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Abstract 
Over the past few years, physical risks have turned from a niche domain of (re)insurers into a systemic 
risk factor that may have an impact through various channels on financial markets and financial 
institutions alike. While physical risks are not a common income-producing or even a sizeable cost-of-
business risk factor for most banks, they do affect banks, mostly indirectly, through their loan and 
trading books. Against this backdrop, standard setting bodies and financial regulators have increasingly 
called on banks to recognise physical risks as an additional factor in their risk space and internalise it in 
their risk management policies.  

A major obstacle for banks on this way, however, is the absence of generally accepted industry models 
of credit risk adjusted for physical risk factors. Such models are increasingly needed to account for 
physical risks in banks’ capital requirements, loan loss provisions, pricing of loans and, eventually, 
derivatives to hedge this risk. This poses the question of building a bank's internal model for climate-
related correction to the internal probability of default and loss given default or using third-party 
databases on the type of the borrower’s assets, their geolocation, exposure to climate factors, 
statistical description of weather events and damage functions.  

This paper proposes a methodology that allows in a relatively simple way the integration of physical risk 
component into the credit risk modelling, using an extension of the one-factor Vasicek model. The 
model described by the paper may be of specific interest for both banks and regulators, as it preserves 
important properties of models currently used while allowing for an informed mitigation of physical risk 
factor in credit risk. Additionally, the paper discusses further possible extensions of the credit risk model 
if physical risk manifests itself in more than one state. 
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Incorporating physical risks into banks’ credit risk models 

Section 1 – Introduction 

There is a prevalent view among meteorologists and insurers that climate-related events are becoming 
more frequent and severe, impacting both households and corporates. For instance, over the past four 
decades, the number of reported hydrometeorological disasters has surged nearly fivefold, rising from 
approximately 750 incidents between 1971 and 1980 to around 3,500 incidents during 2001 to 2010. 
Concurrently, cumulative economic losses have escalated more than fivefold, increasing from USD 156 
billion to USD 864 billion per decade.1 

For banks, climate risk manifests itself in the deterioration in the solvency of borrowers due to damage 
to their assets from natural disasters caused by climate change (“physical” risk) and/or due to costs of 
transition to a low-carbon economy caused by changes in public sector policies, legislation and 
regulation, changes in technology and changes in market and customer sentiment (“transition” risk). 
While the climate-related financial risk has not yet become a common income-producing or even a 
sizeable cost-of-business factor for most banks, physical risk does affect banks, mostly indirectly 
through their loan and trading books. 

Physical risks are transmitted to a bank’s balance sheet and P&L through different channels. For 
example, natural disasters, such as floods, hurricanes, droughts, affect households and corporate 
borrowers by impairing their fixed assets (housing, inventory, property, equipment or infrastructure). 
This, in turn, impacts the creditworthiness of the obligors by decreasing the value of collateral posted 
at the bank (if any) and, as a second-order effect, when damaged rental properties and factories 
generate less income thus undermining the obligor’s creditworthiness. Since climate-driven events 
commonly affect multiple borrowers at the same time, thus driving up correlation of defaults in the loan 
portfolio, a bank may incur in significant losses if it has a concentration of credit exposures to obligors 
located in a high-risk region. 

Against this backdrop, standard setting bodies and financial regulators have increasingly urged banks 
to recognise physical climate risk as a new factor in their risk space and internalise it in their credit risk 
management policies. Several national financial authorities have explicitly outlined supervisory 
expectations for banks to adjust their risk management practices in response to climate change. These 
adjustments typically involve disclosing and managing exposure to physical risks, as well as allocating 
capital accordingly. However, financial authorities acknowledge the challenges posed by the lack of data 
and risk-modelling capabilities. 

For example, the Basel Committee on Banking Supervision (BCBS) in its “Principles for the effective 
management and supervision of climate-related financial risks” underscores that banks should 
understand the impact of climate-related risk drivers on their credit risk profiles and ensure that credit 
risk management systems and processes consider material climate-related financial risks. Moreover, 
“banks should have clearly articulated credit policies and processes to address material climate-related 
credit risks. This includes prudent policies and processes to identify, measure, evaluate, monitor, report 
and control or mitigate the impacts of material climate-related risk drivers on their credit risk exposures 
(including counterparty credit risk) on a timely basis.”2 

1  World Meteorological Organization (2015). 
2  BCBS (2022a). More specific guidance on how climate-related financial risks may be captured in existing Pillar 1 standards 

was provided in BCBS (2022b), “To the extent that the risk profile of a counterparty is affected by climate-related financial 
risks, banks should give proper consideration to the climate-related financial risks as part of the counterparty due diligence. 
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In the European Union, banks are expected to meet supervisory expectations regarding climate and 
environmental risks, including their full integration into the Internal Capital Adequacy Assessment 
Process (ICAAP) and stress testing.3 That said, the European Central Bank's thematic review 4, which 
examined banks' risk strategies and risk management processes, highlighted that the industry still lacks 
sophisticated methodologies and detailed information on climate and environmental risks.  

In the United Kingdom, the Bank of England (BoE) highlighted emerging evidence of potential gaps in 
the banking capital framework and has started examining climate-related deficiencies in the 
measurement of risk-weighted assets. BoE acknowledges both the limitations in current modelling 
techniques used by banks to fully incorporate and estimate the impact of climate factors on their 
counterparties, as well as certain "regime gaps." These regime gaps refer to challenges in capturing 
climate risks due to the design or use of methodologies within the capital frameworks. Specifically, for 
internal ratings-based (IRB) models, BoE concludes that climate risks could potentially be reflected 
through the modelling of risks to exposures, although data and modelling challenges are likely to 
persist.5 

Finally, the Group of Central Bank Governors and Heads of Supervision (GHOS), the oversight body of 
the Basel Committee on Banking Supervision, has recently agreed to prioritise further analysis on the 
financial risk implications of extreme weather events and tasked the Basel Committee to analyse the 
impact of such events on financial risks6. 

Apart from the challenge of forecasting low-frequency-high-severity climate events, in which banks are 
clearly not specialists (unlike property insurers), estimating economic loss to their borrowers induced 
by such events is another major problem for banks. Loss models developed in the insurance industry 
may be only partially useful, as they only transpose physical impact to impairment of fixed assets. 
However, banks need to have also the second type of models estimating how this impairment could 
affect the creditworthiness of the borrower. Given the dearth of relevant statistical data, such models 
are scarcer than those for transition risk, are often based on econometric estimates of stressed 
probabilities of default derived from the firm’s financials under equally likely stress scenarios (ECB 
2022a) rely on a widely diverse setup and assumptions. Meanwhile, practical models of credit risk 
adjusted for physical risk are increasingly needed to account for physical risk in pricing of loans banks’, 
loan loss provisions, capital requirements, and, eventually, hedging this risk with derivatives.  

In supervisory climate stress-testing exercises, physical risks are often considered marginal or moderate 
in the short term. These risks are supposed to materialize as an outcome of adverse long-term scenarios 
of climate change (i.e. temperature rise) in the absence of adequate policy action. Furthermore, banks 
may assume that the impact of higher physical risk will be mitigated by insurance (BoE 2022). Even in 
countries with higher natural disaster risk, banks often include only physical damages in estimating the 
devaluation of properties (HKMA 2021) with rare examples of cascading stress scenarios down to 
probabilities of default and losses given default (Adams-Kane et al, 2024). Therefore, physical risk 
estimates tend to be too uncertain to be integrated into bank risk management framework. 
Unsurprisingly, bank supervisors expect banks to be capable of modelling the impact of physical risk on 
banks’ counterparties with varying degree of granularity without prescribing though any particular 
model type. 

To that end, banks should integrate climate-related financial risks either in their own credit risk assessment or when 
performing due diligence on external ratings.” 

3  ECB (2020). 
4  ECB (2022b).  
5  Bank of England (2023), para 6 and 40–48. 
6  BIS (2025). 
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In this paper, an innovative approach for integration of physical risks to credit risk modelling is 
proposed. The model design and choice of its parameters accommodate both a directional climate 
change (i.e. climate risk per se) and weather risk due to increased volatility of 'climate' risk factors.  

The seminal Vasicek model (2002)7 which underlies many internal credit risk models at banks, as well as 
the regulatory internal ratings-based (IRB) approach in Basel II and Basel III, is considered as a starting 
point. Physical risk is then modelled as a single stochastic factor that manifests itself in a binary way 
with an externally defined probability and a jump in the market value of assets of an individual corporate 
borrower. 

Next, a portfolio model is developed to explicitly measure the contribution of physical risk to credit risk 
losses. Besides common purposes, such as economic capital allocation for unexpected credit losses and 
loan loss provisioning for expected losses, the proposed model may also be instrumental for banks in 
managing this new factor of credit risk by hedging it with derivatives on climate-induced damage.  

The research demonstrates that the proposed credit risk model enhanced by the physical risk factor 
preserves the so-called portfolio invariance property, i.e. the invariance of the risk measure for a single 
credit claim to the composition of the loan portfolio to which it is added. This important property is 
highly desirable from a practical viewpoint to avoid time-consuming full re-calculation of a risk measure 
on a portfolio level, as well as for its prospective suitability for regulatory purposes. 

The paper is structured as follows. Section 2 provides a review of the recent literature, focusing on 
current methods for integrating climate risk into credit risk measurement and modelling for banks. It is 
shown that most of the models describe the default process of an individual corporate borrower but do 
not consider a case of a loan or a bond portfolio. Section 3 examines the main methodological issues 
for integrating physical climate risk into credit risk modelling and suggests possible ways to move 
forward. A parsimonious approach to integrating climate risk into credit risk assessment on a portfolio 
level is then developed in Section 4, and Section 5 is dedicated to further extensions of the proposed 
credit risk model. These include a multi-state distribution approach (i.e. if physical risk related to climate 
events manifests in more than one state), extending the model for transition risk, possible regulatory 
applications, and hedging physical risk with climate damage index swaps. Appendix 1 gives an 
illustrative example which demonstrates how meaningful the adjustments are in the current 
environment. 

Section 2 – Literature review 

To date, there has been relatively little research on the methodology for incorporating physical risks 
into credit risk measurement and management that could be applicable in the banking sector. However, 
it should be noted that the number of publications on this topic has grown significantly over the past 
few years. Such work has often turned to empirical studies of the contribution of climate factors to the 
credit risk of securities traded in financial markets focusing on transition risk and much less on physical 
risk.8 Theoretical models in this field are still scarce. 

Part of the research in this area focuses on the so-called structural models of credit risk. In these models, 
default occurs when the value of a company’s assets falls below a certain threshold level relative to its 
liabilities and the change in the asset value over time is governed by some stochastic process.9 More 
specifically, this line of work aims to integrate climate risk into the original Merton model of corporate 

7  Vasicek (2002). 

8  See, for example, the review by Eren, Merten, and Verhoeven (2022), Bressan et al (2024). 

9  Blasberg and Kiesel (2024). The usability of this type of models for embedding climate risk into credit risk was earlier noted 
by Monnin (2018). 
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default and its most used modifications. In particular, in these models, transition risk is described as an 
adjustment to the (constant) growth rate of assets modelled by a continuous stochastic process10 or as 
a discrete impact (jump) in the asset value.11  

A similar approach may be used for modelling physical risk. For example, Agliardi and Agliardi (2021) 
and Kölbel et al. (2022) model the scenarios for the impact of physical risk (the frequency and severity 
of the shock) on a company’s EBITDA and, consequently, on its asset value. This scenario-based method 
is further developed by Le Guenedal and Tankov (2024) who employ a Bayesian approach to account 
for uncertainty in scenarios that differ in the frequency of climate risk-driven events, but not in their 
magnitude. 

