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Addressing climate change represents one of the most pressing challenges for organisations in developing nations. Tis is
particularly relevant for companies navigating the shift towards a low-carbon economy. Tis research leverages artifcial in-
telligence (AI) methodologies to evaluate the fnancial implications of climate transition risks, encompassing both direct and
indirect energy usage, including expenditures on electricity and fossil fuels. Advanced machine learning (ML) and deep learning
(DL) models are employed to predict electricity and diesel consumption trends along with their associated costs. Findings from
this study indicate an average prediction accuracy of 90.36%, underscoring the value of these tools in supporting organisational
decisionmaking related to climate transition risks.Te study lays a foundation for comprehending not only the added costs linked
to climate risks but also the potential advantages of transitioning to a low-carbon economy, particularly from an energy-focused
perspective. Additionally, the proposed climate transition risk adjustment factor ofers a framework for visualising the fnancial
impacts of scenarios outlined by the Network for Greening the Financial System.
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1. Introduction

Climate risk management is a critical business process for
many companies, particularly in the face of the ongoing
climate crisis. It involves gathering and enhancing un-
derstanding of predictions, patterns and future scenarios to
safeguard or even enhance business value. Tis process
requires a cross-disciplinary strategy that considers diferent
socioeconomic and ecological factors [1].

Artifcial intelligence (AI) has emerged as a trans-
formative tool in climate risk management by enabling more
accurate predictions, improving decision-making processes
and identifying innovative solutions. AI-driven models can
help address both physical and transition risks by ofering

advanced data analysis capabilities, automating the moni-
toring of climate-related variables and optimising energy
consumption patterns. Tese technologies present numer-
ous opportunities for organisations to not only mitigate the
efects of climate change but also capitalise on the transition
to a low-carbon economy. A recent review highlights the
great potential of AI to provide solutions that accelerate
climate action and enhance organisational resilience. Te
authors emphasise how AI can mitigate climate change by
optimising energy efciency, reducing emissions and im-
proving resource management in key sectors such as energy,
agriculture, transportation and construction. AI can reduce
energy consumption in buildings by up to 50%, improve the
precision of fertiliser application by over 40% and lower CO2
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emissions in transportation by 60%, while its use in smart
grids enables 10%–20% savings in electricity costs. In ad-
dition, AI improves carbon capture and storage, extreme
weather forecasting and the design of resilient cities. AI-
based solutions can play a crucial role in mitigating the
efects of climate change by providing accurate models that
help organisations anticipate regulatory, technological and
market changes [2].

Incorporating AI into climate impact forecasting not
only enhances an organisation’s ability to manage future
uncertainty but also supports sustainable and resilient
business practices. By predicting potential climate-related
risks, AI helps organisations develop strategies to mitigate
these risks. AI-driven models can automate complex cal-
culations and analysis, reducing the time and resources
required for traditional or manual assessments.

Tere are two main categories of climate risk, namely,
physical risks and transition risks. Although physical climate
risks refer to the potential economic and social losses
resulting from sudden and gradual weather phenomena [3],
transition risks refer to the potential challenges and un-
certainties associated with the transition to a more envi-
ronmentally sustainable low-carbon economy [3]. Based on
their nature, transition risks are commonly further cat-
egorised into regulatory, market, technological and reputa-
tional risks [4].

Te Task Force on Climate-Related Financial Disclosures
(TCFD) [5] highlights that the fnancial efects of climate-
related challenges within businesses are not always
straightforward or immediately evident. Numerous orga-
nisations encounter obstacles in recognising risks, assessing
their potential impacts and incorporating key climate
considerations into fnancial statements. Tese challenges
often stem from factors such as insufcient organisational
awareness of climate-related matters, a focus on short-term
risks at the expense of long-term concerns and the inherent
difculty of quantifying the fnancial implications of climate-
related factors [6].

Efectively, reducing the increase in temperature to
below 2°C will require the development of models that can
successfully navigate the multiple challenges that arise from
the impact of climate change on socioeconomic systems [7],
suggesting an external perspective, with particular emphasis
on exploring the implications associated with transitioning
to a low-carbon economy. As AI continues to evolve, it can
play a pivotal role in helping organisations tackle these
challenges by enhancing scenario modelling, improving
energy efciency and forecasting the fnancial impact of
climate transition risks [2].

As the efects of climate change escalate and the im-
perative to transition to a low-carbon economy intensifes,
organisations face the obligation to disclose these impacts to
stakeholders and demonstrate that they are addressing these
important issues. It is crucial to assess fnancial implications
on various aspects, such as revenues, expenses, assets and
liabilities [8]. However, the European Central Bank (ECB)
suggests that organisations consider various elements when
assessing climate-related risks [9]. In addition to examining
the efects on individual economic entities, it is crucial to

consider the particular channels through which climate risks
are transmitted. For a complete assessment, it is therefore
essential to consider variables such as technology in-
vestments, greenhouse gas (GHG) emissions, carbon pric-
ing, fossil fuel prices, energy use, fuel consumption and
energy costs (ECs).

Te transition to a low-carbon economy involves not
only reducing GHG emissions but also transforming the
energy sources used in production. However, climate change
can signifcantly impact the progress and viability of re-
newable energy sources. As discussed previously [10], the
costs, resilience and environmental impact of renewable
energy can be adversely afected by extreme weather events,
adding uncertainty to transition processes [11].

Our study aims to provide organisations and stake-
holders with the tools and insights necessary to anticipate
factors associated with the transition risks of climate
change. Tis knowledge facilitates the identifcation, as-
sessment and management of climate-related risks and
their fnancial implications for organisations. Such climate
change risk data enable investors to comprehensively assess
a company’s risk landscape and the efectiveness of its risk
management strategies [12]. In this context, companies can
use historical data, scenarios and assumptions as input for
analysis. However, challenges such as data accessibility
create barriers associated with these factors. Terefore, it
becomes advisable to emulate climate scenarios to identify
sensitivity ranges with respect to material risks to the
organisation. It is important to note that scenarios may
involve confdential assumptions tailored to specifc
organisational needs. According to experts, the in-
corporation of climate scenarios represents a valuable
strategy for organisations to address uncertainties related
to the risks and opportunities associated with climate
change from external sources [8].

Our study focusses exclusively on climate transition
risks, leveraging AI techniques to predict their fnancial
impacts on organisations. Using machine learning (ML) and
deep learning (DL) models, our objective is to improve
decision-making processes and foster a deeper un-
derstanding of how transition risks afect fnancial out-
comes. Although not all variables suggested by the ECB are
covered, we focus on four key variables that we use in our
case study as our research approach to generate a better
understanding of the fnancial impact of climate transition
risks on companies. Specifcally, we examine the usage of
energy in production systems and the consumption of diesel
as a fossil fuel within the logistics feet.Te results we present
serve as valuable data for future analyses, providing insight
into how climate transition risks—ranging from regulatory
and market factors to technological challenges—impact
organisations fnancially.

In this context, our research is closely aligned with
Sustainable Development Goal 13, which is Climate Action.
Specifcally, we focus on target 1 of this goal. Te aim of this
target is to strengthen the resilience and adaptability of
organisations to climate-related risks. Our specifc focus lies
in developing a software prototype capable of predicting the
fnancial implications of risks encountered by organisations
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during their transition towards a more climate-friendly
approach.

