Concept of Factor Analysis
Population, principal concept
     Suppose the random variables X1, X2 and X3 have the covariance matrix
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It may be verified that the eigen value – eigen vector pairs are

                                                        λ1 = 5.83           e1′ = [0.383, -0.924, 0]

                                                        λ2 = 2.00           e2′ = [0, 0, 1]

                                                        λ3 = 0.17           e3′ = [0.924, 0.383, 0]
Results: Let Σ be the covariance matrix associated with the random vector X′ = [X1, X2,…, Xp]. Let Σ have the eigen value – eigen vector pairs (λ1, e1), (λ2, e2),…, (λp, ep) where λ1 ≥ λ1 ≥ … ≥ λp ≥ c. Then the ith principal component is given by
Yi = ei′ X = ei1 X1 + ei2 X2 +…+ eipXp,    i = 1, 2,…, p
with these choices,                     var(Yi) = ei′ Σei = λi,   i = 1 (1) p
                                                   cov(Yi, Yk) = ei′ Σek = 0,  i ± k
If some λi are equal, the choices of the corresponding coefficient vectors ei and hence Yi are not unique.

Total population variance = σ11+ σ22+…+ σpp 

                                          = λ1 + λ1 + … + λp
Proportion of total population variance due to kth principal component = 
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Results: If Y1 = e1′ X, Y2 = e2′ X, …, Yp = ep′ X are the principal components obtained from the covariance matrix Σ, then
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Are the correlation coefficients between the components Yi and the variables Xk. Here, (λ1, e1), (λ2, e2),…, (λp, ep) are the eigen value – eigen vector pairs for Σ.
Therefore the principal components become

                                                          Y1 = e1′ X = 0.383X1 – 0.924X2
                                                          Y2 = e2′ X = X3

                                                          Y3 = e3′ X = 0.924X1 + 0.383X2
The variable X3 is one of the principal components, because it is uncorrelated with the other two variables.

                                  v(Y1) = 5.83 = λ1
                                  cov(Y1, Y2) = cov((0.383 X1 – 0.924 X2) X3)

                                                    = 0.383 cov(X1 X2) – 0.924 cov(X1 X2)

                                                    = 0

It is also readily apparent that

                                        σ11+ σ22+ σ33 = 1+5+3 = λ1 + λ1 + λ3 = 8

The proportion of total variance accounted by the first principal component is 
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Further, the first two components account for a proportion (5.83+2)/8 = 0.98 of the population variable.
In this case, the components Y1 and Y2 could replace the original three variables with little loss of information.

Using relation (*), we obtain,
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Notice here that the variable X2 with coefficient –0.924 receives the greatest weight or the component Y1. It also has the largest correlation (i.e., absolute value) with Y1. The correlation of X1 with Y1 is almost as large as that for X2, indicating that the variables are about equally important to the first principal component. The relative sizes of the coefficients of X1 and X2 suggest, however, that X2 contributes more to the determination of Y1 than does X1. Since, in this case, both coefficients are reasonably large and they have opposite signs. We xxxxx agree that both xxxxxxxxxxxx in the independent of Y1.
Finally, 
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(as it shows)

The remaining correlations can be neglected since the third component is unimportant.

I. xxxxxx  of correlation, in place of X, we take Z
Proportion of (standardized) population variance due to kth principal component = 
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 where λk‘s are the eigen values of p.
Principal components obtained from covariance and correlation matrices are different. 
Consider the covariance matrix 
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 and the derived correlation matrix 
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The eigen value – eigen vector pairs from Σ are

                                                        λ1 = 100.16           e1′ = [0.040, 0.999]

                                                        λ2 = 0.84               e2′ = [0.999, - 0.040]
Similarly, the eigen value – eigen vector pairs from ρ are

                                                        λ1 = 1+ ρ = 1.4              e1′ = [0.707, 0.707]

                                                        λ2 = 1- ρ = 0.6               e2′ = [0.707, - 0.707]

The respective principal components become

  Σ:            Y1 = 0.040X1 + 0.999X2
                  Y2 = 0.999X1 – 0.040X2
and         ρ:    Y1 = 0.707 Z1 +0.707 Z2
                           = 0.707 (
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                      Y2 = 0.707 (
[image: image14.wmf]11

X

m

-

) - 0.0707 (
[image: image15.wmf]22

X

m

-

)
Because of its large variance, X2 completely dominates the first principal component determined from Σ. Moreover, the first principal component explains a proportion.
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of the total population variance.
When the variables X1, X2 are standardized, however, the resulting variables contribute equally to the principal components determined from ρ.
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In this case, the first principal component explains a proportion 
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 of the first (standardized) population variance.