Bell and Vuuren (2022) model climate risk as a stochastic impact on asset value in the Merton model’s 
setting. In their study, only physical risk leads to an increase in the volatility of the firm's asset value, 
while transition risk has been anticipated and already accounted for in the stock price of the corporate 
obligor and, consequently, in the volatility of its asset value. The authors use stochastic simulation to 
generate the climate risk-adjusted future value of the company’s assets and its volatility which are then 
fed as inputs to Moody's CEDF model (2023) to calculate climate risk-adjusted default rates. 

Moody’s Climate-Adjusted EDF (CEDF) Model 12 

CEDF13 is a structural credit risk model that calculates the probability of default over a horizon ranging 
from one to 30 years for about 40,000 companies, considering both physical and transition risks. The 
range of modelled physical risks is broad, covering “acute” events (such as hurricanes, wildfires, and 
floods), as well as slow “chronic” processes, including sea level rise, heat stress, and water stress. The 
Moody’s model is built on an array of NGFS I and II scenarios of global warming, scenarios developed 
by the Monetary Authority of Singapore, as well as the Shared Socioeconomic Pathways developed by 
the IPCC. 

The CEDF model of physical risk is constructed in a top-down manner, starting from the estimation of 
climate change damages at the global economy level down to adjustments to the parameters of the 
stochastic asset value path of a specific corporate borrower. The process involves a number of steps: 

First, high-level models, such as integrated assessment model (IAS) and aggregate damage functions, 
are used to estimate the climate-driven damage as a percentage of global GDP under various future 
temperature change scenarios. 

Second, this measure of damage is projected to the locations of a corporate borrower’s assets that are 
most exposed to physical risk. This mapping is done using Moody’s ESG (MESG) scores for specific 
locations of the firm’s assets, as well as external data sources. MESG scores are a composite of the firm’s 
operations risk, supply chain risk, and market risk with weights 70%, 15%, and 15%, respectively. 

Third, the frequency of climate events that could cause the estimated magnitude of damage is derived 
from the damage projection for the specific location. Physical risk in this model is described through 
the change in the average frequency of weather events caused by climate change. 
Fourth, the model estimates how such events have historically impacted companies’ earning and asset 
values based on published empirical research.  

Finally, the model derives, for each firm, the change of the mean and variance of the normal probability 
distribution describing the time evolution of the company's asset value to arrive at a climate risk-
adjusted expected default frequency. 

10  Blasberg, Kiesel, and Taschini (2022). 

11  Bouchet and Le Guenedal (2022). 

12  Moody’s (2023). 
13  CEDF is a further development of the EDF model for public companies originally developed by KMV (1991). 
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Similarly, Hahn (2022) proposes to use a Merton-type credit risk model to estimate the probability of 
the obligor’s default and its credit rating migration that reflect climate risk factors. In order to do so, the 
author leverages multilevel covariance analysis to estimate the impact of climate factors on the firm’s 
asset values depending on macroeconomic drivers. In this model, the realised climate risk affects firms 
through different transmission channels: e.g. rising temperatures hit agricultural production and, down 
the chain, GDP, while hurricanes raise home insurance premiums which affects the prices of residential 
real estate. Hahn proposes to use linear regression to estimate the covariance of log-changes of GDP 
and the residential real estate price index with the normalised changes in climate factors. 

The above models describe the default process of an individual corporate borrower but do not consider 
a case of a loan or a bond portfolio. Against this background, Bourgey, Gobet, and Jiao (2024) build a 
comprehensive set of models for a large bond portfolio subject to both transitional and physical risks. 
The modelling framework is “top-down” in that it starts from the Shared Socioeconomic Pathways 
describing climate change scenarios brought to the level of a single corporate borrower, but it is also 
“bottom-up” to the extent that it accumulates obligor’s losses at the loan portfolio level. Physical risk in 
this work is affected by Nordhaus' DICE integrated assessment model 14and is hence driven by the 
results of the borrower's adaptation to climate change. The authors calibrate a stochastic jump-diffusion 
process to estimate physical risk at the obligor level, and account for correlations between borrowers’ 
defaults in the portfolio through their correlations with a systematic risk factor. Finally, to reduce the 
dimensionality of the computational problem at the top-down portfolio level the authors develop a 
numerical method based on the principal component analysis and polynomial chaos expansion. 

In summary, the following conclusions can be drawn from the studied literature. First, current research 
has predominantly focused on transition risks rather than physical risks. The reviewed papers do not 
integrate both physical and transition risk within a single model.  Second, the probability of default 
adjusted for climate risk is primarily calculated using structural default models, which often model 
default for individual borrowers. Only a few credit portfolio models consider both default correlations 
and climate risk factors. Lastly, most of the models developed to date do not appear to be well-suited 
for practical use in banking credit risk management. 

Section 3 – Methodological challenges in integrating physical risks into 
credit risk modelling 

Banks using internal models for credit risk may be able to incorporate climate-related factors into their 
credit risk assessments. However, integrating climate-related risks into credit risk modelling present 
methodological challenges. 

Credit risk in banking is measured and managed by splitting it into two uneven components: expected 
credit loss (EL) corresponding to the long-term average of losses, and unexpected credit loss (UL) 
occurring due to the volatility of losses over and above its average. 

Banks are expected to cover expected losses through pricing with loan loss provisions and unexpected 
losses – with their regulatory and economic capital. Numerous models have been developed in the 
industry to calculate the unexpected loss component for the loan and bond portfolios, with the Vasicek 
model (1987, 2002) being one of the most seminal and used both by banks and their regulators. 

The asymptotic single risk factor (ASRF) model developed by Vasicek for an infinitely granular loan 
portfolio based on the seminal Merton model for a single obligation is defined as follows: 

14 DICE (the Dynamic Integrated Climate-Economy) model is an integrated assessment model developed by William Nordhaus. 
It integrates in the neoclassical economics, carbon cycle, climate science, and estimated impacts allowing the weighing of 
subjectively guessed costs and subjectively guessed benefits of taking steps to slow climate change. 
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where  

DR is the share of obligors in default in a loan portfolio; 

N(x) is the standard normal distribution function, N-1(x) is the inverse standard normal distribution 
function, 

PD is a default probability of a corporate borrower, 

 α is a confidence probability (level) measured in decimals; 

𝜌𝜌 is the correlation with systematic risk factor. 

At first glance, using this mode as a starting point, physical risk could be accounted for in a number of 
ways, which include at least the following: 

i) In a (higher) confidence probability of losses due to credit risk (in the IRB approach it is 
set at 99.9 percent, which means the probability of losses due to credit risk exceeding 
the bank’s loss provisions and capital on average once every 1000 years),  

ii) In the probability of default (PD) of a single obligor; 

iii) Through the correlation parameter with systematic (market) risk;15 or 

iv) As a new independent systemic risk factor. 

The first option appears arbitrary and would simply increase regulatory capital without clear way to 
either measuring or mitigating climate risk.  

The second option would involve estimating a PD based on the projected (modeled) damage (to the 
borrower’s assets) from realized physical risk as reflected in the company’s financial statements and key 
ratios (such as EBITDA, interest coverage ratio). Banks using the IRB approach calibrate their PDs to be 
close to the so-called ‘central tendency’ (i.e. long-term average of default rates).16 In this regard, since 
a major one-off loss from natural disasters (including those caused by climate change) is a relatively 
rare event (compared to a ‘normal’ default), it should logically not have a noticeable impact on the 
average default rate and hence the one-year PD. More importantly, a forward-looking PD can hardly be 
estimated and verified using historical (statistical) data over a meaningfully long period of observations 
in the past. 

This leads to a conclusion that physical risks should be reflected in the ‘core’ of the above formula, ie in 
the argument of the cumulative normal distribution function that converts the probability of borrower 
default into a conditional probability corresponding to unexpected losses due to credit risk. To this end, 
we must look in more detail to the options iii and iv above, which involve revising the systematic risk 
factor in the model. 

There are at least two alternative ways for implementing this idea: 

• specifying a physical risk component in the systematic risk factor that is already implicitly 

15 This possibility is explored by Baranović, I. et al. and PRA (2021). 
16 Basel II and III require that one-year PD should not be less than the average of observed yearly default rates calculated over at 
least one full credit cycle. 



Restricted 

present in the model; or 

• introducing a physical risk factor as an independent new systematic risk factor. 

When considering these options, one could argue that climate risk is a factor already present to some 
extent in the existing systematic market risk that determines the value of the borrower company's assets. 
In the Vasicek model, the factor of systematic (market) risk is implicitly present and manifests itself 
through its (exogenously defined) correlation with the market value of the borrower’s assets. The IRB 
approach goes even further in modelling the correlation as inversely and nonlinearly depending on the 
Probability of the borrower’s default: 

 

 𝜌𝜌 = 0.12 ∙ �1−𝑒𝑒
−50𝑃𝑃𝑃𝑃

1−𝑒𝑒−50
� + 0.24 �1 − 1−𝑒𝑒−50𝑃𝑃𝑃𝑃

1−𝑒𝑒−50
�. 

 

Isolating a climate risk factor would require moving from a one-factor to a two-factor model, ie splitting 
the single correlation with the only systematic risk factor in the model into two correlations with some 
weights, i.e. climate risk and residual systematic risk (as shown, for example, by Gürtler, Hibbeln, and 
Vöhringer (2007) for credit concentration risk). 

For the IRB approach, the main objection to the above idea is the fact that the correlation function in 
the above formula depends inversely on the average default probability. In other words, if the borrower 
has a short distance to default, it is assumed to be caused mainly by some borrower-specific reasons 
rather than by the market as a whole. Clearly, a corporate borrower’s exposure to physical risk is not 
correlated with the probability of default driven by systematic "economic" risk, but is due to other 
factors, such as its industry, the location of its fixed assets and their physical and structural 
characteristics, the role of specific fixed assets in the production process, and natural hazards at their 
location. In sum, a correlation of credit risk with the physical risk factor is hard to specify explicitly or 
implicitly in the present Basel correlation function for systematic economic risk, because it depends on 
the probability of losses due to credit risk. Therefore, the option of introducing a new independent 
variable in the Vasicek model to account for a correlation of the assets value with the implicit physical 
risk factor should be explored. Note that the correlation between physical risk and non-climate 
systematic risk can be assumed to be zero. This can be empirically observed, for instance, in low 
correlations between the yields of CAT-bonds and market risk factors (interest rates, stock indices, 
exchange rates and commodity contract prices). 

In an ideal world, a desirable property of the credit risk model this approach is the so-called portfolio 
invariance. This property states that unexpected credit loss for an individual claim should be invariant 
with regards to the composition of the loan portfolio to which this claim is added. Such invariance has 
been guaranteed with a single systematic risk factor driving defaults of all obligors, another necessary 
condition being an infinitely large degree of diversification of the loan portfolio.17 If the portfolio 
invariance property is not maintained by the model, this leads to impossibility of arithmetic aggregation 
of capital requirements for each single claim, as, e.g. under the IRB approach. 

17 See, for example, Gordy, M. (2002): A risk-factor model foundation for ratings-based bank capital rules, Board of Governors of 
the Federal Reserve System. 

https://www.federalreserve.gov/pubs/feds/2002/200255/200255pap.pdf
https://www.federalreserve.gov/pubs/feds/2002/200255/200255pap.pdf
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Some preliminary conclusions for integrating climate-risk into the credit-risk modelling framework can 
be drawn from the above: 

1. Banks using the Vasicek-type portfolio models for measuring credit risk could enhance them by 
incorporating physical risk as a new independent systemic risk factor of unexpected credit losses 
covered by the bank’s capital. 