To present our work efectively, the remainder of this
article is structured as follows:

• Section 2 presents related research.
• Section 3 details our case study research methodology.
It describes the methodology for collecting data for the
four critical variables selected for our study, data
preprocessing, prediction and validation and fnancial
impact assessment.

• Section 4 presents the results obtained, specifying how
the risks associated with a changing climate afect the
fnancial health of the organisation.

• Section 5 concludes and ofers future research
directions.

2. Related Research

Researchers have used various methods to analyse climate
risks, including physical and transition risks. Tese methods
include economic and fnancial approaches, prospective
analysis, statistical modelling and AI-based techniques.

2.1. Analysis to Assess Climate Risk. Several approaches
available in the vast literature for forward-looking analysis to
assess risks and consequences related to current and future
climate factors use scenarios [13]. Tese are based on the
GHG emission scenarios (RCP, Representative Concentra-
tion Pathways), which are used in IPCC AR5: RCP2.6 (early
response), RCP4.5 (efective measures), RCP6.0 (2°C
exceedance) and RCP8.5 (business as usual).

Te nature of the data to be analysed to determine the
risks of climate change can be very diverse. In [14], the
authors examine diferent market indicators of climate
change risks and analyse the participation of carbon-
intensive assets in the overall portfolio. Te study in [15]
presents two climate indexes derived from media reports
sourced from the Wall Street Journal, using a predefned set
of climate-related terms. Tese indexes serve as tools for
analysing market fuctuations driven by media coverage of
climate change. Similarly, the authors in [16] proposed
a “carbon beta” to measure an asset’s exposure to climate
risk, correlating high and low emissions in response to
increasing climate concerns. Tis approach examines a cli-
mate policy uncertainty (CPU) index, which considers the
frequency of climate news, as well as volatility in the stock
market. To conclude, the authors in [17] used historical data
to explore the correlation between temperature change and
gross domestic product (GDP), to understand how tem-
perature change afects the global economy. Since temper-
ature serves as a direct measure of climate change and is
easily quantifable, changes in global warming can have
substantial efects on both natural and human systems,
leading to signifcant reductions in economic output. Tis
impact is quantifed by assessing changes in GDP, which can
also serve as a proxy indicator of a country’s capacity to
adapt to and mitigate the efects of climate change.

2.2. Assessment Procedures. Tere are three approaches
identifed by the European Banking Authority to assess
environmental, social and governance (ESG) risks [18]:

1. Portfolio alignment method.
2. Risk framework method (climate stress tests).
3. Exposure method.

In addition, carbon beta is a market-based indicator of
climate risk. Tis measure refects how assets, for example,
global equities or commodities, relate with a carbon risk
factor [16].

As stated in [19], the information required for stress
testing or evaluating the fnancial implications of climate
change on organisations can be divided into two primary
categories: macroeconomic data and climate-related data.
Macroeconomic data encompass a range of fnancial in-
dicators, including regional and global economic statistics,
fnancial statements, infation trends and interest rates.
Conversely, climate-related data involve elements such as
regulatory frameworks, market fuctuations, technological
innovations, organisational reputation, sector-specifc
emissions data, carbon pricing and the energy and carbon
mix, which includes electricity usage and fossil fuel con-
sumption. Tis study concentrates on the latter category,
with a particular focus on energy consumption and the
utilisation of a specifc fossil fuel—diesel—within logistical
operations. Furthermore, it incorporates a market variable,
specifcally addressing price fuctuations related to energy
consumption and diesel.

2.3. Modelling of Climate Risk. In the context of modelling,
various approaches can be found in the literature. A notable
approach involves dynamic system models that are applied
to evaluate the relationships involving climate risks, fnancial
outcomes and operational processes within companies.
Tese models consider various types of risk, including
physical, regulatory, reputational and legal risks. Tey also
integrate aspects such as climate scenarios, the infuence of
policies related to climate change, stakeholder perspectives
and extreme weather events [20]. In addition, open-source
software, such as CLIMADA, has been designed to combine
risk exposure and vulnerability, supporting the development
of risk indicators and evaluating the wider economic im-
pacts. Tese resources enable the calculation of probabilities
for events occurring nationwide [21].

An interesting study on transition risk in South Africa
suggests the use of static input-output frameworks
combined with sector-specifc fnancial risk metrics to
evaluate exposure and fnancial responsiveness in tran-
sition scenarios [22]. Te study highlights the necessity of
including scope 3 emissions in impact evaluations. A
wider approach in [23] considers scopes 1, 2 and 3 to
project the impact on an organisation’s operating ex-
penses, given its level of exposure. Tis analysis employs
an econometric approach applied to a dataset of US
companies to determine the connection between GHG
emissions and reputational risk.

International Journal of Intelligent Systems 3
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Similarly, other studies such as [24–31] consider GHG
emissions as a proxy to evaluate the efects of climate change
on business operations and economic systems. In contrast,
the authors in [28] proposed CRISK, an expected capital
shortage factor using climate scenarios. Tis methodology
consists of creating portfolios sensitive to climate transition
risk, then calculating climate betas using the dynamic
conditional beta (DCB) model, monitoring market factors
and economic changes.

AI plays a central role in modelling, with various
computational approaches described in the literature to
manage and quantify climate risks. In risk management,
studies use techniques such as artifcial neural networks
(ANNs) [32]. Furthermore, BERT [33], a key component of
many natural language processing (NLP) systems, has been
widely used to quantify climate risks. For example, it has
been used to analyse the impact of climate change on credit
default and to interpret regulatory disclosures in 10-K
reports [33].

Tere are numerous other computational models. For
example, the one discussed in [34] uses a daily proxy of
transition and physical climate risks derived from news
articles. Tis model applies advanced computational lin-
guistic techniques to evaluate the infuence of climate risks
on fuctuations in oil prices. Other approaches rely on
stochastic difusion frameworks aligned with extreme
emission scenarios reported by the Intergovernmental Panel
on Climate Change (IPCC), efectively incorporating un-
certainty when estimating sea level rise [10]. Studies such as
[35] leverage the ISO 31000 guidelines to develop online
tools for assessing climate risks. Tese studies make use of
stochastic probability techniques to determine the value of
assets impacted by climate-related events, establish con-
nections between GHG emissions and portfolio structures
and analyse variability in event probabilities. It can be noted
that most of the studies referenced in the current literature
concentrate on either macroeconomic perspectives or
national-scale analyses, often adopting a top-down meth-
odology irrespective of the specifc techniques applied. On
the contrary, we employ a bottom-up approach based on
a specifc use case, the Colombian food sector, and use AI
techniques to explore the fnancial implications of specifc
climate transition risks. We believe that this targeted ap-
proach is crucial to achieving precise and meaningful results.

3. Methodology

We design a comprehensive methodology to analyse and
predict two of the four types of climate transition risks,
including market and regulatory risks, for which we have
collected our original data. A graphical illustration is shown
in Figure 1.

According to the recommendations of [36], we consider
the various factors and projections infuencing the economic
impacts, both at the macroeconomic and sectoral scales, to
evaluate potential climate risks. Subsequently, we encourage
(and expect) the organisation that we used for our case study
to conduct these assessments and actively consider the
potential long-term fnancial consequences. For this study,

the relevant factors include energy consumption and diesel
usage, categorised as regulatory risks, as well as diesel and
energy pricing, identifed as market risks. We will utilise ML
and DL models to predict the fnancial impact concerning
operational costs in the Colombian food sector. Further
details are outlined in the subsequent sections.

