANTS OF INDIA

भारतीय लागत लेखाकार संस्थान

**Statutory Body under an Act of Parliament
(Under the jurisdiction of Ministry of Corporate Affairs)**

HEADQUARTERS

CMA Bhawan, 3, Institutional Area, Lodhi Road, New Delhi - 110003
Tel: 011-24622156

KOLKATA OFFICE

CMA Bhawan, 12, Sudder Street, Kolkata - 700016
Tel: 033-40364743 / 40364735

www.icmai.in

Behind Every Successful Business Decision, there is always a **CMA**