2. The inverse non-linear dependence of the correlation of the value of assets with the (implicit) 
systematic risk factor in the modified Vasicek model adopted in the IRB approach makes it 
problematic to account for the physical risks in the correlation parameter.18 

3. The credit risk model enhanced with another explicit systematic risk factor should ideally have the 
property of portfolio invariance of the unexpected credit loss measure (and, consequently, the 
capital requirement to cover it) for a single credit claim to the composition of the entire loan 
portfolio. 

Section 4 – Enhancing the Vasicek model with physical risks 

The IRB approach provides banks with a formula aiming to cover unexpected losses. This is done using 
the Asymptotic Single Risk Factor (ASRF) calculation, which is briefly reviewed and generalised below. 
This section aims to demonstrate that it is possible to include the physical risk factor in the IRB 
calculation without changing the principles of the existing arrangement. 

The Risk-Weighted Asset (RWA) formula: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅 = �𝐿𝐿𝐿𝐿𝐿𝐿 ∙ Φ �Φ(𝑃𝑃𝐷𝐷)+�𝜌𝜌 Φ−1(𝑄𝑄)

�1−𝜌𝜌 
� − 𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝑃𝑃𝐷𝐷� ∙ 𝑀𝑀𝑀𝑀 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 x 12.5 (1) 

 

where 𝐿𝐿𝐿𝐿𝐿𝐿 denotes the Loss Given Default (in %), 

PD is the assumed probability of default (in %). 

𝜌𝜌 is the correlation coefficient between assets and the systematic factor (the single risk factor). In the 
IRB approach, the Basel framework sets the correlation coefficient to different values depending on the 
asset class. In what follows, the paper explicitly keeps Basel's correlations and treats them as given 
constants. 

𝑄𝑄 is the confidence interval (in capital calculations, 𝑄𝑄 is taken equal to 0.999) 

EAD is Exposure at Default, i.e., the amount of money a bank will likely lose if the customer defaults. 
This is estimated for each client, taking into account the amount drawn and the credit conversation 
factor. 

MA is the maturity adjustment:  𝑀𝑀𝑀𝑀 = 1+(𝑀𝑀−2.5)𝑏𝑏
1−1.5𝑏𝑏

, 

PD and 𝐿𝐿𝐿𝐿𝐿𝐿 are estimated for every client, while the other parameters are fixed and essentially external. 
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For the analysis carried out here, it is important to note that Formula (1) is essentially a scaled difference 
between Value at Risk (VaR) corresponding to a particular confidence level 𝑄𝑄 and the expected loss, all 
on the portfolio level:  

 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∙ (𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄)−< 𝐸𝐸𝐸𝐸 >) (2) 

 

However, in the ASRF model for large portfolios of small equally distributed loans the above percentage 
VaR of the portfolio value is equal to the probability of default Cv(Q) for a single loan conditional on the 
particular value of the single risk parameter (systemic risk) corresponding to the confidence level Q  :  

 

 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿 ∙ (𝐶𝐶𝑉𝑉(𝑄𝑄) − 𝑃𝑃𝐷𝐷)  (3) 

 

It should be noted that this non-trivial result, being a consequence of a particular form of the portfolio 
loss distribution (due to Vasicek (1997, 2002)), remains the key to the invariance property.  

In what follows, the research demonstrates that the Generalised ASRF model, which includes the physical 
risk factor, can also be written in the same form (3), helping to keep all major characteristics of the 
current IRB approach, including portfolio invariance (Gordy 2003).  

In the spirit of the Basel RWA formula, and of the BCBS’s guidance (2022a, 2022b), this paper presumes 
that banks may be able to estimate internally 𝐿𝐿𝐿𝐿𝐿𝐿 and the corresponding probabilities of default with 
and without physical risks, on a client-by-client basis, as they normally do. The rest of the parameters 
will be external and objective and can be fixed globally or on a country level. 

 

Vasicek portfolio model with physical risks 

The model assumes there are N → ∞ identical loans19, for each of which the Merton model of defaults 
holds. The Merton model states that the companies' assets are modelled by a stochastic, typically log-
normal process, and the default at a particular time horizon is caused by the assets being below the 
loan values. The difference between the Merton and Vasicek models is that in the Vasicek model, instead 
of explicitly modelling liability level and process parameters, 𝑃𝑃𝐷𝐷 is given, and the parameters are inferred 
from it. 

When recalling the setup of the Merton model of defaults (Vasicek 1997, 2002) one should consider a 
single loan for a company with asset value 𝑉𝑉𝑡𝑡 modelled as: 

𝑉𝑉𝑡𝑡 = 𝑉𝑉0𝑒𝑒
𝜇𝜇𝑡𝑡𝑡𝑡−

𝑡𝑡
2�𝜎𝜎𝑉𝑉

2+𝛽𝛽𝑉𝑉
2�+(𝜎𝜎𝑉𝑉 ,𝛽𝛽𝑉𝑉)�

𝑆𝑆𝑡𝑡
𝐵𝐵𝑡𝑡
�, 

where  

𝐵𝐵𝑡𝑡 , 𝑆𝑆𝑡𝑡 are two Wiener (Brownian motion) processes (systematic factor and idiosyncratic noise, 
respectively), with the covariance between 𝑑𝑑𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑑𝑑𝑡𝑡 equals zero 

𝜎𝜎𝑉𝑉 denotes the sensitivity of the company’s assets to the systematic risk, 

𝜇𝜇𝑡𝑡 denotes the average return on the firm’s assets, 

𝛽𝛽𝑉𝑉 denotes the sensitivity of the company’s assets to idiosyncratic risk.  

19 The condition of identical nature of loans can be relaxed : each borrower’s obligation is negligibly small compared to the 
size of the portfolio. 
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The proposal is to model the physical risk impact by introducing a hit to the assets - a jump down with 
a magnitude 𝑒𝑒−𝑎𝑎 < 1 and probability q (q < 1).20 This results in the following generalisation of the asset 
process: 

𝑉𝑉𝑡𝑡� = 𝑉𝑉𝑡𝑡 𝑒𝑒−𝛼𝛼 𝜉𝜉 + (1 − 𝜉𝜉)𝑉𝑉𝑡𝑡 , 

where  

ξ = (0,1) – a single jump with a probability q over a time horizon T.  

Since the stochastic process Vt is geometric Brownian motion, it is irrelevant for the final value of 𝑉𝑉𝑇𝑇�, 
when in time t ∈ [0, T] the jump happens.21 

Consider 𝑇𝑇 = 1, the probability of default on the loan 𝐿𝐿 is : 

Ρ𝐷𝐷 = Ρ�𝑉𝑉� < 𝐿𝐿� =

= (1 − 𝑞𝑞) Ρ �𝜇𝜇𝑡𝑡 −
1
2

(𝜎𝜎𝑉𝑉2 + 𝛽𝛽𝑡𝑡2) + (𝜎𝜎𝑉𝑉 ,𝛽𝛽𝑉𝑉) �𝑆𝑆𝐵𝐵� < 𝑙𝑙𝑙𝑙
𝐿𝐿
𝑉𝑉0
�

+ 𝑞𝑞Ρ �𝜇𝜇𝑡𝑡 −
1
2

(𝜎𝜎𝑉𝑉2 + 𝛽𝛽𝑉𝑉2) + (𝜎𝜎𝑉𝑉 ,𝛽𝛽𝑉𝑉) �𝑆𝑆𝐵𝐵� − 𝛼𝛼 < 𝑙𝑙𝑙𝑙
𝐿𝐿
𝑉𝑉0
� 

i. e. Ρ𝐷𝐷 = (1 − 𝑞𝑞) Ρ�(𝜎𝜎𝑉𝑉 ,𝛽𝛽𝑉𝑉) �𝑆𝑆𝐵𝐵� < 𝑙𝑙𝑙𝑙 𝐿𝐿
𝑉𝑉0
− 𝜇𝜇𝑡𝑡 + 1

2
(𝜎𝜎𝑉𝑉2 + 𝛽𝛽𝑉𝑉2)� + 

+𝑞𝑞Ρ�(𝜎𝜎𝑉𝑉 ,𝛽𝛽𝑉𝑉) �𝑆𝑆𝐵𝐵� < 𝑙𝑙𝑙𝑙 𝐿𝐿
𝑉𝑉0
− 𝜇𝜇𝑡𝑡 + 1

2
(𝜎𝜎𝑉𝑉2 + 𝛽𝛽𝑉𝑉2) + 𝛼𝛼�. 

 

Since (𝜎𝜎𝑉𝑉 ,𝛽𝛽𝑉𝑉)

�𝜎𝜎𝑉𝑉
2+𝛽𝛽𝑉𝑉

2
�𝑆𝑆𝐵𝐵� is a new normal random variable with a variance equal to one, it is possible to rewrite 

the probability of default as a sum of the two terms 

 Ρ𝐷𝐷 = (1 − 𝑞𝑞) Φ(𝐶𝐶∗) + 𝑞𝑞Φ(𝐶𝐶∗ + 𝛼𝛼�), (4) 

where  

Φ(•) is a cumulative function of the standard normal distribution,  

𝐶𝐶∗ is defined as  

𝐶𝐶∗ =
ln 𝐿𝐿
𝑉𝑉0
−𝜇𝜇𝑡𝑡+

1
2�𝜎𝜎𝑉𝑉

2+𝛽𝛽𝑉𝑉
2�

�𝜎𝜎𝑉𝑉
2+𝛽𝛽𝑉𝑉

2
, 

and 𝛼𝛼� is defined as: 

𝛼𝛼� = 𝛼𝛼

�𝜎𝜎𝑉𝑉
2+𝛽𝛽𝑉𝑉

2
. 

Moreover, if one introduces a ‘q-deformed normal distribution’: 

 Φ𝑞𝑞,𝛼𝛼(𝑥𝑥) ≡ (1 − 𝑞𝑞) Φ(𝑥𝑥) + 𝑞𝑞Φ(𝑥𝑥 + 𝛼𝛼), (5) 

20  In terms of this binary setup, climate risk can be described as the risk of increasing of α and/or q in the future from their 
current values. 
21  Therefore, in what follows the authors can think of the jump as happening at the maturity point. 
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alongside with a shifted normal distribution 

Φ𝛼𝛼(𝑥𝑥) = Φ(𝑥𝑥 + 𝛼𝛼), 

the expression for the probability of default (4) is condensed to the form: 

Ρ𝐷𝐷 = Φ𝑞𝑞,𝛼𝛼�(𝐶𝐶∗). 

In this form, the expression of the probability of default is a simple “q-deformation” of the Vasicek 
expression: 

Ρ𝐷𝐷0 = Φ(𝐶𝐶∗), 
used previously in the ASRF model (superscript 0 was added here to emphasize the absence of climate 
impact, which can be obtained by putting either q or 𝛼𝛼 to zero). 

A self-consistency condition  

If the probability of default without climate risk is Ρ𝐷𝐷0 = Φ(𝐶𝐶∗) and the probability of default with climate 
risk is Ρ𝐷𝐷 = Φ𝑞𝑞,𝑎𝑎�(𝐶𝐶∗), then 𝐶𝐶∗ can be expressed both in terms of climate-exposed and climate risk-free 
probabilities of default  

𝐶𝐶∗ = Φ−1(Ρ𝐷𝐷0) = Φ𝑞𝑞,𝛼𝛼�
−1 (Ρ𝐷𝐷) 

 

This means that there is a self-consistency relationship  

 

 Φ−1(Ρ𝐷𝐷0) = Φ𝑞𝑞,𝑎𝑎�
−1 (P𝐷𝐷) (6) 

 

which links the probabilities and the climate risk parameters.  