3.1. Data Collection and Preprocessing. Our dataset consists
of historical records of electricity and diesel consumption,
along with past prices of fuel and electricity. As explained in
Section 3, these are the variables under study. We collected
data covering monthly consumption from January 2013 to
November 2022 for all the variables mentioned above from
the databases of a Colombian food processing company that
decided to remain anonymous. In this study, to preserve the
confdentiality of company data, which we cannot share, we
use them to generate their distributions. Tis allows us to
draw datasets and simulate relevant scenarios. Table 1 ofers
comprehensive details, including the number of samples and
other relevant information on the dataset utilised in this
study. For the sake of reproducibility, we made the latter
available in [37], together with the source code to process it.
Tis also allows the reader to replicate our results and run
other simulations with diferent data from the same
distributions.

Note that to create a fully useable high-quality dataset,
we used imputation [38, 39], i.e., averaging the available time
series, to estimate the values for missing/null data points.
Before training DL models, we applied a standardisation
routine with a mean value of 0 and a standard deviation of 1.
Tat is, we worked with normal distribution data, as this
practice is well known to signifcantly improve the perfor-
mance of the models employed [40].

Te imputationmethod that uses the mean to fll missing
data can indeed introduce biases and afect the accuracy of
predictions. However, there are many alternative ap-
proaches. Advanced interpolation techniques: Methods like
spline interpolation or polynomial interpolation allow for
estimating values based on the trend of nearby data, which
can be more accurate than a simple mean. ML-based im-
putation models: Techniques such as K-nearest neighbours
(KNN) or regression models can use patterns in the data to
predict missing values, potentially reducing bias. In-
corporating uncertainty: Bayesian techniques can be applied,
not only imputing values but also providing confdence
intervals for the imputations. Although these methods can
sometimes improve missing data handling, the mean im-
putation was chosen because pilot tests with other tech-
niques led to abrupt changes or disrupted the patterns in the
series. Te diferences introduced by the missing values were
minor compared to the inherent noise in the data.

Furthermore, the dataset was divided into consecutive
intervals using a data window, allowing a more accurate
prediction of our measurements, which were measured at
regular intervals.Te data subset in each window is the input
of the forecast system to predict the values at each time [41].
A smaller window size is highly recommended to identify
short-term trends in the data. On the contrary, a larger

4 International Journal of Intelligent Systems
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window is preferred to detect long-term patterns [41].
Terefore, we adjusted the window size for the specifc case,
as indicated in Section 4.

3.2. AI Models Used. In this study, we address a regression
problem. Specifcally, we analyse the quantitative associ-
ation between the independent variable ‘date’ and the
dependent variables ‘price or consumption’ of electricity
and diesel. Tis correlation analysis enables us to predict
the fnancial impact linked to climate change risks within
organisations.

To achieve this goal, we selected and compared 17 re-
gression algorithms, reported in Table 2, which comprise
a good number of statistical and AI-based methods.

We used diferent models to compare model perfor-
mance. Diferent models have their own strengths and
weaknesses. By training several models, we compared their
performance and selected the one that best ft our specifc
dataset and problem.

We used both traditional/simple and modern/advanced
models. We also implemented the ensemble methods be-
cause they can show better performance compared to
a single method. Some models may be too simple (high bias)
and underft the data, while others may be too complex (high
variance) and overft the data. Evaluating diferent models
helps to fnd a balance between bias and variance. Tis
means that ‘there is a trade-of between the accuracy of the
prediction and its precision, or equivalently between its bias
(the opposite of accuracy) and its variance (the opposite of
precision)’ [53].

Training diferent models allows a wider range of
hyperparameters to be explored, potentially leading to
better optimisation and performance. In addition, the use
of diferent models helps to ensure that our predictive
analytics solution is not overly dependent on a single
model, making it more robust and reliable in diferent
data scenarios. In summary, by using multiple models, we
aim to increase the accuracy, reliability and overall ef-
fectiveness of our predictive analytics eforts. In selecting
the criteria used to assess performance in diferent

contexts, we have chosen standard criteria. Tese criteria
or metrics are preferred because they provide a compre-
hensive view of a model’s performance from diferent
angles, helping to identify strengths and weaknesses more
efectively than using, for example, accuracy or
MAE alone.

Te models encompass both statistical and AI-based
approaches, with a focus on ML and DL techniques. Our
rationale for selecting these specifc models stems from their
proven efectiveness in handling nonlinear patterns, which
are typical in time series data related to energy consumption
and pricing [54, 55].

We included classical statistical models such as linear
regression due to their simplicity and interpretability for
linear trends, while the ML and DL models were chosen for
their robustness in capturing complex nonlinear relation-
ships. In particular, tree-based algorithms like random forest
and gradient boosting have been widely validated in energy
consumption forecasting due to their ability to model
nonlinearities and interactions [56]. Furthermore, DL ap-
proaches such as LSTM and CNN are well suited to pro-
cessing sequential data, making them ideal for time series
predictions [57–59]. Tis combination, therefore, ensures
comprehensive coverage of both linear and nonlinear dy-
namics within the dataset.

It can be seen that we have considered a larger number of
AI-based regressors, as they are known to be more suitable
for solving nonlinear time series problems [60]. Also, note
that in Table 2, we further categorised AI-based approaches
to distinguish between those based on classical ML frame-
works and those based on DL models.

Te hyperparameter tuning in this study was conducted
through grid search, optimising parameters such as the
learning rate, the number of hidden layers and the number
of neurones in each layer. For each model, various hyper-
parameter combinations were evaluated using a validation
set.Te fnal selection of hyperparameters aimed to optimise
performance in terms of MSE and R2.Tis approach ensures
that the models are optimally tuned to the data, minimising
the risk of overftting or underftting.

Data collection Data
preprocessing

Variable
forecasting

• Regulatory risk • Imputation (AVG) • Regression NGFS climate 
scenarios [61]

(Figure 2)

Cost impact
analysis

• Market risk • Standardisation

• Data window

• Validation

Figure 1: Methodology overview.

Table 1: Dataset description.

Variable Data entries Time horizon Granularity
Energy consumption 2922 01/01/2015–07/31/2022 Daily
Energy price 84 01/31/2016–12/31/2022 Monthly
Diesel consumption 942 01/02/2020–07/31/2022 Daily
Diesel price 1218 04/19/2019–04/30/2022 Daily

International Journal of Intelligent Systems 5
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Regularisation techniques were implemented in DL
networks, such as dropout layers and L2 regularisation, to
improve the generalisation of the model. For time series
validation, the time series split strategy was applied, ensuring
temporal sequentially and preventing future information
from infuencing the predictions.

Troughout the process, continuous monitoring of
performance metrics in the validation set was performed,
with particular attention given to the divergence between
training loss and validation loss. It is important to note that
the results reported correspond exclusively to the validation
set, not the training set.

3.3. Climate Scenarios. Te Network for Greening the Fi-
nancial System (NGFS) [61] has created a framework that
features hypothetical scenarios (see Figure 2), aiming to ofer
a common reference to understanding the potential impacts
of climate change and policies, highlighting diferent risk
outcomes. Tese scenarios incorporate assumptions about
technological advancements, climate policies and the general
implications of climate change on the economic and f-
nancial conditions of countries, which should be taken into
account in an informed risk assessment.