Factor Analysis
      The essential purpose of factor analysis is to describe, if possible, the covariance relationships among many variable sin terms of a few underlying, but unobservable random quantities called factors. Basically, the factor model is motivated by the following arguments:-

Suppose variables can be grouped by their correlations i.e., suppose all variables within or particular group are highly correlated among themselves, but have relatively small correlation with variables in a different group. Then it is conceivable that each group of variable represents a single underlying constructor factor that is responsible for the observed correlations. For example, correlations from the group of test scores in Classics, French, English, Mathematics, and Music collected by Spearman suggested an underlying “intelligence” factor. A second group of variables representing physical fitness scores, if available, might correspond to another factor. It is this type of structure that factor analysis xxxxx to confirm. 

     Factor analysis can be considered an extension of principal component analysis. Both can be viewed as attempts to approximate the covariance matrix Σ. However, the approximation based on the factor analysis model is more elaborate. The primary question in factor analysis is whether the data are consistent with a prescribed structure.
 The orthogonal factor model

     The observable random vector X with p components has mean L and covariance matrix Σ.

The factor model postulates that X is linearly dependent upon a few unobservable random variables F1, F2… Fm called common factors and p additional sources of variation ε1, ε2 … εp called errors or sometimes specific factors.

In particular, the factor analysis model is, 
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In matrix notation,
X – μ = LF + εp} → unobservable

The coefficient lij = Loading of ith variable on the jth factor.

Covariance structure for the orthogonal factor model

I) Cov (X) = LL′ + ψ
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2) Cov(X, F) = L
     Or, Cov(Xi, Fj) = lij 
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The ith communality is the sum of squares of the loadings of the ith variable on the m common factors. 
Verifying the relation Σ = LL′ + ψ
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The equality


[image: image23.wmf]24

444244

1930212412000

30575237247110400

2538471612680010

12234768180003

´

´´´

éùéùéù

êúêúêú

-

éù

êúêúêú

=+

êú

êúêúêú

-

ëû

êúêúêú

êúêúêú

ëûëûëû


                                         i.e., Σ = LL′ + ψ
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p(diagonal) +….
Factor model assumes that p + p (p – 1)/2 = p (p + 1)/2. Variance and covariance for X …..
When m = p xxxx covariance matrix Σ can be reproduced exactly as LL′. So, ψ can be the zero matrix.

For example, X contains p =12 variable and the factor model with m = 2 is appropriate then p (p + 1)/2 = 78 elements of Σ are described in xxxx of the mp + p = 36 parameters lij and Yi of the factor model. 
Xxxx matrix           S – (LL′ + ψ)
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Proportion of total sample variance due to the factor = 
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     for a factor analysis of S
Consumer preference study                                         = 
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                                 for a factor analysis of R
 Example:   Step 1   7-point semantic difference scale
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                                                 Cumulative proportion = 
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Table

	Variable
	Estimated factor loadings 
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F1                                 F2
	Communalities
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	Specific variance
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	1
	0.56
	0.82
	0.98
	0.02

	2
	0.76
	-0.53
	0.88
	0.12

	3
	0.65
	0.75
	0.98
	0.02

	4
	0.94
	-0.10
	0.89
	0.11

	5
	0.80
	-0.54
	0.93
	0.07

	Eigen values
	2.85
	1.81
	
	

	Cumulative proportion of total standardized sample variance
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	0.931
	
	


Now, 
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R-LL’-Y’=Residual
	Variable
	Estimated factor loadings 
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F1                                 F2
	Rotated estimated factor loadings

   F1                          F2 
	Communalities
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	1
	0.56
	0.82
	   0.02                   0.99
	0.98

	2
	0.76
	-0.53
	   0.94                  -0.01
	0.88

	3
	0.65
	0.75
	   0.13                   0.98
	0.98

	4
	0.94
	-0.10
	   0.84                   0.43
	0.89

	5
	0.80
	-0.54
	   0.97                  -0.02
	0.93

	Cumulative property (standardized sample explained)
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	0.932
	  0.507                 0.932
	


Oblique Rotation:
Orthogonal rotations are appropriate for a factor model in which the common factors are xxxx to be independent. 

The best will be that whose xxxxx matrix is small.

Bartlett’s Correction
H0 : Σ(p, p) = LL′ + ψ 
H1 : Σ is any other positive definite matrix.

Using Bartlett’s Correction we reject H0 at the α-level of significance
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must be positive. It follows that 
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