The parameter α is obligor (asset)-dependent. Parameter q in this model is an objective probability 
which is supplied by the national Met Office and in, in this binary setup, gives the probability of a 
weather event above certain (“normal”) threshold, thus is not obligor-dependent. Probabilities of default 
are external in this portfolio model (very much as in the standard Vasicek model which we essentially 
aim to generalize) and the relation between probability of default in the paper and this external PD is 
used to obtain parameter α for each obligor. This is essentially the self-consistency relation between 
bank’s internal PD and the model PD.  

In particular, the bank’s internal estimates of Ρ𝐷𝐷0 and PD uniquely define the parameter 𝛼𝛼�, assuming that 
a meteorological statistical model externally supplies the parameter q. In short, the non-observable 
parameter 𝛼𝛼� in our generalised Vasicek formulae does not require calibration, this is also true for the 
non-observable parameterC*, if the bank’s internally modelled Ρ𝐷𝐷0 and PD are accepted, together with 
external statistical estimation for the climate impact q. This observation is essential for the practical 
implementation of the model. 
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Probability of default conditional on single economic risk parameter. 

We are proposing to  introduce an additional stochastic factor in Merton model22 and due to different 
(tail) nature of the factor and non-linear payoff of put/calls the average prices for the instruments will 
be generally different in these models (2-factor vs single factor with changed volatility). The second 
factor in its “q” nature is the same for all obligors (not idiosyncratic) and is the basis for portfolio (co-
dependence) effect. 

An expression for the conditional probability of default can be derived as a function of the value of 
the systematic factor. Once again, this will be a direct generalisation of the corresponding Vasicek’s 
expression. 

S being the systemic factor, correlation 𝜌𝜌  can be introduced in the absence of climate risk event as 
follows:  𝜎𝜎𝑉𝑉

�𝜎𝜎𝑉𝑉
2+𝛽𝛽𝑉𝑉

2
= �𝜌𝜌  .  

One can check that in the Vasicek (2002) model ρ is a correlation between the returns of any two 
companies' asset values. Using this correlation, it is possible now to calculate the following conditional 
probability of default for the state with no climate risk-related damage (Vasicek state), recovering the 
usual Vasicek expression:  

 Ρ𝐷𝐷(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 | 𝑆𝑆 = −𝑦𝑦, 𝜉𝜉 = 𝜉𝜉0 = 0) = Ρ��𝜌𝜌𝑆𝑆 + �1 − 𝜌𝜌𝐵𝐵 ≤ Φ−1(P𝐷𝐷0)�𝑆𝑆 = −𝑦𝑦, 𝜉𝜉 = 𝜉𝜉0 = 0) =

Ρ�𝐵𝐵 ≤ 1
�1−𝜌𝜌

�Φ−1(P𝐷𝐷0) −�𝜌𝜌𝑆𝑆�� = Φ� 1
�1−𝜌𝜌

��𝜌𝜌 ∙ 𝑦𝑦 + Φ−1(Ρ𝐷𝐷0)��   (7) 

Analogously, in the presence of climate impact, i.e. ξ = ξ1 = 1, the corresponding conditional probability 
of default can be calculated as 

 Ρ𝐷𝐷(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 | 𝑆𝑆 = −𝑦𝑦, 𝜉𝜉 = 𝜉𝜉1 = 1) = Ρ�𝐵𝐵 ≤ 1
�1−𝜌𝜌

�Φ−1(𝑃𝑃𝐷𝐷0) −�𝜌𝜌𝑆𝑆 + 𝛼𝛼��� = Φ� 1
�1−𝜌𝜌

��𝜌𝜌 ∙ 𝑦𝑦 +

Φ−1(Ρ𝐷𝐷0) + 𝛼𝛼���   (8) 

Symbolically, the above expressions can be presented as  

 Ρ𝐷𝐷�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 | 𝑆𝑆 = −𝑦𝑦, 𝜉𝜉 = 𝜉𝜉� = Ρ𝑅𝑅 �𝐵𝐵 ≤
�Φ𝑞𝑞,𝛼𝛼�

−1 (Ρ𝐷𝐷)+�𝜌𝜌𝑦𝑦+𝜉𝜉�𝛼𝛼��

�1−𝜌𝜌
�.  

Combining expressions (7) and (8) together, the probability of default conditional on y in the case of 
‘binary’ climate risk can be obtained: 

Ρ𝐷𝐷(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 | 𝑆𝑆 = −𝑦𝑦) = 

 (1 − 𝑞𝑞)Φ� 1
�1−𝜌𝜌

��𝜌𝜌 ∙ 𝑦𝑦 + Φ−1(Ρ𝐷𝐷0))� + 𝑞𝑞 ∙ Φ � 1
�1−𝜌𝜌

��𝜌𝜌 ∙ 𝑦𝑦 + Φ−1(Ρ𝐷𝐷0)� + 𝛼𝛼�
�1−𝜌𝜌

�� = Φ
𝑞𝑞, 𝛼𝛼�
�1−𝜌𝜌

�
�𝜌𝜌∙𝑦𝑦+Φ𝑞𝑞,𝛼𝛼�

−1 (Ρ𝐷𝐷)

�1−𝜌𝜌
� 

  (9) 

22 In Merton's framework credit corresponds to put option on the firm's assets. Due to the non-linear payout the price of the 
put option is markedly different for a single-factor distribution with somewhat changed mean and standard deviation and for 
our two-factor distribution, where the second factor is specifically designed to model the tail event. 
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Once again, the latter expression is a direct generalisation of Vasicek conditional probability (7). 
Indeed, formula 9 converges to it if either 𝑞𝑞 or 𝛼𝛼� is zero. For a small α , in the first order, Equation (9) is 
reduced to  

 𝑃𝑃𝐷𝐷(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1|𝑆𝑆 = −𝑦𝑦) ≈ Φ� 1
�1−𝜌𝜌

��𝜌𝜌 ∙ 𝑦𝑦 + Φ−1(𝑃𝑃𝐷𝐷0)�� + 𝑞𝑞 ∙ Φ′ � 1
�1−𝜌𝜌

��𝜌𝜌 ∙ 𝑦𝑦 + Φ−1(𝑃𝑃𝐷𝐷0)�� ∙ 𝛼𝛼�
�1−𝜌𝜌

 

 (10) 

 

Calculating explicitly the last term, one gets the following expression for the conditional probability of 
default in the first order of 𝑞𝑞: 

 

 𝑃𝑃𝐷𝐷(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1|𝑆𝑆 = −𝑦𝑦) = Φ� 1
�1−𝜌𝜌

��𝜌𝜌 ∙ 𝑦𝑦 + Φ−1(𝑃𝑃𝐷𝐷0)�� + 𝑞𝑞
√2𝜋𝜋

∙ 𝛼𝛼�
�1−𝜌𝜌

∙ 𝑒𝑒
−12�

1
�1−𝜌𝜌

��𝜌𝜌∙𝑦𝑦+Φ−1�𝑃𝑃𝐷𝐷
0���

2

 

 (11) 

 

One of the applications of the above expression, together with the self-consistency Equation (6), is to 
calculate probability of default conditional on economic factor, which can be used in stress scenarios. 

The probability of default for a single borrower conditional on the value of the economic (systematic) 
factor corresponding to the confidence level Q (CV(Q)), so that it is equal to Φ−1(𝑄𝑄) , can be given by 
the following expression: 

 𝐶𝐶𝑉𝑉(𝑄𝑄) = 𝑃𝑃𝐷𝐷�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1|𝑦𝑦 = Φ−1(𝑄𝑄)� = Φ� 1
�1−𝜌𝜌

��𝜌𝜌 ∙ Φ−1(𝑄𝑄) + Φ−1(𝑃𝑃𝐷𝐷0)�� + 𝑞𝑞∙𝛼𝛼�
�2𝜋𝜋(1−𝜌𝜌)

∙

𝑒𝑒
−12�

1
�1−𝜌𝜌

��𝜌𝜌∙Φ−1(𝑄𝑄)+Φ−1�𝑃𝑃𝐷𝐷
0���

2

  (12) 

 

The latter equation converges to Vasicek 𝐶𝐶𝑉𝑉(𝑄𝑄) in the case of zero climate damage, with either 𝑞𝑞  or 𝛼𝛼 
equal to zero.  

 

Probability of loss on a portfolio of identical loans. 

The proposed credit risk modelling approach derives the cumulative probability of portfolio loss in the 
generalised ASRF model, closely following the original Vasicek logic (1997,2002). The reader will spot 
the direct analogy with the original Vasicek calculations as his original derivation and notations are kept 
as close as possible. This is done to emphasise the minimal changes that have to be made to include 
the physical climate (weather) -related factor in the ASRF/Basel formula. 

The modelling approach starts with highlighting that it is now possible to assign different values of LGD 
depending on the climate (weather) event occurrence: the authors take LGD for the climate no-event 
default channel equal to LGD0 (ξ = ξ0 = 0), while LGD for default in the climate event channel (ξ = ξ1 = 
1) is equal to LGD1. This property allows to model the direct effect of climate (weather) event-related 
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damage on recoverable assets. If, due to the nature of the business, the recoverable assets are not 
affected by the weather impact, then the two LGD0 and LGD1 should be taken equal. 

First the case of ξ = ξ0 = 0 (i. e. no climate event channel) can be considered. In this case, the cumulative 
probability of loss 𝐿𝐿 is given by the following expression: 

 

 Ρ0(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 < 𝐿𝐿) = Ρ0 �𝑛𝑛 < 𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿0

� = Ρ0(𝑛𝑛 < Θ0 ∙ 𝑁𝑁) = ∑ Ρ𝑘𝑘,0.
Θ0𝑁𝑁
𝐾𝐾=0  (13) 

where  

n is the number of borrowers that went bankrupt and  Θ0 is the percentage of defaulted borrowers. 
Here Ρ𝐾𝐾,0 is a probability of K defaulted loans out of N loans in the total portfolio, which can be found 
using conditional independence of the individual defaults and Formula (7): 

Ρ𝐾𝐾,0 = (1 − 𝑞𝑞)𝐶𝐶𝑁𝑁𝐾𝐾 ∫ 𝑑𝑑Φ(𝑦𝑦) �Φ �Φ
−1�Ρ𝐷𝐷

0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
��

𝐾𝐾
�1 −Φ�Φ

−1�Ρ𝐷𝐷
0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
��

𝑁𝑁−𝐾𝐾
∞
−∞ . 

 

In a similar logic, one can find analogue of expression (13) for the cumulative probability of losses in 
the climate event channel: 

Ρ 1(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 < 𝐿𝐿) = Ρ1 �𝑛𝑛 <
𝐿𝐿

𝐿𝐿𝐿𝐿𝐿𝐿1
� = Ρ1(𝑛𝑛 < Θ1 ∙ 𝑁𝑁) = �Ρ𝑘𝑘,1.