In this study, we used the six scenarios from the 2022
update version of the NGFS framework [61]. As indicated in
Figure 1, these scenarios come into play as projections of the
change or efect of climate change on a country’s economy,
derived from the analysis of integrated assessment models
(IAMs) (which are expanded in the next section), are then
compared with the prediction results using a method from
Table 2 and help to estimate the fnancial impact of climate
transition risks. Note that the quadrants in Figure 2 group
the scenarios into the four classes explained below according
to the defnitions of [61].

1. Orderly scenarios occur when climate policies are
implemented promptly and progressively strength-
ened, resulting in a signifcant reduction of both

physical and transition risks. Te two scenarios in this
group are

• Net zero (NZ) 2050, which limits global warming to
1.5°.

• Below 2°C (B2D), which involves a gradual in-
tensifcation of climate policies, providing a 67%
probability of restricting global warming to below
2°C.

2. Disordered scenarios are those that can lead to greater
transitional risks because policies are postponed or
vary between countries and industries. For example,
carbon prices tend to be higher for a given temper-
ature result. Te two scenarios in this group are

• Divergent net zero (DNZ), which reaches NZ
around 2050.

• Delayed transition (DT), which assumes that annual
emissions will not decrease until 2030.

3. Hot house world (HHW) poses a serious physical risk
and a low transition risk because global eforts are not
enough to stop global warming. Te two scenarios in
this group are

• Nationally determined contributions (NDCs),
which include all pledged targets.

• Current policies (CPs), which assume that only CPs
are implemented.

4. Too little, too late will contain scenarios of delays and
diferences in ambition for climate policy between
nations, resulting in increased transition risks in
certain countries and increased physical risks globally,
as the general inefectiveness of transition exacerbates
these challenges.

Te six scenarios studied belong to the frst three groups.
NGFS is currently adding more scenarios to the last group,
but the data are not yet available.

Table 2: Te 17 regression models employed in this study.

Name Acronym Category
Linear regression [42] LR

StatisticalLasso regression [43] Lasso
Bayesian ridge regressor [44] BRidge
AdaBoost regressor [45] AdaBoost

Machine learning

Decision tree regressor [46] DT
Light gradient boosting machine [46] LGBM
Gradient boosting regressor [47] GBR
Random forest regressor [48] RF
eXtreme gradient boosting regressor [49] XGBoost
Catboost regressor [43] Catboost
Bayesian automatic relevance determination regression [44] B-ARD
K-nearest neighbours regressor [50] KNN
Support vector regressor [45] SVR
Multilayer perceptron [45] MLP

Deep learningConvolutional neural network [51] CNN
Long-short-term memory [42] LSTM
Deep neural network [52] DNN

6 International Journal of Intelligent Systems

 ijis, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/int/3334263, W

iley O
nline L

ibrary on [08/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Our idea is to use GDP as an economic indicator that
encapsulates the level of stress induced by climate change, as
suggested in [62], and in turn to assess the severity of climate
scenarios. In Table 3, we report the projections of percentage
changes in Colombian GDP, as generated by the AIM of the
NGFS Global Change Assessment Model 5.3 (GCAM 5.3),
which is described in detail [63, 64].

Tese scenarios combine climatological and economic
data, using assumptions such as population growth, GDP
growth and technological change to generate long-term

projections, including mitigation costs and physical
damages [65].

3.4. Metrics and Model Evaluation. We employ four estab-
lished performance metrics to assess the performance of
a model and select the best model [42]. Tese are
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Figure 2: Te NGFS scenario framework—image from [61].
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where n is the number of data points available in the dataset,
the ith (i � 1, . . . , n) residual error ei � (yi − yi) is denoted
as the diference between the actual ith value yi (available in
the dataset) and its predicted output yi, and yi is the
arithmetic mean of the data points.

3.5. Cost Impact Analysis. We use the climate transition risk
adjustment factor (CTRAF) metric as a proxy that captures
the economic changes in Colombia.

CTRAF is a useful tool for investors. It helps them
understand the potential impacts of climate-related events
on their investments. According to [25], it is recommended
to use CTRAF as a proxy. Tis is particularly true in situa-
tions where data are absent or when modelling complex
parameters. Te CTRAF approach considers a vulnerability
factor for the case study company, which is based on the
IPCC’s defnition of vulnerability as a function of exposure,
sensitivity and adaptive capacity [66]. However, most studies
that analyse climate risk typically consider only physical
risks and combine these factors, neglecting other variables of
socioeconomic and systemic vulnerability that are difcult to
characterise [67].

A traditional approach to defning vulnerability, see
[68, 69] for details, is based on combining these components,
as shown in the following equation:

V � E + S − C, (2)

where V stands for vulnerability; E represents exposure,
which is the nature and degree to which a system is exposed
to climate variability; S represents sensitivity, which is the
degree to which the system is afected by climatic stimuli;
and fnally C represents adaptive capacity, that is, the ca-
pacity of a system to adjust to the efects of climate
change [69].

We approach the concept of vulnerability from a dif-
ferent angle, focussing on resilience instead of adaptive
capacity. Resilience (R) is defned as the ability to anticipate
and recover from the impacts of climate change [70], which
is more comprehensive in this context. Tis leads to some

modifcations of equation (2). As suggested in [71, 72], the
latter is replaced by the following equation:

V � E + S − R. (3)

Subsequently, we defne an index to understand the
factors that infuence each of the dimensions of vulnerability
(i.e., exposure, sensitivity and resilience) in relation to the
change in the climate transition. A semiquantitative ap-
proach is considered through expert validation, as vulner-
ability assessments to date have only been used to analyse
physical climate risk [66, 73].

Note that the indicators obtained must be normalised to
a common scale. Te traditional Min-Max [25] scaler, in-
dicated with the function N (·) for brevity here, is applied to
rescale each value in [0, 1] using the following equation:

N xi( ) �
xi − xmin

xmax − xmin
, (4)

where xmin and xmax are the lowest and highest values
bounding any generic ith data point xi, respectively.

Following the assessment of any individual indicator I,
each is independently combined in the three dimensions of
vulnerability to produce a combined indicator (CI) using the
weighted arithmetic aggregation method in [74]. Tis is
calculated with

CI � I1w1 + I2w2 + · · · + Inwn, (5)

where wi (i � 1, 2, 3, . . . , n) is the weight assigned to the
indicator (see [74] for more details).

Te variables selected for the analysis of the three di-
mensions of vulnerability for our case study are described in
the next section.

3.5.1. Calculation of Vulnerability Dimensions. Te in-
dicators in Table 4 are considered for calculating the ex-
posure dimension.

Tus, exposure in this study is represented as

E � N(FFD) × w1 + N(NEP) × w2 + N(EV) × w3 + N(DTCF) × w4 + N(IAT) × w5. (6)

Table 3: Projections of rate of change GDP in Colombia due to climate change under diferent scenarios obtained in the AIM GCAM 5.3
[63, 64].

Year Below 2°C
(%)

Current policies
(%)

Divergent net
zero (%)

Delayed 2°C
(%) NDC (%) Net zero

(%)
2025 −0.63 −0.62 −0.73 −0.62 −0.62 −0.63
2030 −1.12 −1.15 −1.05 −1.16 −1.09 −1.03
2035 −1.60 −1.73 −1.33 −1.79 −1.60 −1.46
2040 −1.94 −2.24 −1.46 −2.19 −2.04 −1.69
2045 −2.11 −2.63 −1.49 −2.33 −2.32 −1.72
2050 −2.31 −3.14 −1.57 −2.45 −2.71 −1.80
2100 −2.24 −7.02 −1.40 −2.28 −4.60 −1.62
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Te indicators in Table 5 are considered to calculate the
sensitivity dimension.

Tus, the sensitivity in this study is represented as
follows.

S � N(FC) × w1 + N(SPM) × w2 + N(DCS) × w3 + N(LOT) × w4 + N(CTC) × w5. (7)

Te following indicators were considered for the cal-
culation of the resilience dimension as shown in Table 6.

Tus, the resilience in this study is represented as
follows:

R � N(CIT) × w1 + N(SCF) × w2 + N(DPS) × w3 + N(ALC) × w4 + N(AMS) × w5, (8)

where Norm(X) is the normalisation function that scales the
variable X in a common range 0-1 and w are the weights
assigned to each variable, which should add up to 1. Tus,
the vulnerability is represented as

V � E × wE + S × wS − R × wR, (9)

where E, S and R represent the 3 vulnerability factors and w

represents the weights given to each of the components.

3.5.2. CTRAF. Te proposed factor employs a top-down
approach which applies the average exposure to climate risks
of a specifc sector and applies the averages to individual
exposures of organisations belonging to that sector [75–77].
Tis factor considers GDP as a proxy in line with
[65, 71, 78, 79], to translate the impacts of climate change on
Colombia’s GDP, considering the projections of the NGFS
scenarios. On the other hand, the distribution of GDP by
economic sector was identifed; this procedure is known as
downscaling [80].

Te study by authors in [65] performs a long-term yield
impact analysis where the efects on assets are calculated.Te
average annual impact on the performance of diferent asset
classes is used as an impact indicator across using diferent
climate scenarios, as shown in Figure 3.

Tis study uses variations in Colombia’s GDP, obtained
from various NGFS climate scenarios. In terms of asset
sensitivity, the suggested vulnerability factor is used, con-
sidering not just sensitivity, but also exposure and resilience
in relative terms, thereby producing a measure of the efect
on the organisation’s performance.

Studies such as [71] have shown the importance of
analysing a country’s economic activity. Tis analysis sig-
nifcantly infuences the economic evaluation at the com-
pany level, often referred to as the top-down approach (see
Table 7). Te impact of climate transition risks, given a set of

scenarios analysed by the NGFS, is determined by the in-
teraction between factors such as exposure, vulnerability,
resilience and adaptability, as proposed in equation (10). In
the latter, CTRAF is the climate transition risk adjustment
factor; V represents the vulnerability to climate change;
ΔGDPS represents the adjustment factor for each economic
sector, which in this case corresponds to the fuctuation of
Colombia’s GDP in the given climate scenario; σ denotes the
proportional contribution of the sector, in which the subject
company of the case study operates, to the GDP in the
context of the climate scenario; andN (·) is the normalisation
function that scales its variable within [0, 1] (equation (4)).

CTRAF � V × N ΔGDPS(  × N(σ). (10)

3.5.3. CTRAF Application. In this study, our objective is to
capture the efects of climate shocks. As indicated in [79], we
use CTRAF. Tis factor is multiplied by the forecast value of
the prices of the variables analysed, which are electricity and
diesel. Tis calculation proposed by the authors is used to
estimate the price of stocks in diferent industries. Fur-
thermore, in our study, we consider diferent scenarios by
multiplying the decrease in stock prices by the transition
vulnerability factors specifc to the sector under analysis.

Te forecasts of the variables produce monthly values.
Tese are the forecasted energy price (FEP) and the fore-
casted consumed energy (FCE). Tese factors will generate
the EC for a base scenario, known as S0, as indicated in the
following equation:

ECS0
� FPE × FCE. (11)

Cost projections associated with the consumption of
these energies are obtained by applying the climate scenarios
established by the NGFS. Tis proxy is represented as

Table 4: Exposure dimension indicators.

Acronym Description Risk type
FFD Fossil fuel dependence Market
NEP New environmental policies and regulations Regulatory
EV GHG emissions volume Regulatory
DFT Level of dependence on fossil fuel–based technologies Technological
ITA Investment in technological adaptation Technological

International Journal of Intelligent Systems 9
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CTRAF, which is added to the previous equation, as shown
below.Tis will generate the EC for the scenario S to evaluate
it, as illustrated in the following equation:

ECS � FPE × FCE × CTRAF. (12)

Temarket cost overrun from the volatility of the energy
price is the diference between the fuel costs in climate risk
events and the costs in the base scenario S0, typically pro-
jected without a climate event, as shown in the following
equation:

Total Cost � ECS − ECS0. (13)

4. Results and Discussion

In this section, we analyse the fndings from experiments
conducted using ML and DL models. Comparisons focus on
predicting energy consumption, diesel usage and associated
pricing. For the assessment of the results, we use the metrics
detailed in Section 3.4. Each of the previously mentioned 17
models (Table 2) undergoes testing for each variable, using
various time windows for the predictions and diferent
confgurations of hyperparameters. Te results derived for
every variable are reported in this section.

4.1. Forecast of Electric Power Consumption, Fuel and Prices.
Data for the four selected variables (electricity consumption
and pricing, diesel usage and pricing as fossil fuel) were
examined, and descriptive analytics methods were used to
gain insight into data patterns over time and to identify
anomalies or gaps in the data.

In the analysis of energy consumption, a total of 17
models were evaluated, including 13 ML models and 4 DL
models. Among these, the DNN model demonstrated the
best performance.TeDNNmodel achieved anMSE of 1.69,
an MAE of 28,236.48 and an R2 of 0.86, as reported in

Table 5: Sensitivity dimension indicators.

Acronym Description Risk type
FC Susceptibility to fuctuations in energy and carbon costs Market
SPM Level of sensitivity to policy change and market demands Regulatory
DCS Degree of dependence on climate-sensitive sectors Market
LOT Level of asset obsolescence due to technological change Technological
CTC Capacity for technological change Technological

Table 6: Resilience dimension indicators.

Acronym Description Risk type
CIT Capacity for innovation in sustainable technologies and business practices Technological
SCF Supply chain fexibility Regulatory
DPS Diversifcation of products and services Market
ALC Adaptation and learning capacity Regulatory
AMS Adaptation and emission mitigation strategies Regulatory

Scenario paths Asset sensitivity Impacts on annual
performance

How will each risk factor
change over time for each

scenario? How sensitive is each sector
and asset class to each risk

factor in relative terms?

How are different sectors or
asset classes affected on an
average annual basis over

multi-year periods?

What are the risk and
opportunity priorities?

A quantitative pathway is
developed for each risk factor

and scenario.

X =

Figure 3: Annual return impact analysis inputs and outputs [65].

Table 7: Distribution of gross domestic product in Colombia by
sector [81].