Θ1𝑁𝑁

𝐾𝐾=0

 

In the same way as in the previous no-event case, one can derive Ρ𝐾𝐾,1 as follows: 

Ρ𝐾𝐾,1 = 𝑞𝑞𝐶𝐶𝑁𝑁𝐾𝐾 � 𝑑𝑑Φ(𝑦𝑦) �Φ�
Φ−1(Ρ𝐷𝐷0) + �𝜌𝜌 ∙ 𝑦𝑦

�1 − 𝜌𝜌
+

𝛼𝛼�

�1 − 𝜌𝜌
��

𝐾𝐾

�1 −Φ�
Φ−1(Ρ𝐷𝐷0) + �𝜌𝜌 ∙ 𝑦𝑦

�1 − 𝜌𝜌
+

𝛼𝛼�

�1 − 𝜌𝜌
��

𝑁𝑁−𝐾𝐾∞

−∞
 

 

We show in Annex 2 that one can use Vasicek’s trick to obtain from the two terms above the following 
expression for the cumulative probability function for portfolio loss L: 

 

 P(Loss < 𝐿𝐿) = 𝑞𝑞 ∙ Φ ��1−𝜌𝜌 Φ−1(Θ1)− Φ−1�P𝐷𝐷
0 �

�𝜌𝜌
− 𝛼𝛼�

�𝜌𝜌
� + (1 − 𝑞𝑞)Φ��1−𝜌𝜌 Φ−1(Θ0)− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
� 

 

where 

 Θ1 = Θ0
𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿1

,                              𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿1

≤ 1. (14) 

 

Formula (14) is one of the main findings of the proposed approach to the credit risk modelling. It shows 
how by taking into account the self-consistency condition (6), one can calculate the probability of 
portfolio losses using only the bank’s own probabilities of default and external climate statistical 
estimate q. 



Restricted 

It is clear that this expression is reduced to the Vasicek function for q = 0 and ∀𝛼𝛼, and also for α = 0 
and ∀𝑞𝑞, since in this case 𝐿𝐿𝐿𝐿𝐿𝐿0 = 𝐿𝐿𝐿𝐿𝐿𝐿1 and Θ1 = Θ0. 

 

Loss given default adjusted for physical risks 

The loss given default (𝐿𝐿𝐿𝐿𝐿𝐿) is separate from the Merton Ρ𝐷𝐷 . However, the two 𝐿𝐿𝐿𝐿𝐿𝐿s (due to credit risk 
only and adjusted for physical risk) can be connected with the damage (jump in the value of the 
corporate borrower’s assets). One possible approach is to make assumptions about the timing of the 
jump. For instance, it can be assumed that in case of the climate event, the jump occurs just before the 
maturity, and 𝑉𝑉𝑇𝑇 is just above 𝐿𝐿. This can be considered as the most conservative assumption and implies 
the largest loss of the recoverable assets. Adhering to the spirit of the Basel framework (2017, 2022b) 
which encourages conservative assumptions for 𝐿𝐿𝐿𝐿𝐿𝐿, the modelling will then follow this approach. 

Linking the two 𝐿𝐿𝐿𝐿𝐿𝐿s: 

 𝐿𝐿 − 𝑉𝑉𝑇𝑇𝑒𝑒−𝛼𝛼 = 𝐿𝐿𝐿𝐿𝐿𝐿1 ∙ 𝐿𝐿    and    L – VT = LGD0 ∙ L. 

by solving for  𝑉𝑉𝑇𝑇
𝐿𝐿

= 1 − 𝐿𝐿𝐿𝐿𝐿𝐿0 and substituting into the first equation:  

1 − 𝑒𝑒−𝛼𝛼(1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) = 𝐿𝐿𝐿𝐿𝐿𝐿1 = (1 − 𝑒𝑒−𝛼𝛼) + 𝐿𝐿𝐿𝐿𝐿𝐿0 𝑒𝑒−𝛼𝛼, i.e. 

 𝐿𝐿𝐿𝐿𝐿𝐿1 = 𝐿𝐿𝐿𝐿𝐿𝐿0 + (1 − 𝑒𝑒−𝛼𝛼)(1 − 𝐿𝐿𝐿𝐿𝐿𝐿0). (15) 

In this form, Equation (15) allows the interpretation of the term (1 − 𝑒𝑒−𝛼𝛼)(1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) as a result of the 
decreased value of assets that could have been recovered if there were no climate related damages.  

For small damage parameter 𝛼𝛼 Equation (15) can be simplified as 

𝐿𝐿𝐿𝐿𝐿𝐿1 =  𝐿𝐿𝐿𝐿𝐿𝐿0 + 𝛼𝛼(1 − 𝐿𝐿𝐿𝐿𝐿𝐿0),                               𝛼𝛼 ≪ 1  , 

in which case, with the same accuracy, the scaling parameter in Equation (14) is calculated as one 
minus the ratio of climate-related loss to the pure (economic) credit loss 

 𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿1

= 1

1+𝛼𝛼1−𝐿𝐿𝐿𝐿𝐿𝐿0𝐿𝐿𝐿𝐿𝐿𝐿0

≈ 1 − 𝛼𝛼 1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

   . (16) 

 

Expected credit loss modelling 

To calculate the Expected Loss, one has to use 

< 𝐸𝐸𝐸𝐸 >= 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ (1 − 𝑞𝑞)�Φ(𝐶𝐶∗)� + 𝐿𝐿𝐿𝐿𝐿𝐿1 ∙ 𝑞𝑞�Φ(𝐶𝐶∗ + 𝛼𝛼�)�, 

i. e.  < 𝐸𝐸𝐸𝐸 >= 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ (1 − 𝑞𝑞)Φ�Φ𝑞𝑞,𝛼𝛼�
−1 (P𝐷𝐷)� + 𝑞𝑞 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿1 ∙ �Φ𝛼𝛼� �Φ𝑞𝑞,𝛼𝛼�

−1 (P𝐷𝐷)�� = 

= 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ Φ𝑞𝑞,𝛼𝛼� �Φ𝑞𝑞,𝛼𝛼�
−1 (P𝐷𝐷)� + 𝑞𝑞 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ �Φ𝛼𝛼� �Φ𝑞𝑞,𝛼𝛼�

−1 (P𝐷𝐷)��, 

i. e. < 𝐸𝐸𝐸𝐸 >= 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ P𝐷𝐷 + 𝑞𝑞 ∙ (1 − 𝑒𝑒−𝛼𝛼) ∙ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ Φ𝛼𝛼� �Φ𝑞𝑞,𝛼𝛼�
−1 (P𝐷𝐷)�, 

Here, the first term 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ P𝐷𝐷 is the standard term with the updated probability, while the second term 

𝑞𝑞 ∙ (1 − 𝑒𝑒−𝛼𝛼) ∙ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ Φ𝛼𝛼� �Φ𝑞𝑞,𝛼𝛼�
−1 (P𝐷𝐷)� is the exposure to the climate event. 

In the lowest order of 𝑞𝑞 and small 𝛼𝛼, the previous expression takes the form 



Restricted 

< E𝐿𝐿 >= 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ P𝐷𝐷 + 𝑞𝑞 ∙ (1 − 𝑒𝑒−𝛼𝛼) ∙ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ P𝐷𝐷 

 = 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ P𝐷𝐷  ∙ �1 + (1 − 𝑒𝑒−𝛼𝛼) ∙ 𝑞𝑞 ∙ 1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

� (17) 

which we will be using below.  

 

Solution for a portfolio credit loss  

Let us denote as 𝐿𝐿𝑄𝑄∗  the level of loss corresponding to the probability of portfolio loss 𝑄𝑄 in Formula 
(14). 

P�Loss < 𝐿𝐿𝑄𝑄∗ � = 𝑄𝑄 

Q =  Φ�
�1−𝜌𝜌 Φ−1�

𝐿𝐿𝑄𝑄
∗

𝐿𝐿𝐿𝐿𝐿𝐿0
�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
�+ 𝑞𝑞 ∙ �Φ

− 𝛼𝛼�
�𝜌𝜌
�
�1−𝜌𝜌 Φ−1�

𝐿𝐿𝑄𝑄
∗

𝐿𝐿𝐿𝐿𝐿𝐿1
�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
� − Φ�

�1−𝜌𝜌 Φ−1�
𝐿𝐿𝑄𝑄
∗

𝐿𝐿𝐿𝐿𝐿𝐿0
�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
��.        

 

We show in Annex 3 that in first order on small parameters one can obtain the following expression 
for Var level: 

 𝐿𝐿𝑄𝑄∗ = 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝛼𝛼 ∙ 𝑞𝑞 ∙ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  + 𝛼𝛼�
�2𝜋𝜋(1−𝜌𝜌)

𝑞𝑞 ∙ 𝑒𝑒−
1
2� Φ−1(𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)�

2

∙ 𝐿𝐿𝐿𝐿𝐿𝐿0 , (18)

 (18) 

with the introduced notation 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = Φ��𝜌𝜌 Φ−1(𝑄𝑄)+ Φ−1�P𝐷𝐷
0 �

�1−𝜌𝜌
� .     

We can go one step further if we note that  Φ−1(𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) = �𝜌𝜌 Φ−1(𝑄𝑄)+ Φ−1�P𝐷𝐷
0 �

�1−𝜌𝜌
  and it is possible to 

combine the first and third terms of Equation (18) into the term 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ 𝐶𝐶𝑉𝑉(𝑄𝑄) according to Equation (12). 
Furthermore, in the first order on q the second term can be rewritten as 𝛼𝛼 ∙ 𝑞𝑞 ∙ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ 𝐶𝐶𝑉𝑉(𝑄𝑄) which 
leads us to the following equation for the Var solution: 

 𝐿𝐿𝑄𝑄∗ = 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ 𝐶𝐶𝑉𝑉(𝑄𝑄) + 𝛼𝛼 ∙ 𝑞𝑞 ∙ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ 𝐶𝐶𝑉𝑉(𝑄𝑄) (19) 

with 𝐶𝐶𝑉𝑉(𝑄𝑄) defined by Formula (12). Factorizing the right-hand side  

𝐿𝐿𝑄𝑄∗ =  𝐶𝐶𝑉𝑉(𝑄𝑄) ∙  𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ �1 + 𝛼𝛼 ∙ 𝑞𝑞
1 − 𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

�, 

with the same level of accuracy on 𝛼𝛼 we finally arrived at the expression, which we will substitute in 
the formula: 

 𝐿𝐿𝑄𝑄∗ =  𝐶𝐶𝑉𝑉(𝑄𝑄) ∙  𝐿𝐿𝐿𝐿𝐿𝐿0  ∙ �1 + (1 − 𝑒𝑒−𝛼𝛼) ∙ 𝑞𝑞 ∙ 1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

�. (20) 

 

Generalized ASRF formula 

We can now substitute expressions (17) and (20) into the definition of the model RWA 

Model RWA = Multiples · �𝐿𝐿𝑄𝑄∗ − < 𝐸𝐸𝐸𝐸 >� 

to obtain the following result (generalized Basel formula): 



Restricted 

 Model RWA = Multiples ·𝐿𝐿𝐿𝐿𝐿𝐿0 · [𝐶𝐶𝑉𝑉(𝑄𝑄) − P𝐷𝐷  ]·�1 + (1 − 𝑒𝑒−𝛼𝛼) ∙ 𝑞𝑞 ∙ 1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

�, (21) 

or, alternatively,  

 Model RWA = Multiples ·𝐿𝐿𝐿𝐿𝐿𝐿0 · [𝐶𝐶𝑉𝑉(𝑄𝑄) − P𝐷𝐷  ]·�1 + 𝑞𝑞 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

�, (22) 

In this form, the model RWA has exactly the same form as the model RWA before the inclusion of the 
climate-related damage (see Equation (3)), with the only difference of the conditional probability of 
default now accounting for climate risk (see Equation (12)) and the appearance of an additional 

multiplier �1 + (1 − 𝑒𝑒−𝛼𝛼) ∙ 𝑞𝑞 ∙ 1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

� = (1 + 𝑞𝑞 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

 ) responsible for reserving against climate-

related loss to the recoverable assets at default. 