Economic activity Share of GDP (%)
Commerce 17.76
Public administration and defence 15.09
Manufacturing industries 11.52
Taxes less subsidies 9.6
Real estate activities 8.43
Agriculture 7.43
Professional activities 6.65
Mining 5.29
Construction 4.72
Financial activities 4.48
Energy supply 3.48
Arts activities 2.85
Information and communications 2.7

10 International Journal of Intelligent Systems
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Table 8. To determine the optimal forecast window for this
model, various window sizes were explored. Te most ac-
curate results were achieved using a 30-data point window,
which represents the 30-most recent observations in the time
series. It is noteworthy that all time series data utilised had
a monthly resolution. Tis window size proved to be ef-
fective in predicting the subsequent data point in the series.

On the contrary, Figure 4 illustrates the model’s ability
to apply the results obtained from the DNN training to
both the training and the test datasets. Te model’s strong
learning capability and accuracy are apparent, as the neural
network’s hyperparameters are very close to resemble the
actual values.

In contrast, when analysing diesel consumption within
the company’s logistics operations, various models were
tested, as presented in Table 9. Among these, the random
forest regressor delivered the most accurate results,
achieving an R2 score of 0.93. A perfect R2 value of 1 in-
dicates that the model fully captures the variability of the
dependent variable, whereas an R2 value of 0 signifes a total
lack of explanatory power [42]. For the optimal forecast
window, the last 48 data points were used, resulting in an
accuracy of approximately 93%.

Te validation plot of the random forest regression
model shows a good ft for diesel consumption (see Fig-
ure 5), which means a good level of learning.

After analysing consumption, we examined kilowatt-
hour (kWh) electricity prices from the local energy sup-
plier. Tis analysis facilitated the creation of a monthly
consumption report for each of the company’s facilities
included in the study. Te resulting data served as input for
training the models, with the outcomes detailed in Table 10.
In this case, the linear regression model was the one that
obtained the best results by using a forecast window of 8
historical data points, i.e., we rely on the last 8 periods to
forecast the following periods.

Similarly, Figure 6 presents the comparison between the
observed and predicted values for energy prices. Te test
dataset indicates a ft of approximately 94%, which repre-
sents a good learning rate of the model.

For the diesel price variable within the logistics process,
the analysis of trained models reveals that the Bayesian ARD
regression provided the most accurate results, attaining an
R2 value of 0.87. Table 11 summarises the outcomes for all
the models evaluated. In this case, a forecasting window of
12 historical data points was employed.

According to the fndings presented in Figure 7, it can be
concluded that there is a high level of accuracy in the
prediction, reaching approximately 87%.

After training the models described in the previous
section, predictions were generated for all the variables,
including electricity usage, diesel usage, energy and diesel
pricing.

Te graphs presented in Figures 8, 9, 10, and 11 show the
results of the predictions of the models. Te blue line
represents historical data for each variable, while the red line
represents the forecast. Te forecast time horizon covers
8 years, until 2030.

Te exponential growth of electricity consumption can
be seen in Figure 8, starting at the beginning of 2024 and
continuing until 2030. Tis trend serves as a warning to the
organisation, considering the energy consumption re-
duction target proposed for 2030.

In contrast, Figure 9 shows a consistent pattern of diesel
consumption from 2023 onwards, with peaks ranging from
low to high, persisting until 2030.

From a diferent point of view, Figure 10 illustrates the
gradual increase in the cost of energy per kilowatt-hour
(kWh) from 2023, consistently until 2030.

In contrast, Figure 11 shows the expected price of diesel
for logistics purposes. Te results indicate a price decrease
and stable values starting in mid-2023. It should be
emphasised that these fndings represent an approximation
of actual trends, and consequently, updating the model with
more recent data in the future is likely to enhance the ac-
curacy of the predictions.

4.2. Financial Impact Projection. Once the energy con-
sumption and price forecasts were generated, we proceeded
to calculate the expenses linked to this category of con-
sumption. Te analysis indicates that the projected costs are
directly proportional to consumption levels, suggesting
a notable rise in expenses driven by the trends observed in
this parameter (see Figure 12).

Figure 13 illustrates the estimated costs for the diesel case
in logistics until 2030. Similar to Figure 9, this one shows
a constant pattern with high and low points, for the orga-
nisation analysed in this study.

It is evident that extended forecasts or those with lengthy
time horizons can exhibit seasonality in the predicted re-
sults, as shown in Figures 9, 11, and 13. When the forecast
horizon increases, the accuracy of the results becomes
heavily reliant on preceding predictions. Consequently,
long-term forecasts may deteriorate, leading to biased results
that neither account for actual data nor accurately identify
patterns within them [82]. To address this, it is advisable to
retrain the models as new, real-world data become available,
enhancing the precision of future forecasts.

Te importance of data in training long-term forecast
models is clear. In particular, data at the highest possible
granularity can be valuable for evaluating the impact of
climate risks. However, this requires increased computing
power and a dataset with certain quality characteristics [83].

It is important to highlight that the example extending to
2030 is presented after model validation as a use case, given
that companies usually need to make long-term forecasts.
Long-term predictions are essential for companies to plan
strategies and mitigate risks, but it is clear that they are
susceptible to various variables that may change over time,
such as policy changes, energy prices and market conditions.

We acknowledge the limitations of these models, as with
any other, for long-term predictions, as they require the use
of exogenous variables and signifcantly more data to im-
prove accuracy, although bias will always exist. In this case,
the use of ML and DL models, which are capable of adapting
and learning from historical patterns, is an advantage,

International Journal of Intelligent Systems 11
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Table 8: Forecast models and performance indicators—energy consumption.

Model MSE RMSE MAE R2

DNN 1.696610e + 09 41,189.920324 28,2 6.486094 0.860951
MLP 2.241684e + 09 47,346.424559 32,677.868021 0.816278
Catboost 2.283084e + 09 47,781.623791 32,018.444658 0.812885
LGBM 2.426198e + 09 49,256.451484 34,023.228442 0.801156
GBR 2.568980e + 09 50,685.102708 33,761.013744 0.789454
Note: Bold values indicate the best results.
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Figure 4: Fit of the data chart—energy consumption.

Table 9: Forecast models and performance indicators—diesel consumption.

Model MSE RMSE MAE R2

RF 9.029042e + 04 300.483642 236.296525 0.9   40
DT 9.081962e + 04 301.362944 2 2.00747 0.932949
LGBM 1.230149e + 05 350.734787 278.964027 0.909180
GBR 1.426821e + 05 377.732786 267.617305 0.894660
XGB 1.454580e + 05 381.389629 282.187783 0.892611
Note: Bold values indicate the best results.
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Figure 5: Fitting the data plot—diesel consumption.
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Table 10: Forecast models and performance indicators—energy price.

Model MSE RMSE MAE R2

LR 81.974459 9.05 975 7. 16486 0.940489
Lasso 88.141200 9.388354 7.759889 0.936012
BR 91.355604 9.558013 7.894933 0.933679
B-ARD 96.314222 9.813981 8.369255 0.930079
MLP 129.519848 11.380679 9.375882 0.905973
Note: Bold values indicate the best results.
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Figure 6: Fitting the data plot—energy price.

Table 11: Forecast models and performance indicators—diesel price.

Model MSE RMSE MAE R2

B-ARD 3953.638785 62.877967 44.252015 0.879945
Lasso 3962.090573 62.945139 44.303752 0.879688
LR 3962.121258 62.945383 44.303725 0.879687
BRidge 3969.248544 63.001973 44.453659 0.879471
Catboost 4875.942522 69.827949 49.490207 0.851938
Note: Bold values indicate the best results.
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Figure 7: Fitting the data plot—diesel price.
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although they also heavily depend on the quality and
availability of the data. We propose that the model con-
tinuously learns from new data over time, ensuring that
future predictions become increasingly accurate,
mitigating bias.