Appendix 1 gives an illustrative example for one of the possible default models and particular area of 
the US coast. From this example one can see that with the required degree of confidence, to account 
for climate physical risk-related effect on portfolio of high-quality loans, RWA rises as much as by 20%. 

Section 5 – Exploring Further Extensions and Applications of the 
Enhanced Vasicek Model. 

Developing a multi-state climate model 

Instead of a binary model for climate impact, a multi-state distribution with {𝑞𝑞𝑖𝑖 ,𝛼𝛼𝑖𝑖  }𝑖𝑖=0𝑛𝑛−1 – probabilities 
and magnitudes of jumps can be also considered. 

In this case, repeating the same steps, one can obtain the following expression for the cumulative 
probability of portfolio loss: 

 P(Loss < 𝐿𝐿) = ∑ 𝑞𝑞𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 Φ�

�1−𝜌𝜌 Φ
−
𝛼𝛼�𝑖𝑖
�𝜌𝜌

� 𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

�−Φ
�𝑞𝑞��⃗ ,𝛼𝛼���⃗  �
−1 (P𝐷𝐷)

�𝜌𝜌
� ,    (23) 

where we introduced a vector generalisation of q-deformed normal distribution (5):  

Φ�𝑞𝑞�⃗ ,𝛼𝛼���⃗  � (𝑥𝑥) = �𝑞𝑞𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

Φ(x + α�𝑖𝑖). 

Equation (23) is a direct generalisation of Formula (14) in the previous section for the case of multi-state 
climate modelling.  

Current paper does not pursuit this formulation, since was aiming to minimize the number of parameters 
and make the proposed integration of physical risks into the credit risk modelling potentially open for 
regulation-focused application. However, the multi-state distribution approach can also be taken by 
banks to build their own internal models. 

  



Restricted 

Potential impact on managing physical risks in credit portfolios 

The Vasicek-type credit risk model, enhanced to incorporate physical risk, as described in the paper, 
retains the key properties of the existing regulatory requirements to credit risk modelling while enabling 
a more informed measurement and mitigation of physical climate risk factors.  

Measuring climate physical risk impact through the lens of credit risk modelling may aid in developing 
measurement tools for climate-related financial risks using statistical datasets, rather than relying on 
hypothetical stress scenarios or on policy-driven approaches. 

A bank can potentially reduce the assessed credit risk surcharge for physical climate risk by hedging it 
with derivatives. 

 

Building a Climate damage index swap and hedging climate damage 

If banks recognise physical risk or are incentivised by their regulators to recognise it, they would get a 
strong incentive to offload it from their books, as in practice a bank could hardly manage this type of 
exogenous risk. The existing financial markets for catastrophic bonds (CAT-bonds) and insurance-linked 
securities (ILS) are too local and region-specific (US market mainly) and hence small and illiquid for 
global banks to hedge climate risk even partially. 

A type of derivatives designed for large-scale hedging physical risk would probably resemble an existing 
securitised parametric insurance ILS but with a more standardised and hence liquid underlying, namely 
a climate damage index.  

Such an index calculated on the country-wide level could be traded and thus used to hedge the 
systematic component of physical climate risk. In order to simplify calculation of losses and speed up 
settlement, such an index should be parametric, or forward-looking, rather than be based on actuarial 
losses. This means that the index could be built on the actual values of real estate and other fixed assets, 
modelled damage functions, and observable weather impacts.  

In this regard, the situation is similar to the equity market, where the country's equity index drives the 
systematic risk of a company, say the S&P 500 for the US or FTSE100 for the UK. The damage index can 
be traded in the swap format and cleared by central counterparties, utilising the already existing 
infrastructure currently used to trade and clear credit default swap indices such as CDX IG (for the US) 
or iTraxx Main (for Europe). The swap would have a floating leg (i. e. the expected damage) and a fixed 
leg (i. e. its price), with the latter being a clearing price for the traded instrument. Its close analogy will 
be the market price index, widely available and transparent. 

Let us review the formula for model RWA again: 

 

Model RWA = Multiples ·𝐿𝐿𝐿𝐿𝐿𝐿0 · [𝐶𝐶𝑉𝑉(𝑄𝑄) − P𝐷𝐷  ]·�1 + (1 − 𝑒𝑒−𝛼𝛼) ∙ 𝑞𝑞 ∙ 1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

�. 

 

If one considers pricing swaps on the climate damage index, one can see that in the current model of 
digital and identical climate risk and universal identical impact, the term (1 − 𝑒𝑒−𝛼𝛼) ∙ 𝑞𝑞 is, in fact, the swap 
spread (swap). From this point of view the term 1−𝐿𝐿𝐿𝐿𝐿𝐿0

𝐿𝐿𝐿𝐿𝐿𝐿0
 defines the size of the systematic exposure to the 

swap. In more general cases of non-identical assets in the swap and more complex climate factors, the 
last multiple should be changed to  
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�1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝛽𝛽 ∙
1 − 𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

� 

where  

𝛽𝛽 is the first order sensitivity of damage of recoverable assets to the damage to the swap assets.  

The observation about the implicit presence of the swap spread leads to the next question: Whether 
climate-related damage can be hedged with swaps on the climate damage index? 

Formula (21) suggests that in the case of climate damage hedge against ideal counterparty (LGD=0,  
PD =0), the probability of default P𝐷𝐷 should be put equal to Ρ𝐷𝐷0, in which case, from Eq(6), 𝛼𝛼� = 0 and, 
self-consistently, 𝐿𝐿𝐿𝐿𝐿𝐿0 coincides with 𝐿𝐿𝐿𝐿𝐿𝐿1, returning the model RWA  to its “pre-climate” value. 
Alternatively, one can see the effect of hedging as removing the impact of climate damages on 
recoverable assets and therefore putting 𝐿𝐿𝐿𝐿𝐿𝐿1 equal to 𝐿𝐿𝐿𝐿𝐿𝐿0 , which by the same token will necessitate 
the equation of P𝐷𝐷 and Ρ𝐷𝐷0 within the model. In either case, Formula (21) will converge to Formula (3). 
This shows that hedging with climate damage swaps will be an efficient way to manage risk and optimise 
economic capital. 

In this regard, the situation is similar to hedging a credit exposure with a credit default swap, in which 
case P𝐷𝐷 and/or LGD of the borrower is substituted by P𝐷𝐷 and/or LGD of the counterparty in the swap. In 
the case of an ideal counterparty, both of these quantities would be zero, and the model RWA of the 
hedged loan would be zero, too. 

 

Extension of the model for transition risks 

A multi-state generalisation in the previous section has another interesting application. It allows to 
extend our model to include transition risks as well as physical risks which we have considered so far.  

To this end, we can extend the model for the asset process in Section 4 as follows: 

𝑉𝑉𝑡𝑡� = 𝑉𝑉𝑡𝑡 𝑒𝑒−𝛼𝛼 𝜉𝜉 + (1 − 𝜉𝜉)𝑉𝑉𝑡𝑡 , = 𝑉𝑉𝑡𝑡(𝑒𝑒−𝛼𝛼 𝜉𝜉 + (1 − 𝜉𝜉)) 

 

with a single (physical risk) jump variable ξ = (0,1) to a process with two independent jumps: 

 𝑉𝑉𝑡𝑡� = 𝑉𝑉𝑡𝑡(𝑒𝑒−𝛼𝛼 𝜉𝜉 + (1 − 𝜉𝜉)) ∗ (ω (ω-1) 𝑒𝑒−𝛿𝛿2/2 + ω (2-ω) 𝑒𝑒−𝛿𝛿1 + (2-ω) (1-ω) /2) (24) 

 

Here the already familiar to us two-state variable ξ related to physical damage with probability q and 
magnitude 𝑒𝑒−𝑎𝑎 < 1 is complemented by a new three-state variable ω=(0, 1, 2) with probabilities {𝑝𝑝𝑖𝑖}𝑖𝑖=02  
and magnitudes of jumps �𝑒𝑒−𝛿𝛿𝑖𝑖�

𝑖𝑖=0
2 .  

The three-state variable ω corresponds to the damage to firm’s assets from transition risk, with three 
states being: ω = 0 no damage (no jump, 𝑒𝑒−𝛿𝛿0=1), ω =1 for damage from “orderly transition” (jump 
down with magnitude 𝑒𝑒−𝛿𝛿1) and ω =2 damage from “disorderly transition” (jump down with magnitude 
𝑒𝑒−𝛿𝛿2). 

It is possible to show that in the presence of both physical and transition risks the main results of the 
proposed model still hold in the first order on small parameters, although the formulas become 
considerably more cumbersome. In particular, the portfolio VaR is equal to the probability of default 
conditional on a particular value of the systemic parameter, with some multipliers (similar to Equations 
(20) and (22)). As before, the multipliers reflect climate-related damage to recoverable assets. In the 
case, when realisation of transition risks does not create “stranded assets”, the multiplier will be the 
same as in Equations (20) and (22). 
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In the case of a single jump related to physical risk, the self-consistency condition (6) allowed us to solve 
it for the parameter 𝛼𝛼� which is then uniquely defined by bank’s internal Ρ𝐷𝐷0 and PD, taking into account 
that the parameter q is externally supplied by a meteorological statistical model. For two jump 
processes, the situation is more complex. Assuming that for transition risk the magnitudes �𝑒𝑒−𝛿𝛿𝑖𝑖�

𝑖𝑖=0
2  can 

be supplied by bank’s stress tests for both the “orderly transition” and “disorderly transition” scenarios 
(several such exercises have been already carried by major banks), one has to obtain model-implied 
probabilities of jumps {𝑝𝑝𝑖𝑖}𝑖𝑖=02 . This requires two additional self-consistency equations, similar to 
Equation (6), which are explicitly linked to transition risk. The extended system of self-consistency 
conditions can be written as: 

 Φ−1(Ρ𝐷𝐷0) = Φ𝑞𝑞,𝑎𝑎�
−1 �P𝐷𝐷,𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦� , 

 Φ−1(Ρ𝐷𝐷0) = Φ𝑝𝑝,𝛿𝛿�
−1 �P𝐷𝐷,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� , 

 Φ−1(Ρ𝐷𝐷0) = Φ(𝑞𝑞,𝑝𝑝)(𝑎𝑎�,𝛿𝛿�),
−1 (P𝐷𝐷) , (25) 

where 

Ρ𝐷𝐷0 is the bank’s internally modelled probability of borrower’s default if no climate risk, be it transition 
or physical,  are taken into account, 

P𝐷𝐷,𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 is the bank’s internally modelled probability of borrower’s default if pure physical risk is taken 
into account, 

P𝐷𝐷,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the bank’s internally modelled probability of borrower’s default if pure transition risk is 
taken into account, 

and, finally, PD is the bank’s internally modelled probability of borrower’s default if both physical 
transition risks are included.  

All these bank’s internally modelled probabilities require, in fact, a single model for joint risks, PD, where 
either physical risk parameters or transition risk parameters can be put to zero. Functions Φ𝑝𝑝,𝛿𝛿�   and 
 Φ(𝑞𝑞,𝑝𝑝)(𝑎𝑎�,𝛿𝛿�) are the corresponding generalisations of the “q-deformer normal distribution” Φ𝑞𝑞,𝑎𝑎� defined 
in Equation (5). 

The asset process (24) together with self-consistency equations (24) fully define an explicitly solvable 
extension of the original Vasicek model for the credit portfolio loss functions when both physical and 
transition risks are included and calibrated to the bank’s internal models for individual probabilities of 
default. One example of such an internal model can be Moody’s Climate-Adjusted EDF (CEDF) model 
outlined above in Section 2. Other models, which take into account explicit weather stochastic modelling 
and geo-positioning of the assets to arrive at climate-adjusted probabilities of default, are also 
commercially available. 