A simulation was conducted using diferent scenarios
that could afect projections. By providing examples of
various scenarios, our aim is to illustrate how companies can
prepare for diferent scenarios and adjust their strategies
based on the available information.
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Figure 8: Forecast of energy consumption until 2030.
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Figure 9: Forecast of 2030 diesel consumption.
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Figure 10: Forecast of energy price until 2030.
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Tis study has taken a diferent approach by applying
bottom-up approach. Tis stands in contrast to the majority
of suggested frameworks and models, which predominantly
follow a top-down perspective [84]. Te research and expert
opinions advocate for the bottom-up approach, as it focuses
on the frm or asset scale [77]. Tis method is considered to
yield more precise outcomes within organisations.

Tis study aligns with the fndings of Rao [85], who used
a support vector machine (SVM) to examine fuel costs, CO2
pricing and ECs in Italy. Similar to our approach, their
research facilitated the estimation of ECs. However, unlike
their methodology, our study employed a broader range of
models—17 in total tailored to the specifc variables analysed
and the nature of the data used.
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Figure 11: Forecast of 2030 diesel price.
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Figure 12: Forecast of the energy cost until 2030.
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Figure 13: Forecast of the diesel cost until 2030.
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Currently, ML models are widely used to perform
predictive analysis of production, consumption, demand
analysis and other business variables. Tis is mainly due to
their ability to provide high accuracy, efciency and speed.
In addition, these models also provide a better un-
derstanding of the operation of complex systems involving
humans [85].

4.3. Application of Climate Scenarios. Once the forecasts for
each of the variables in the previous section were made, we
integrated the CTRAF for each of the six selected scenarios
to understand the fnancial impact of climate change on the
selected variables, adjusting the forecasts to the climate
variations proposed by the NGFS. Figures 14 and 15 show
the projections made in each climate scenario, after applying
the adjustment factor.

For both diesel and electricity costs, it can be observed
that costs begin to increase from 2023 onwards andmaintain
an upward trend until 2030. Tis may be partly due to
changes in the organisation’s logistics and the application of
the CTRAF in each of the scenarios analysed. Towards the
latter change, high costs are observed in the DNZ and NZ
scenarios. Tis is because these scenarios require more
mitigation to achieve zero emissions by 2050, requiring
companies to take more drastic measures and governments
to implement stronger policies, such as an increase in the
carbon tax and an increase in fossil fuels tax, among other
measures.

On the other hand, the DT and B2D scenarios present
similar increases. Tese are inferior to those of the NZ
scenario, and with those of B2D being always slightly higher
than those of DT; this is because in the DTand B2D scenario,
climate policy measures are just starting to reduce GHG
emissions and ECs have not yet risen. Finally, the NDC and
CP scenarios are the ones with the lowest cost increases
because there are not yet strong policies in place to force
companies to take action to mitigate and adapt to climate
change and because there is not yet an increase in ECs.

Te integration of this factor, a novel proposal generated
by this study, adds a layer of analysis, which shows not only
the direct impact of climate change on the costs of an or-
ganisation taking into account the energy sources analysed
but also how this impact is distributed across diferent
climate trajectories. Tis factor includes new environmental
policies for each scenario, technological advances and
changes in consumer and producer preferences, among
other macroeconomic factors that modellers have included
in their integrated models [65].

Te outcomes of the applied scenarios range from an
orderly and gradual transition to abrupt changes, allowing
for a variety of outcomes and their impact on the organi-
sation’s fnancial and operational planning. Te results
highlight the diferences between the scenarios and show
that scenarios that take into account slow action to combat

climate change bring signifcant additional costs, which
shows the importance of taking measures related to the
climate resilience of the organisation.

Te predictions obtained in this study, based on the
NGFS climate scenarios, provide a valuable framework for
organisations to evaluate the fnancial implications of cli-
mate risks. Companies can integrate these predictions into
their fnancial planning strategies, identifying critical points
in their operations, such as rising ECs or potential fuctu-
ations in fossil fuel prices. We recommend that organisa-
tions use these forecasts to establish adaptive budgets and
develop climate risk mitigation strategies, adjusting their
fnancial plans according to the various climate scenarios
presented. Tis will enable them to improve their resilience
and increase their resilience to future climate events.

Access to high-quality data remains a challenge for many
organisations. To replicate this methodology in other con-
texts, we recommend following a data quality stand-
ards–based approach, such as those outlined in ISO 8000-60.
Tis involves identifying data requirements, assessing data
accessibility, verifying accuracy and managing data gaps.
Specifcally, we recommend that companies focus on the
continuous improvement of their data management systems
and the implementation of advanced data collection
methodologies to increase the granularity and accuracy of
datasets used in predictive models. Te handling of missing
data can be done using any method deemed appropriate for
the given series. In addition, the window size should be
adjusted as specifed in the text, according to the specifc
study. However, the rest of the study can be replicated by
following the steps of the methodology described.

Although these results are based on data from a single
company in the processed food sector in Colombia, the
methodological approach is generalisable to other sectors
and industries. Te selected variables (energy and diesel
usage, energy prices and fossil fuel prices) are common in
many productive sectors, suggesting that this methodology
could be adapted for companies in various industries.
However, we acknowledge that certain biases inherent to the
nature of the studied company (e.g., the specifc type of
energy consumption) could limit the direct generalisation of
the results. To mitigate these biases, we recommend that
future studies conduct similar analyses in other industries or
regions with diferent energy consumption profles. Repli-
cating this methodology in diferent contexts would provide
additional validation and help identify potential sectoral
diferences.

Te contribution of this research is twofold. First, it
provides a methodology that can be replicated in any orga-
nisation, combining AI techniques with the strategic per-
spective of transitional climate risk management, allowing
organisations to better anticipate the potential fnancial im-
plications of climate change. Second, by considering a variety
of climate scenarios, it provides a broader view of fnancial
risks, facilitating informed and strategic decision making by
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companies. Consequently, this study enriches the existing
literature with a practical approach to fnancial planning and
transitional climate risk management.

5. Conclusions and Future Work

Our research demonstrates that efectively applying pre-
dictive models empowers organisations to make well-
informed decisions by leveraging historical data analysis.
Consequently, this helps to manage fnancial resources ef-
fciently and to monitor established objectives. Tis ap-
proach fosters stronger alignment with global climate
transition targets, enhances comprehension of the scale of
climate-related risks and evaluates the organisation’s read-
iness to address such challenges.

Although managing limited datasets and low-resolution
information presents challenges that may restrict the use of
AI for analysis, AI-driven approaches remain an efective
solution for addressing both climate transition risks and
broader climate-related challenges.

Terefore, we stress the importance for companies to
start identifying and collecting relevant data sources to le-
verage their predictive capabilities when making decisions
about or even avoiding climate risks. In this context, it is
essential to enhance understanding of efective data col-
lection methods, including determining specifc data re-
quirements, evaluating the availability of data sources,

adhering to industry standards, validating data, addressing
data gaps and updating institutional frameworks. Te In-
ternational Organisation for Standardisation (ISO) supports
this approach in the ISO 8000-60 series, which is specifcally
designed for data quality.