Section 6 – Concluding remarks  

This research in credit risk modelling can be concluded with several observations regarding the practical 
use of Formula (21).  

To calculate the model RWA according to the Generalised ASRF Equation (21), banks need to have: 

1. A current internal credit risk model which estimates the probability of default Ρ𝐷𝐷0 (not explicitly 
accounting for risk of climate-related damage). 

2. An internal (or a third-party) model that will produce P𝐷𝐷 from Ρ𝐷𝐷0, explicitly accounting for the 
climate-related damage impact on the probability of default. 
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3. An external statistical meteorological model of climate impact, which produces the probability 
of a climate-related event in the Generalised ASRF model, q.  

4. A current internal model to estimate loss given default not adjusted for physical risk, 𝐿𝐿𝐿𝐿𝐿𝐿0. 

5. A conservative estimate of loss given default in the case of a climate-related damage, 𝐿𝐿𝐿𝐿𝐿𝐿1 . 

Indeed, P𝐷𝐷 and Ρ𝐷𝐷0will define, together with 𝛼𝛼� found from Equation (6), the first bracket in expression 
(21), while 𝐿𝐿𝐿𝐿𝐿𝐿0 and 𝐿𝐿𝐿𝐿𝐿𝐿1, together with the external statistic q, will define the second bracket. 

This poses the question of building a bank's internal model for climate-related correction to the internal 
probability of default and LGD. This model needs to take into account the type of borrower's assets, 
their geo-location, climate exposure, statistical description of weather events and damage functions. 

While banks can develop this expertise themselves, a RegTech solution which would allow them to 
outsource this work to trusted service providers whose solutions can be centrally audited, including by 
regulators, may be beneficial.  

Finally, the Vasicek-type credit risk model enhanced to incorporate physical risks and described by the 
paper may be of specific interest for both banks and regulators, as it preserves the important properties 
of existing regulation while allowing for an informed mitigation of climate risk factor in credit risk. This 
innovative credit-risk modelling supports the development of more resilient financial systems that can 
adapt to evolving environmental challenges. 
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Annex 1 Illustrative example 

Let us assume that we add a loan to an investment grade company secured by its commercial real 
estate located in Mobile, Alabama.  
 
Value of q 
The analysis from S&P23 suggests that the probability of a major hurricane (Grade 3 or higher) for 
2025 is around 3% (see Fig. 1), which is 76% higher than its long-term average (1.7%). We take q 
equal to 3%.  
We also will demonstrate below the effect for q equal to 4.8%, which corresponds to 95% confidence 
level estimate for probability of hurricane of Grade 3 in 2025 (Fig. 3).  
 

23 https://www.spglobal.com/esg/insights/featured/special-editorial/an-elevated-2025-hurricane-season   

https://www.spglobal.com/esg/insights/featured/special-editorial/an-elevated-2025-hurricane-season
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Probabilities of defaults from internal models 
 
Here, we (acting “as a bank”) selected a multi-agent modelling methodology rather than a pure 
stochastic Merton-style model to mimic a bank’s own internal model which is not necessarily will be 
Merton-type and will include specifics of the firm in question.  

Recent research by De Spiegeleera et al. (2024)24 examined an increase in the probability of defaults 
due to climate change from a rather interesting perspective of impact on supply chain using multi-
agent modelling.  

The research combined chain, finance, and financial models to estimate an impact on firm production 
and the corresponding increase in default probability.  

24  De Spiegeleera et al. (2025). 
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This research found by simulations that “where each disaster type’s frequency was doubled keeping the 
frequencies and intensities of other disaster types constant the disaster type with the greatest impact on 
the average number of defaulted firms is the storm type (+16.1%), followed by the flood (+13.4%), drought 
(+7.9%), and wildfire (+5.6%) disaster types”.  

This allows us to estimate a relative increase of the probability of default in case of the hurricane danger 
prevailing on this territory.  

Taking into account: 

1. The relative increase of the forecasted probability frequency q by 76%,  

2. The long-term frequency of 1.7% corresponding to the probability of default which we called 
the “pre-climate” Ρ𝐷𝐷0, as it does not include acute physical risk , 

3. A linear dependence of the increase of the probability of default on an increase of the hurricane 
frequency, 

we obtain the following predicted increase of PD:  

 

PD / Ρ𝐷𝐷0= 1 + 16.1% ⋅ 0.76 = 1.1224. 
 
This is the percentage increase of the probability of default due to included acute climate risk which we 
are going to use in our formula for unexpected credit loss.  

Let us now assume that the company in question is a BBB-rated company, and the bank’s internal model 
generates the one year probability of default (Ρ𝐷𝐷0) of 0.3%. This is line with the 1981-2024 average 7-
year global cumulative default rate for corporates of 2.15% for BBB-rated companies25. 

From the formula above, we obtain the “physical risk”-adjusted PD =0.337%. 

 
 
 
 
 
Values of LGD0 

 
The last required component is LGD0. The long-term average loan recovery rates reported by Loan 
Syndications and Trading Association (Credit Metrics) 26 are just above 80% 

Recoveries are typically higher for secured loans to high-quality companies, so we assume here the 
loan recovery rate of 90% for our company, i.e. LGD0 = 10%, which is in line with the Basel III 
minimum requirements under the advanced IRB approach (BCBS 2017, para 85). 

These parameters allow us now to calculate the model unexpected loss and the relative model RWA 
correction. 

  
Calculations  

25  S&P Global Ratings (2025). 
26  Coffey (2021). 

https://www.spglobal.com/ratings/en/research/articles/250327-default-transition-and-recovery-2024-annual-global-corporate-default-and-rating-transition-study-13452126
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Formula (2) for the correlation from the Basel IRB approach ρ gives the value of 22.3%.  

The self-consistency condition (6) allows us to find the implied value of parameter α. In our case, the 
solution is 𝛼𝛼�= 0.58.  

CV(Q) without physical risk is equal 0.0720, CV(Q) with climate correction is equal to 0.0747. This gives 
the difference in the conditional and unconditional probabilities (CV(Q)-PD) without climate risk 
correction equal to 0.0690 and, accounting for climate, 0.0714, i.e. the increase of approximately 3.4%. 

The model-based calculation of LGD1 requires knowledge of parameter α rather than 𝛼𝛼�, which we solved 
for above. The parameter α is equal to 𝛼𝛼� multiplied by of the firm’s asset value volatility. 

This volatility is equal to the volatility of the firm’s equity divided by the sensitivity of the equity to the 
firm’s asset value (i.e. delta of the call option). Since the probability of default is so tiny, it is safe to take 
the sensitivity (delta) equal to 1 since the (equity) call option of the assets is deeply in the money. The 
typical value of forward-looking (implied) volatility for high quality US stocks can be taken as 30% which 
leads us to the value of asset volatility equal to 0.3. This results in the value of alpha equal to 0.3⋅𝛼𝛼� = 
17.4% which corresponds to e-α=0.84 (16% reduction in asset value due to the climate event damage). 
This leads to the value of LGD1 equal to 24.8%, i.e. the increase in loss given default by 14.8%. 

Finally, unexpected loss without our correction related to physical risk (LGD0=10%) is equal 0.0069 while 
with the correction and calculated LGD1 (24.8%) the unexpected loss will be equal to 0.0744, i.e. the 
relative increase of 7.9%. This also mean that the Model RWA, when physical risk-related corrections 
are included, increases by around 7.9% compared to the original calculations made without add-ons 
for specific physical risk.  

In the above calculation, we utilised the model-calculated LGD1. In practice, similar to LGD0 which is 
taken from outside the probabilistic Merton model, LGD1 also can be taken, conservatively, from outside 
the model. For example, if LGD1 is expected to be 40% (which corresponds to approximately 33% 
damage to the firm’s assets), then the relative increase of the unexpected loss and the Model RWA will 
rise to 12.7%.  

  
The case of 95% confidence level q.  We now repeat the calculation, but will take this time q equal to 
4.8%, which corresponds to 95% confidence level estimate for the probability of hurricane of Grade 3 in 
2025 (Fig. 1).  

In this case, PD is found from our “16.1%” rule as 0.0039 (which is probably an underestimation due to 
nonlinear character of the damage impact on the PD for higher frequencies) and 𝛼𝛼� is equal to 0.72. In 
this case, the difference in conditional and unconditional probabilities (CV(Q)-PD) without correction for 
physical risk equal to 0.0690 and, accounting for physical climate risk, 0.0735, i.e. the increase of the 
approximately 6.5%. The value of alpha equal to 0.3⋅𝛼𝛼� = 21.6% which corresponds to e-α=0.805 (i. e. 
19.5% reduction in asset value due to the climate event damage). This leads to the value of LGD1 equal 
to 27.5%, i.e. the increase in model-calculated loss given default by 17.5%. 

Finally, the unexpected loss without correction for physical risk (LGD0=10%) remains equal to 0.0069 
while with climate correction and calculated LGD1 (27.5%) the unexpected loss will be equal to 0.0797, 
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i.e. relative increase of 15.5%. This also means that the Model RWA, when physical risk -related 
adjustments are included, increases by around 15.5% compared to the original calculations. This number 
rises even further to nearly 22% when the Model LGD1 is substituted by the external LGD value of 40%.  

In summary, we can see that in this real-life example with the required degree of confidence, to account 
for climate physical risk-related effect on portfolio of high-quality loans, RWA rises as much as by 20%.  

It is important to highlight that the resulting capital effect is not for some time in a distant and uncertain 
future, for which weather forecasts are derived from one of the IPCC scenarios. Instead, it is specifically 
calculated for the year 2025, underscoring the timely relevance of the proposed methodology in 
incorporating climate-related physical risks into credit risk modelling. 
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Annex 2 Derivation of cumulative probability function for portfolio loss 

First = the case of ξ = ξ0 = 0 (i. e. no climate event channel) can be considered. In this case, the 
cumulative probability of loss 𝐿𝐿 is given by the following expression: 

 

 Ρ0(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 < 𝐿𝐿) = Ρ0 �𝑛𝑛 < 𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿0

� = Ρ0(𝑛𝑛 < Θ0 ∙ 𝑁𝑁) = ∑ Ρ𝑘𝑘,0.
Θ0𝑁𝑁
𝐾𝐾=0  

where  

n is the number of borrowers that went bankrupt; 

Θ0 is the percentage of defaulted borrowers 

Here Ρ𝑘𝑘,0. is a probability of K defaulted loans out of N loans in the total portfolio, which can be found 
using conditional independence of the individual defaults and Formula (7): 

Ρ𝐾𝐾,0 = (1 − 𝑞𝑞)𝐶𝐶𝑁𝑁𝐾𝐾 ∫ 𝑑𝑑Φ(𝑦𝑦) �Φ �Φ
−1�Ρ𝐷𝐷

0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
��

𝐾𝐾
�1 −Φ�Φ

−1�Ρ𝐷𝐷
0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
��

𝑁𝑁−𝐾𝐾
∞
−∞ . 

To simplify the above integral one can introduce a new variable: 

 𝑠𝑠 = Φ�Φ
−1�Ρ𝐷𝐷

0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
�, 

so that both the original variable y and its functional value Φ(𝑦𝑦) can be easily found: 

 𝑦𝑦 = �1−𝜌𝜌 Φ−1(s)−Φ−1�Ρ𝐷𝐷
0 �

�𝜌𝜌
       and   Φ(𝑦𝑦) = Φ��1−𝜌𝜌 Φ−1(𝑠𝑠)−Φ−1�Ρ𝐷𝐷

0 �

�𝜌𝜌
� = 𝑊𝑊(𝑠𝑠)  . 