Te average prediction accuracy of the selected models
for each variable is 90.36%. Tis shows that AI has great
potential as an option for organisations to improve their
decision-making processes when managing climate
change–related risks.

Our bottom-up approach is unique and competitive with
the top-down approach prevalent in the existing literature.
Te latter is abundant with examples focussed mainly on the
model, specifcally for the fnancial sector. We believe that
integrating bottom-up and top-down approaches can pro-
vide a more comprehensive understanding of these risks,
encompassing both the macroeconomic system and the
microeconomic level. We intend to analyse the joint use of
these approaches in future studies.

Te proposed methodology for calculating the CTRAF
provides an important basis for making projections of the
changes that diferent climate events can cause to a country’s
economy and an organisation’s fnancial health. Te results
of this study are a frst step towards understanding not only
the potential additional costs caused by climate risks but also
the opportunities for a transition to a low-carbon economy
from an energy perspective.
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Furthermore, the assessment in this study is an input for
strategic budgeting in organisations, allowing them to an-
ticipate and plan for fnancial adjustments in response to
diferent climate trajectories. Although this research focusses
on a Colombian organisation, the implications of the results
are global, as climate change is a phenomenon that afects
the whole world to varying degrees. In this sense, the ad-
ditional costs of climate shocks can afect interconnected
economies and sectors.

Te application of the proposed adjustment factor shows
that climate change has gone beyond a purely environmental
concern to an economic one. Tis requires organisations to
develop robust strategies for sustainable fnancial and op-
erational planning. Te results obtained highlight the need
for more aggressive adaptation and mitigation measures.

Te uncertainty associated with climate scenarios that
can be considered for fnancial statement adjustments re-
mains a challenge. Tis is an approach to analysing the f-
nancial impact of climate risks that builds on previous
studies, including the World Business Council for Sus-
tainable Development’s recommendations to adjust values
using weighted averages of the results of scenario analyses
with the weighted according to proprietary but stakeholders’
criteria.

Future studies will delve into additional aspects aimed at
evaluating the impact of climate transition risks on in-
stitutions. Tese aspects include GHG emissions, carbon
pricing and the utilisation of other fossil fuels. Eforts are
required to enhance long-term forecasting methods to
mitigate the infuence of seasonal fuctuations on outcomes.

As the proposed method is new and not exact, it can be
argued that it lacks validation and needs to be compared
with other alternative methods. However, in our review of
the literature, we did not fnd any alternative risk adjustment
factors for climate change. Validation therefore implies not
only the development of the method proposed here but also
the development of alternativemethods, which should be the
subject of future work.

In conclusion, we have a vision for the future application
of the methodology in this study. We plan to apply this in
a wider context by increasing the number of variables related
to climate transition risks. Tese risks include events related
to the market and technological risk. Furthermore, we will
develop, with the same organisation, a methodology for
value-at-risk analysis to assess the potential losses (or gains)
arising from climate transition risk.
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L. Vanneschi, “A Machine Learning Approach to Predict Air
Quality in California,” Complexity 2020 (2020): 1–23, https://
www.hindawi.com/journals/complexity/2020/8049504/, https://
doi.org/10.1155/2020/8049504.

[41] J. Brownlee, “Deep Learning for Time Series Forecasting:
Predict the Future With MLPs, CNNs and LSTMs in Python”
(2019).

[42] S. Kumari and S. K. Singh, “Machine Learning-Based Time
Series Models for Efective Co2 Emission Prediction in India,”
Environmental Science and Pollution Research 30, no. 55
(2022): 116601–116616, https://doi.org/10.1007/s11356-022-
21723-8.

[43] R. N. Rachmawati, A. C. Sari, and Yohanes, “Lasso Regression
for Daily Rainfall Modeling at Citeko Station, Bogor, Indo-
nesia,” Procedia Computer Science 179 (2021): 383–390, https://
linkinghub.elsevier.com/retrieve/pii/S1877050921000223,
https://doi.org/10.1016/j.procs.2021.01.020.

[44] M. Massaoudi, S. Refaat, H. Abu-Rub, I. Chihi, and
F. Wesleti, “A Hybrid Bayesian Ridge Regression-Cwt-
Catboost Model for Pv Power Forecasting,” in 2020 IEEE
Kansas Power and Energy Conference (KPEC) (2020), 1–5,
https://ieeexplore.ieee.org/document/9167596/, https://
doi.org/10.1109/KPEC47870.2020.9167596.

[45] J. Liu, A. Xiao, G. Lei, G. Dong, and M. Wu, “Intelligent
Predicting of Salt Pond’s Ion Concentration Based on Support
Vector Regression and Neural Network,” Neural Computing
& Applications 32, no. 22 (2020): 16901–16915, https://
doi.org/10.1007/s00521-018-03979-9.

[46] E. Pekel, “Estimation of Soil Moisture Using Decision Tree
Regression,” Teoretical and Applied Climatology 139, no. 3-4
(2020): 1111–1119, https://doi.org/10.1007/s00704-019-03048-8.

[47] S. Kumar, J. Ashritha, C. Teja, and M. Vineeth, “House Price
Prediction Using Gradient Boost Regression Model,” In-
ternational Journal of Research and Analytical Reviews (2020):
https://www.ijrar.org/papers/IJRAR2001569.pdf.

[48] S. Canaz Sevgen and Y. Aliefendioğlu, “Mass Apprasial With
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Colombia,” Ensayos Sobre Politica Economica no. 102 (2022):
https://repositorio.banrep.gov.co/bitstream/handle/20.500.
12134/10455/Espe102.pdf, https://doi.org/10.32468/espe102.

[76] E. Campiglio, L. Daumas, P. Monnin, and A. von Jagow,
“Climate-Related Risks in Financial Assets,” Journal of Eco-
nomic Surveys 37, no. 3 (2023): 950–992, https://onlinelibrary.
wiley.com/doi/abs/10.1111/joes.12525, https://doi.org/10.1111/
joes.12525.

[77] E. Campiglio, S. Dietz, and F. Venmans, “Climate Risks in
Financial Assets,” (2019), https://www.cepweb.org/wp-content/
uploads/2019/11/CEP-DN-Climate-Risks-in-Financial-Assets.
pdf.

[78] R. Vermeulen, E. Schets, M. Lohuis, B. K¨olbl, D. J. Jansen, and
W. Heeringa, “An Energy Transition Risk Stress Test for the
Financial System of the Netherlands,” (2018), https://www.dnb.
nl/media/pdnpdalc/201810_nr-_7_-2018-_an_energy_transition
_risk_stress_test_for_the_fnancial_system_of_the_netherlands.
pdf.

[79] R. Vermeulen, E. Schets, M. Lohuis, B. Kölbl, D. J. Jansen, and
W. Heeringa, “Te Heat Is On: A Framework for Measuring
Financial Stress Under Disruptive Energy Transition Scenarios,”
Ecological Economics 190 (2021): 107205, https://linkinghub.
elsevier.com/retrieve/pii/S0921800921002640, https://doi.org/
10.1016/j.ecolecon.2021.107205.

[80] M. T. Adrian, P. Grippa, M. M. Gross, et al., Approaches to
Climate Risk Analysis in FSAPs (International Monetary
Fund, 2022).

[81] Statista, “Distribución del Producto Interno Bruto (PIB) Por
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