These notations allow to rewrite the expression for Ρ𝑘𝑘,0. in a simplified form 

Ρ𝐾𝐾,0 = (1 − 𝑞𝑞)𝐶𝐶𝑁𝑁𝐾𝐾 ∫ 𝑑𝑑𝑑𝑑(𝑠𝑠)𝑠𝑠𝐾𝐾(1 − 𝑠𝑠)𝑁𝑁−𝐾𝐾1
0 . 

Substituting the above expression into the sum (13), the cumulative probability of losses in the no-
climate-event channel can be obtained as follows:  

Ρ0(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 < 𝐿𝐿) = (1 − 𝑞𝑞)� 𝑑𝑑𝑑𝑑(𝑠𝑠)
1

0
� 𝑠𝑠𝐾𝐾(1 − 𝑠𝑠)𝑁𝑁−𝐾𝐾𝐶𝐶𝑁𝑁𝐾𝐾
Θ0𝑁𝑁

𝐾𝐾=0

= (1 − 𝑞𝑞)� 𝑑𝑑𝑑𝑑(𝑠𝑠)𝛩𝛩(Θ0 − 𝑠𝑠) = (1 − 𝑞𝑞)𝑊𝑊(Θ0)
1

0
. 

Here, the Vasicek’s (1987) original observation about the Heavyside Theta (step) function 𝛩𝛩(•) 
convergence was used: 

lim
𝑁𝑁→0

∑ 𝑠𝑠𝐾𝐾(1 − 𝑠𝑠)𝑁𝑁−𝐾𝐾𝐶𝐶𝑁𝑁𝐾𝐾
Θ0𝑁𝑁
𝐾𝐾=0 = �0, 𝑠𝑠 > Θ0

1, 𝑠𝑠 < Θ0
= 𝛩𝛩(Θ0 − 𝑠𝑠). 

 

Similarly, one can find the cumulative probability of losses in the climate event channel: 

Ρ 1(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 < 𝐿𝐿) = Ρ1 �𝑛𝑛 <
𝐿𝐿

𝐿𝐿𝐿𝐿𝐿𝐿1
� = Ρ1(𝑛𝑛 < Θ1 ∙ 𝑁𝑁) = �Ρ𝑘𝑘,1.

Θ1𝑁𝑁

𝐾𝐾=0

 

In the same way as in the previous no-event case, one can derive Ρ𝐾𝐾,1 as follows: 

Ρ𝐾𝐾,1 = 𝑞𝑞𝐶𝐶𝑁𝑁𝐾𝐾 ∫ 𝑑𝑑Φ(𝑦𝑦) �Φ �Φ
−1�Ρ𝐷𝐷

0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
+ 𝛼𝛼�

�1−𝜌𝜌
��

𝐾𝐾
�1 −Φ�Φ

−1�Ρ𝐷𝐷
0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
+ 𝛼𝛼�

�1−𝜌𝜌
��

𝑁𝑁−𝐾𝐾
∞
−∞   

and the total cumulative probability  



Restricted 

Ρ1 = 𝑞𝑞 ∫ 𝑑𝑑𝑊𝑊1(𝑠𝑠)∑ 𝑠𝑠𝐾𝐾(1 − 𝑠𝑠)𝑁𝑁−𝐾𝐾𝐶𝐶𝑁𝑁𝐾𝐾
Θ0𝑁𝑁
𝐾𝐾=0 =1

0 𝑞𝑞 ∫ 𝑑𝑑𝑊𝑊1(𝑠𝑠)𝛩𝛩(Θ1 − 𝑠𝑠) = 𝑞𝑞𝑊𝑊1(Θ1).1
0   

The only difference in the final expression is the substitution of function W1 for W which is defined 
below: 

𝑠𝑠 = Φ�Φ
−1�Ρ𝐷𝐷

0 �+�𝜌𝜌∙𝑦𝑦

�1−𝜌𝜌
+ 𝛼𝛼�

�1−𝜌𝜌
�⇒ 𝑦𝑦 = �

�1−𝜌𝜌 Φ−1(s) − 𝛼𝛼�
�1−𝜌𝜌

 �1−𝜌𝜌 − Φ−1�P𝐷𝐷
0 �

�𝜌𝜌
� , 

hence 

𝑊𝑊1(s) = Φ(𝑦𝑦) = Φ��1−𝜌𝜌 Φ−1(𝑠𝑠)− Φ−1�P𝐷𝐷
0 �

�𝜌𝜌
− 𝛼𝛼�

�𝜌𝜌
�, i.e. 

Ρ1 = 𝑞𝑞 ∙ Φ �
�1 − 𝜌𝜌 Φ−1(Θ1) −  Φ−1(P𝐷𝐷0)

�𝜌𝜌
−

𝛼𝛼�

�𝜌𝜌
�. 

 

By combining together Ρ0 and Ρ1, one can finally obtain the cumulative probability function for portfolio 
loss L :  

 P(Loss < 𝐿𝐿) = 𝑞𝑞 ∙ Φ ��1−𝜌𝜌 Φ−1(Θ1)− Φ−1�P𝐷𝐷
0 �

�𝜌𝜌
− 𝛼𝛼�

�𝜌𝜌
� + (1 − 𝑞𝑞)Φ��1−𝜌𝜌 Φ−1(Θ0)− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
� 

where 

Θ1 = Θ0
𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿1

,                              𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿1

≤ 1. 
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Annex 3 Derivation of solution for a Value at Risk 

Let us denote as 𝐿𝐿𝑄𝑄∗  the level of loss corresponding to the probability of portfolio loss 𝑄𝑄 in Formula (14). 

P�Loss < 𝐿𝐿𝑄𝑄∗ � = 𝑄𝑄 

Q =  Φ�
�1−𝜌𝜌 Φ−1�

𝐿𝐿𝑄𝑄
∗

𝐿𝐿𝐿𝐿𝐿𝐿0
�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
�+ 𝑞𝑞 ∙ �Φ

− 𝛼𝛼�
�𝜌𝜌
�
�1−𝜌𝜌 Φ−1�

𝐿𝐿𝑄𝑄
∗

𝐿𝐿𝐿𝐿𝐿𝐿1
�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
� − Φ�

�1−𝜌𝜌 Φ−1�
𝐿𝐿𝑄𝑄
∗

𝐿𝐿𝐿𝐿𝐿𝐿0
�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
��.       

 

Having the probability of a climate-related disaster event q as a true small parameter, let us solve this 
equation for 𝐿𝐿𝑄𝑄∗  using the perturbation theory in the series of 𝑞𝑞: 

 𝐿𝐿𝑄𝑄∗ = 𝐿𝐿𝑄𝑄,0
∗ + 𝑞𝑞𝑞𝑞𝑄𝑄,1

∗ + 𝑞𝑞2𝐿𝐿𝑄𝑄,2
∗ + 𝑞𝑞3𝐿𝐿𝑄𝑄,3

∗ + ⋯   . 

Then, in the order of q0, 𝑄𝑄 =  Φ�
�1−𝜌𝜌 Φ−1�

𝐿𝐿𝑄𝑄,0
∗

𝐿𝐿𝐿𝐿𝐿𝐿0
�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
�, which gives  

𝐿𝐿𝑄𝑄,0
∗ = 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 , 

where we introduce the notation for the well-known Vasicek solution  

𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = Φ��𝜌𝜌 Φ−1(𝑄𝑄)+ Φ−1�P𝐷𝐷
0 �

�1−𝜌𝜌
� . 

 

Then, in the order of 𝑞𝑞1, Equation (18) results in the following equation 

0 =
𝜕𝜕
𝜕𝜕Θ

 Φ�
�1 − 𝜌𝜌 Φ−1(Θ) −  Φ−1(P𝐷𝐷0)

�𝜌𝜌
��

Θ=𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

∙ 𝑞𝑞 ∙
𝐿𝐿𝑄𝑄,1
∗

𝐿𝐿𝐿𝐿𝐿𝐿0

+ 𝑞𝑞 �Φ
− 𝛼𝛼�
�𝜌𝜌
�
�1 − 𝜌𝜌 Φ−1 �𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿1

� −  Φ−1(P𝐷𝐷0)

�𝜌𝜌
� − 𝑄𝑄� 

which can be solved to find  𝐿𝐿𝑄𝑄,1
∗  : 

𝐿𝐿𝑄𝑄,1
∗ = 𝐿𝐿𝐿𝐿𝐿𝐿0

𝑄𝑄 − Φ
− 𝛼𝛼�
�𝜌𝜌
�
�1 − 𝜌𝜌 Φ−1 �𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿1

� −  Φ−1(P𝐷𝐷0)

�𝜌𝜌
�

𝜕𝜕
𝜕𝜕Θ  Φ��

1 − 𝜌𝜌 Φ−1(Θ) −  Φ−1(P𝐷𝐷0)
�𝜌𝜌

��
Θ=𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

. 

Again, for α = 0 the correction turns to zero: 𝐿𝐿𝑄𝑄,1
∗  = 0. For small α ≪ 1, we can use approximation (16) 

to simplify the above solution further: 

   𝐿𝐿𝑄𝑄,1
∗ = 𝛼𝛼�

�𝜌𝜌

Φ′�
�1−𝜌𝜌 Φ−1�𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�− Φ−1�P𝐷𝐷

0 �

�𝜌𝜌
�

𝜕𝜕
𝜕𝜕Θ Φ�

�1−𝜌𝜌 Φ−1(Θ)− Φ−1�P𝐷𝐷
0 �

�𝜌𝜌
��
Θ=𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

∙ 𝐿𝐿𝐿𝐿𝐿𝐿0 + 𝛼𝛼 ∙ 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∙
1−𝐿𝐿𝐿𝐿𝐿𝐿0
𝐿𝐿𝐿𝐿𝐿𝐿0

∙ 𝐿𝐿𝐿𝐿𝐿𝐿0. 

Taking into account the explicit form of the probability density for Vasicek distribution 
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𝜕𝜕
𝜕𝜕Θ

 Φ�
�1 − 𝜌𝜌 Φ−1(Θ) −  Φ−1(P𝐷𝐷0)

�𝜌𝜌
� = �

1 − 𝜌𝜌
𝜌𝜌

𝑒𝑒−
1
2𝜌𝜌��1−𝜌𝜌 Φ−1(Θ)− Φ−1�P𝐷𝐷

0 ��
2

∙  𝑒𝑒
1
2� Φ−1(Θ)�

2

 

we finally arrive at the following expression for 𝐿𝐿𝑄𝑄,1
∗ : 

 𝐿𝐿𝑄𝑄,1
∗ = 𝛼𝛼(1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 +

𝛼𝛼�

�2𝜋𝜋(1 − 𝜌𝜌)
𝑒𝑒−

1
2� Φ−1(𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)�

2

. 

This results in the Eq (18) which we were aiming to derive: 

 𝐿𝐿𝑄𝑄∗ = 𝐿𝐿𝐿𝐿𝐿𝐿0 ∙ 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝛼𝛼 ∙ 𝑞𝑞 ∙ (1 − 𝐿𝐿𝐿𝐿𝐿𝐿0) ∙ 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  + 𝛼𝛼�
�2𝜋𝜋(1−𝜌𝜌)

𝑞𝑞 ∙ 𝑒𝑒−
1
2� Φ−1(𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)�

2

∙ 𝐿𝐿𝐿𝐿𝐿𝐿0 , 

where, again, we use the notation 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = Φ��𝜌𝜌 Φ−1(𝑄𝑄)+ Φ−1�P𝐷𝐷
0 �

�1−𝜌𝜌
� .     
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